Home > AllWinner A1X, AllWinner A2X, Android, Graphics, Hardware, Intel Atom, Linux, Programming, Testing > Embedded Linux Conference Europe 2014 Schedule – IoT, ARM vs x86, Optimization, Power Management, Debugging…

Embedded Linux Conference Europe 2014 Schedule – IoT, ARM vs x86, Optimization, Power Management, Debugging…

The Embedded Linux Conference Europe (ELC 2014), CloudOpen, and LinuxCon Europe will jointly take place at the Congress Centre Düsseldorf, in Germany on October 13 – 15, 2014. The 3-day events will consists of keynotes, presentations, and tutorials. Each day will open with two or three keynotes by speakers including  Jim Zemlin (Executive Director, Linux Foundation), and Jono Bacon (XPRIZE), followed by presentation and tutorials. There will be 45 presentations for ELCE, 58 for LinuxCon, and 47 for CloudOpen, I’ll make a virtual schedule with a few sessions part of the Embedded Linux Conference Europe “track”.


Monday, October 13

When faced with a performance problem, the initial steps towards a solution include identifying the sections of code responsible and the precise reasons they are time-consuming. To this end, the ‘perf’ profiling tools provide valuable insight into the characteristics of a program. The presentation will show, using real-world examples, how the ‘perf’ tools can be used to pinpoint the parts of a program in need of optimization.

It’s not uncommon to produce embedded Linux based devices that end up with long and inconvenient boot times – yet eliminating boot time delays can be difficult and time consuming. Furthermore once a minimal boot time has been achieved it’s often just as difficult to maintain it through subsequent software development.

In this presentation, Andrew unfolds 12 keys lessons learned in his experience of boot time reduction. These lessons provide an insight into the common causes of boot time delays, why they are present and how they can be overcome. In describing these lessons Andrew will also take you on a journey that indicates why file system benchmarks should probably be ignored (with respect to boot time reduction) and a journey that illustrates that the Linux kernel is rarely the worst offender for boot delays.

With the introduction of Bluetooth Smart (aka Low Energy), the ubiquity of Bluetooth is more and more present. Millions of devices support Bluetooth Low Energy and with Bluetooth 4.1 specification, they are ready for the Internet of Things. This presentation will give an overview of Bluetooth Low Energy, and its usage for the Internet of Things. It will also introduce 6loWPAN over Bluetooth and show the possibilities this opens for Linux.

With experience developing community based open hardware for both the ARM based PandaBoard project and the x86 based MinnowBoard project, this presentation will provide a detailed comparison of the pros and cons of each platform with highlights of what each platform can learn from the other. Not only limited to the hardware aspect of the platforms, but also discuss community, software, corporate and general embedded aspects.

For almost as long as there have been deployments of Linux, there has been someone wondering “how can I get the device started quicker?” and “how do I configure some redundancy, easily, in case something goes wrong?”. And for the longest time, the answer has been “hack this and this and that” or “hire these consultants, they have done it before”. In this presentation, Tom will show what you need to turn on and the prep work required for, getting a lot of those items out of the box in U-Boot, what the hardware (and/or ROM) needs to do, and the what works is left going forward.

Got a question, comment, gripe, praise, or other communication for the Yocto Project and/or OpenEmbedded? Or maybe you’d just like to learn more about these projects and their influence on the world of embedded Linux? Feel free to join us for an informal BoF.

Tuesday, October 14

While user experiences are increasingly moving to 3D, rendering of 2D content remains at the core of how we interact with computer applications today. Skia is an open-source project maintained by Google whose goal is to bring the best 2D graphics library to a variety of targets, from mobile to desktop and embedded. Skia is used in highly popular projects like Mozilla Firefox, the Chromium browser and Android.

This talk will introduce Skia to developers and users, giving an overview of its design, architecture and features. It will also discuss briefly how hardware acceleration improves performance of Skia in the context of new devices, form-factors and the industry shift to mobile; with focus set on Linux and Android platforms.

The 4.4 KitKat release includes the results of “Project Svelte”: a set of tweaks to the operating system to make it run more easily on devices with around 512 MB RAM. This is especially important for people working with Android Wearables and “Embedded Android”, that is, implementing Android on devices at the lower end of the Android ecosystem. A large part of the problem is knowing how much RAM is really being used. Android offers a variety of tools for the purpose: procrank, procmem, meminfo and procstats, which Chris covers in the first part of the talk. In the second part, he takes a real-world example and show the practical steps you can take to optimize memory use including tuning the size of the Dalvik heap, enabling KSM (Kernel samepage merging) and swap to zRAM.

Android has relied from its early days on the Linux kernel for sandboxing the processes it runs. Yet, the permission model presented to app developers is significantly different from the Unix permission model. What’s the relationship between those two models? How is Android’s app security framework tied to the Linux kernel’s security model? More recently, Android has started using SELinux and has been extended by SEAndroid to support similar functionality. How is SELinux used by Android and what is SEAndroid about? Furthermore, how does Android provide support for multiple users?

