Archive

Posts Tagged ‘802.11ad’

Intrynsic Open-Q 835 Development Kit Features Qualcomm Snapdragon 835 Processor, Support Android 7 and Windows 10

June 7th, 2017 1 comment

Intrinsyc has just launched one of the first development boards powered by Qualcomm Snapdragon 835 processor with their Open-Q 835 devkit equipped with 4GB LPDDR4x, 128GB UFS 2.1 flash, 802.11ad WiFi, dual camera support and more.

Open-Q 835 Devkit with Cooling Plate Underneath

Open-Q 835 development kit is comprised of a “processor board” and a baseboard with the following specifications:

  • Processor Board
    • SoC – Qualcomm Snapdragon 835 (APQ8098) octa-core processor with four high performance Kryo 280 cores @ 2.20 GHz/ 2.30 GHz (single core operation), four low power Kryo cores @ 1.9 GHz, Adreno 540 GPUwith  OpenGL ES 3.2, OpenCL 2.0 Full support, and Hexagon 682 DSP with Hexagon Vector eXtensions (dual-HVX512)
    • System Memory – 4GB LPDDR4x RAM
    • Storage – 128GB UFS2.1 Gear3 2 lane Flash
    • Connectivity
      • Wi-Fi 802.11a/b/g/n/ac 2.4/5Ghz 2×2
      • Bluetooth 5.0 + BLE
      • WiGig60 802.11ad with on-board antenna
    • Dimensions – 70 x 60 mm
  • Carrier Board
    • Display – 1x HDMI 2.0 out up to 4K Ultra HD, 2x 4 lane MIPI DSI + Touch Panel connector for optional LCD panel accessory
    • Audio
      • On-board Audio Codec; Audio in & out expansion headers, 1x ANC Headset Out
      • Optional SW features – Qualcomm Fluence HD with Noise Cancellation, high fidelity music playback 24-bit/192kHz, Dolby 5.1 support
    • Camera
      • 3x 4-lane MIPI CSI connectors
      • Dual Qualcomm Spectra 180 ISP
      • Optional SW Features – Qualcomm Clear Sight camera; Hybrid Autofocus, Optical Zoom; HW-accelerated Face Detection; HDR Video Record
    • Other Interfaces
      • GNSS daughter card with GPS, GLONASS, Beidou, and Galileo, PCB antenna and SMA connector option
      • 1x UART debug (USB micro-B)
      • 1x USB3.1 Type C
      • 1x uSD 3.0 UHS-1
      • I2S, SPI, GPIO, sensor header
    • Power Supply – 12V/3A DC; optional 3,000 Li-Ion battery
    • Dimensions  — 170mm x 170mm (mini-ITX form factor)

The company provides support for Android 7 Nougat, and Windows 10 should be feasible too but you are asked to “contact sales”. An optional WQHD AMOLED LCD is also available. Intrynsic explains the development kit is particularly suited for OEMS and device makers evaluating the processor and peripherals, and for premium mobile device development.

The “Early Adopter Version” of Open-Q 835 development kit can be purchased for $1,149, subject to an approval process. You may be able to find additional details on the product page.

Qualcomm Unveils Mesh Networking WiFi Router / Gateway Reference Design Powered by IPQ40x8/9 NSoC

May 30th, 2017 2 comments

Qualcomm has just announced the Qualcomm Mesh Networking Platform for OEM and broadband providers to design home WiFi routers/gateways capable of providing “robust and consistent connectivity”, and feature voice control capabilities, centralized management and security, and a range of mesh system features.

In order to speed up adoption the the platform, the company introduced the Qualcomm Mesh Networking Reference Design with the following key features & benefits:

  • Network System-on-Chip (NSoC) – Qualcomm IPQ40x8/9 network system-on-chip with four Cortex A7 cores, 802.11ac WiFi 2×2+2×2, network and crypto accelerators
  • Qualcomm Wi-Fi Self-Organizing (SON) feature suite will ensure corner-to-corner Wi-Fi coverage, easy set-up, automatic management and traffic optimization, as well as additional security safeguards.
  • Carrier-Grade features with Wi-Fi SON APIs, cloud-based diagnostics
  • Integrated voice capabilities thanks to built-in microphone array and speaker, voice recognition software, and APIs support for popular cloud-based assistant applications.
  • Variety of backhaul options to be used to maximize the performance of mesh networks (802.11ac, 802.11ad, 802.11ax, or Powerline technologies)
  • Qualcomm IoT Connectivity Feature Suite will ensure simultaneous use of Wi-Fi, Bluetooth, CSRmesh, and 802.15.4 connectivity

Qualcomm is – as usual – light on details, but at least that means your future WiFi routers will work better by using mesh technology for better coverage in your home, and may also be used as your IoT gateway, and Google Home/Amazon Echo replacement.