This talk will explore Android’s security model in great detail and explain how the functionality found in the kernel is used to isolate user processes and the SE enhancements are leveraged by Android. As we’ll see, there are quite a few moving parts in Android’s security model.

Since last year, Free Electrons has been working on supporting the SoCs from Allwinner, a Chinese SoC vendor, in the mainline kernel. These SoCs are cheap, wide-spread, backed by a strong community and, until last year, only supported by an out-of-tree kernel. Through this talk, Maxime will share the status of this effort: the status a year ago, what solutions were in place, where we are currently, and what to expect from the future. He will also focus on the community around these SoCs, the work that is done there, etc.

Enlightenment Foundation Library is a set of libraries designed to use the full potential of any hardware to do great UI. It has been designed with the embedded devices in mind, but it is a desktop class toolkit. Being done in C, it is providing a stable API/ABI, high efficiency, low memory and low battery usage for all kind of Linux devices. Enabling development of modern UI adapted to any hardware that run Linux. These are the reason why Samsung uses it in its Tizen devices. This talk, after a short overview of what this libraries cover, will focus on this year improvement, and where it is heading. It will also be an opportunity to learn about project around EFL that will help people develop product with it. And it would also be a good opportunity to see where EFL are used with some real use case.

Wednesday, October 15

A major issue the community faces is the lack of power measurement (PM) instrumentation, coupled with poor integration: development boards not designed for it, expensive high-precision lab equipment not accessible to hobbyists (plus limited Linux support), limited low-cost solutions (precision, sampling rate) to monitor high-performance SoC (System On Chips) platforms (e.g. smartphones, tablets, IoT, …). After a brief introduction to the problematic (PM techniques, sense resistor / ADC selection, …) and a comparative study of existing solutions, this presentation will focus on a new upcoming initiative to close these gaps and bring a full-blown multi-channel but low-cost power (and temperature) measurement equipment to the community, including the definition of an open standard PM connector. After having covered motivations, challenges, key decisions, a live demo will close the talk.

In 2013, at the Embedded Linux Conference in Europe in Edinburgh, there was a race between a dog and a blimp. It was said that despite the dogs win, that the blimp had participated in the miracle of flight. In 2014, John wants to show that the brains of that dog can be transplanted and that it too, can participate in the miracle of flight. The talk is mainly targeting taking an off the shelf embedded platform, Minnowboard Max, and it’s use in UAVs, specifically quad-copters. With the ability to do real time computer vision, as well as various GPIO capabilities he will explore the directions that significantly more autonomous UAVs can take with Linux and embedded platforms using, mostly, off the shelf components.

There have been many presentations on what a device tree looks like and how to create a device tree. This talk instead examines how the Linux kernel uses a device tree. Topics include the kernel device tree framework, device creation, resource allocation, driver binding, and connecting objects. Troubleshooting will consider initialization, allocation, and binding ordering; kernel configuration; and driver problems.

Providing real-time capabilities to a general purpose operating system is an outstanding technical problem, and Linux Preempt-RT has been developed for 10 years for this goal. In this presentation, Jim proposes a lightweight open source para-virtualization layer, called “rtmux”, using resource-multiplexing techniques to provide a highly deterministic RT environment for Linux/ARM. Typically, less than 500 lines modification against Linux kernel are required to enable rtmux accompanied by POSIX/PSE51 compatible runtime.

During the last 2.5 years, a team of engineers at Free Electrons has been involved in mainlining the support for several ARM processors from Marvell, converting the not-so-great vendor-specific BSP into mainline quality code progressively merged upstream. This effort of several hundreds working days, has led to the integration of hundreds of patches in the kernel. Through this talk, Thomas will share some lessons learned regarding this mainlining effort, which could be useful to other engineers involved in ARM SoC support, as well as detail the steps Free Electrons engineers have gone through, the mistakes made and how they’ve been solved, as well as their overall experience on this project.

To make your own schedule matching your interests, you can check out the events’ program.

To attend the conference, you can register online.

The fees are listed as follows:

  • All-access Registration Fee – $600 until August 22 (tomorrow), $750 until October 2, and $850 afterwards
  • Attendee Networking Pass Registration – No access to conference sessions. $250 until August 22, $300 afterwards.
  • Student Registration Fee – $200 (valid student id required).
  • Registration Discount Scholar – $300. For active open source community members who can’t be sponsored by their company. .

Fees are significantly higher than last year, because there are only all-in-one (ELCE, CloudOpen and LinuxCon )options, and you can’t simply register to one single event.

  1. Marius
    August 21st, 2014 at 16:20 | #1

    I’d love to see some of these presentations. Any idea if they’ll be made available online at a later date ?

  2. August 21st, 2014 at 16:27 | #2
  1. No trackbacks yet.