Via AnandTech

Qualcomm Snapdragon 845 Octa-core Processor To Feature ARM Cortex A75 Cores (Reports)

May 22nd, 2017 7 comments

According to reports from China, Qualcomm’s next application processor (or rather mobile platform) will be Snapdragon 845, and if accurate, the comparison table below between the Snapdragon processor and Hisilicon Kirin 970 SoC shows the former will be powered by some customized (魔改) version of yet-to-be announced ARM Cortex 75 cores.

Snapdragon 845 octa-core processor will be manufactured using Samsung 10nm LPE processor, come with four custom Cortex A75 cores, four Cortex A53 cores, an Adreno 630 GPU, and an LTE X20 modem supporting LTE Cat 18 for up to 1.2 Gbps download speed. Other features like 802.11ad (High bandwidth, short range WiFi), UFS 2.1, and LPDDR4X were already found on earlier model.

I’ve been unable to find further details about ARM Cortex A75 right now, and we have to wait until ARM Techcon 2017 before getting more details. Mobile phones powered by Snapdragon 845 are supposed to start shipping in Q1 2018.

Via Wccftech

NXP QorIQ LayerScape LA1575 Programmable Wireless SoC to Support 5G, 802.11ax & 802.11ad WiFi, and Wireline

February 24th, 2017 3 comments

NXP has recently announced QorIQ LayerScape LA1575 programmable wireless platform with two ARMv8 cores, and simultaneous multi-standard support for 5G, Wi-Fi (802.11 ac and 802.11ax) and Wireline systems for enterprise and high-end home gateways.

QorIQ LayerScape LA1575 Block Diagram

QorIQ LayerScape LA1575 key features and specifications:

  • Multicore ARMv8 Processors for user applications
  • DDR4 with ECC
  • Programmable accelerator engines for signal processing.
  • Programmable low latency MAC layer processing engines
  • Programmable high performance packet processing engines to over 10 Gbps
  • Configurable cryptographic offload engines
  • Simultaneous multi-standard support for 5G, Wi-Fi (802.11 ac and 802.11ax) and Wireline systems
  • Multiple Ethernet interfaces including 10Gbps
  • PCIe gen 3.0
  • Integrated Trust architecture
  • Single source clocking

The main benefit of this SoC is that is is programmable, so even if some standards evolve after the release, it can be re-programmed to reflects the changes in specifications.

LA1575 Gateway Example – Click to Enlarge

Just to refresh everybody’s memory:

  • 5G is the successor of 4G/LTE scheduled to start (Wave 1) around 2018, with higher speeds(Wave 2) solutions coming in 2019-2020 with up to 10 Gbps data transfer
  • 802.11ad is a new WiFi with very high bitrate (Up to 7Gbps) working within a room @ 2.4/5/60 GHz, and capable of reliably transferring uncompress video data. It’s limited to room use, and the range is about 5 meters.
  • 802.11ax, also known as High-Efficiency Wireless (HEW), should improve the average throughput per user by a factor of at least 4 times in dense user environments, with a total bandwidth of 10 Gbps over 2.4 and 5.0 GHz frequencies. The standard is expected to be published in 2019.
  • Wireline may have two meanings: simply wired communication (e.g. Ethernet), or “high-speed data transmitted between chips using electrical or optical communication over wires to reach the lowest power requirements.” according to the University of California. It’s possible NXP refers to both meanings.

LayerScape LA1575 samples will be available in April 2017, and NXP will do some presentations (under NDA) next week, at NXP Mobile World Congress 2017 booth #7E30, Fira Grand via, Barcelona, Spain. You’ll find some (limited) extra information on QorIQ LayerScape LA1575 product page.

Qualcomm Officially Unveils Snapdragon 835 Octa-core Processor for Smartphones, Mobile PCs, Virtual Reality…

January 4th, 2017 1 comment

Qualcomm first mentioned Snapdragon 835 processor in November, but at the time, they only disclosed it would be manufactured using 10nm process technology in partnership with Samsung, and claimed the obvious “faster and lower power consumption” compared the previous generation. The company has now provided much more info ahead of CES 2017.

snapdragon-835-block-diagramSnapdragon 835 key features and specifications:

  • Processor – 8x Kryo 280 cores used into two clusters:
    • performance cluster with 4x cores @ up to 2.45 GHz with 2MB L2 cache
    • efficient cluster with 4x cores @ up to 1.9 GHz with 1MB L2 cache
  • GPU – Adreno 540 GPU with support for OpenGL ES 3.2, OpenCL 2.0 full, Vulkan, DX12
  • DSP – Hexagon 682 DSP with Hexagon Vector eXtensions and Qualcomm All-Ways Aware technology
  • Memory I/F – dual channel LPDDR4x
  • Storage I/F – UFS2.1 Gear3 2L, SD 3.0 (UHS-I)
  • Display – UltraHD Premium-ready , 4K Ultra HD 60 Hz, 10-bit color depth, DisplayPort, HDMI, and USB Type-C support
  • Video – Up to 4K @ 30 fps capture, up to 4K @ 60 fps playback, H.264, H.265 and VP9 codecs.
  • Audio – Qualcomm Aqstic audio codec and speaker amplifier; Qualcomm aptX audio playback support: aptX Classic, aptX HD
  • Camera – Spectra 180 ISP; dual 14-bit ISPs up to 16MP dual camera, 32MP single camera
  • Connectivity – 802.11ad multi-gigabit, integrated 802.11ac 2×2 WiFi with MU-MIMO (tri-band: 2.4, 5.0 and 60 GHz); Bluetooth 5.0
  • Modem – X16 LTE modem; downlink up to 1 Gbps, uplink up to 150 Mbps
  • Location – GPS, Glonass, BeiDou, Galileo, and QZSS systems content protection
  • Security – Qualcomm SecureMSM technology, Qualcomm Haven security suite, Qualcomm Snapdragon StudioAccess content protection
  • Charging – Quick Charge 4 technology, Quacomm WiPower technology
  • Manufacturing – 10nm FinFET (Samsung)

Snapdragon 835 will use about 25 percent less power than Snapdragon 820, while being 35 percent smaller, and delivering 25 percent faster 3D graphic rendering. The processor is expected to be found in premium consumer devices such as smartphones, VR/AR head-mounted displays, IP cameras, tablets, mobile PCs, and more. The first devices announced with Snapdragon 835 are Osterhout Design Group (ODG) R-8  augmented/virtual reality smartglasses and ODG R-9 smartglasses and devkit for wide field of view (WFOV) experiences

You’ll find more details on Snapdragon 835 product page.

The First Devices and Routers with WiFi 802.11ad Delivering Up 7Gbit/s Transfer Rates at 60 GHz Will Be Available This Year

March 7th, 2016 8 comments

802.11ad is the latest and fastest WiFi standard working in the 60 GHz band and delivering up to 7 Gbit per second data transmission rates. The 60 GHz  frequency band offers both advantages and disadvantages because it does not penetrate through walls nor water, meaning it can only be used within a room limiting the range, but at the same time it’s more secure since it cannot be snooped from the outside, and for people who worry about health effects it does not penetrate the human body. 802.11ad routers will also be able to switch to 2.4 and 5.0 GHz frequency bands in order to go through walls.

The table above nicely summarize the key features of 802.11ad over 802.11ac and 802.11n, however the throughput row shows the theoretical maximum throughput, but in practice, using 802.11ac as example, clients are often limited to 433 or 866 Mbps, and distance and obstacles will even lower the performance further.

Wikipedia also list the following key features for WiGig MAC and PHY Specification version 1.1:

  • Supports data transmission rates up to 7 Gbit/s – more than ten times faster than the highest 802.11n rate
  • Supplements and extends the 802.11 Media Access Control (MAC) layer and is backward compatible with the IEEE 802.11 standard
  • Physical layer enables low power and high performance WiGig devices, guaranteeing interoperability and communication at Gigabit rates
  • Protocol adaptation layers are being developed to support specific system interfaces including data buses for PC peripherals and display interfaces for HDTVs, monitors and projectors
  • Support for beamforming, enabling robust communication at distances beyond 10 meters. The beams can move within the coverage area through modification of the transmission phase of individual antenna elements, which is called phase array antenna beamforming.
  • Widely used advanced security and power management for WiGig devices

Applications for the higher bandwidth include faster download speeds, 4K wireless video, in-room gaming, etc…

60 GHz Frequency Bands for 802.11ac per Regions/Countries

60 GHz Frequency Bands for 802.11ac per Regions/Countries

If you want more technical details or/and finding how to test WiFi 802.11ad device, Agilent’s Wireless LAN at 60 GHz – IEEE 802.11ad Explained application note should be a good read.

TP-Link 802.11ad Router

TP-Link 802.11ad Router

So when will 802.11ad become available? Very soon, as TPLink unveiled Talon AD7200 Multi-band 802.11ad Wi-Fi Router at CES 2016, supporting up 7200Mbps Wi-Fi speeds over 2.4GHz (800Mbps), 5GHz (1733Mbps), and 60GHZ (4600Mbps) bands, and scheduled to be available in “U.S. stores in early 2016”, while LeEcho, previously known as LeTV, has just launched Le Max Pro (X900) smartphone featuring 802.11ad WiFi in China (also found in Aliexpress), and showcased in ARMDevices.net video where Qualcomm demonstrates 802.11ad with the phone by streaming a 4K video at 50 Mbps to a 802.11ad dock connected an UltraHD TV, and downloading data up to 2.6 Gbps with the phone.

Intrinsyc’s Snapdragon 820 Tablet Mobile Development Platform (MDP) also features 802.11ad, and according to a Qualcomm’s press release, Acer and Asus are working on 802.11ad notebooks, and USB adapter  reference designs and development kits will be offered by Sibeam and Peraso.