Archive

Posts Tagged ‘arm’

Linux 4.0 Release – Main Changes, ARM and MIPS Architectures

April 15th, 2015 6 comments

Linus Torvalds “Ima Sheep” released Linux Kernel 4.0 on Sunday:

So I decided to release 4.0 as per the normal schedule, because there really weren’t any known issues, and while I’ll be traveling during the end of the upcoming week due to a college visit, I’m hoping that won’t affect the merge window very much. We’ll see.

Linux 4.0 was a pretty small release both in linux-next and in final size, although obviously “small” is all relative. It’s still over 10k non-merge commits. But we’ve definitely had bigger releases (and judging by linux-next v4.1 is going to be one of the bigger ones).

Which is all good. It definitely matches the “v4.0 is supposed to be a_stable_ release”, and very much not about new experimental features etc. I’m personally so much happier with time-based releases than the bad old days when we had feature-based releases.

That said, there’s a few interesting numerological things going on with 4.0. Looking at just the statistics in git, this release is not just when we cross half a million commits total, but also cross the 4 million git object limit. Interestingly (if you look for numeric patterns), Linux 3.0 was when we crossed a quarter million commits and 2 million git objects, so there’s a nice (and completely unintentional) pattern there when it comes to the kernel git repository.

[ Another quick historical numerological footnote: the old historical BK tree was getting close to the 16-bit commilt limit that BK originally used to have. So that whole “quarter of a million commits” is actually quite a lot. During all of the BK years we only got 65k commits. Of course, we only used BK for three years, and we’ve now been on git for almost exactly ten years, but still – it shows how the whole development process has really sped up a _lot_ ]

Feature-wise, 4.0 doesn’t have all that much special. Much have been made of the new kernel patching infrastructure, but realistically, that not only wasn’t the reason for the version number change, we’ve had much bigger changes in other versions. So this is very much a “solid code progress” release.

Go get it and enjoy,

Linus “we’re all sheep” Torvalds

Linux 3.19 brought improvement to btrfs (raid), the network stack, added ARM Coresight, device tree overlays support, and more.

Some key changes made to Linux 4.0 include:

  • pNFS (Parallel NFS), UBIFS, F2FS and BTRFS File Systems improvements
  • Live Kernel Patching – Install kernel updates without rebooting
  • Intel Quark x86 SoC support
  • Various patches to improve Linux running on a  Playstation 3
  • Open source AMD Radeon driver supports DisplayPort Audio and improves fan support

Some of the new features and improvements specific to the ARM architecture include:

  • Allwinner:
    • A20 – PS/2 Controller
    • A31 – IR receiver
    • A31s – Bring-up sharing majority of drivers with A31, pinctrl driver
    • A80 – MMC
    • All SoCs – LRADC Input driver, CPUFreq, PWM Driver
    • AXP209 power button input driver
    • New boards and devices:  CSQ CS908, LeMaker Banana Pro, Chuwi V7 CW0825, Rikomagic mk802, Rikomagic mk802ii, Rikomagic mk802_a10s, MarsBoard A10, Hyundai A7HD
  • Rockchip
    • Fixes for rk808 regulator
    • Watchdog fix
    • Add Rockchip timer for RK3288
    • HDMI output enabled on rk3288-firefly and rk3288-evb
    • Disable GMAC by default
  • Amlogic – pinctrl driver for Amlogic Meson SoCs
  • Mediatek
    • Regulator driver for Mediatek MT6397
    • Added watchdog driver
    • Added Mediatek MT8173 64-bit processor
  • ARM64
    • New processors: Exynos 7, Freescale LS2085A, and Tegra 132 (Denver)
    • Various fixes for ARM64 including UEFI and KVM code.
  • Preparation work for Atmel AT91 support for multiplatform
  • Other new platforms – Alphascale ASM9260, Marvell Armada 388, CSR Atlas7, TI Davinci DM816x, Hisilicon HiP01, ST STiH418, and Conexant Digicolor (CX92755).

There has also been some interesting changes for the MIPS architecture:

  • Fixes for KVM support
  • Support for MIPS R6 processors
  • Preliminary support for Cavium Octeon 3 SoCs which feature up to 48 MIPS64 R3 cores with FPU and hardware virtualization

A more detailed changelog for Linux 4.0 will soon be available on Kernelnewbies.org, and once it’s up you may also want to have a look at their ARM architecture and drivers sections for more details about changes related to ARM, MIPS and other platforms. I’ve also generated a complete Linux 3.19 vs Linux 4.0 changelog (3.4MB) with git (comments only, no code).

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

HPC Performance & Power Usage Comparison – Intel Xeon E3 vs Intel Atom C2720 vs Applied Micro X-Gene 1 vs IBM Power 8

April 14th, 2015 6 comments

Last year, the CERN published a paper comparing Applied Micro X-Gene (64-bit ARM) vs Intel Xeon (64-bit x86) Performance and Power Usage, and they’ve now added IBM Power 8 and Intel Atom Avoton C2750 processor to the mix in a new presentation entitled “A look beyond x86: OpenPOWER & AArch64“.
ARM_x86_Power_8_Test_Systems
So four systems based on Intel Xeon E3-1285L, Intel Atom C2750, Applied Micro X-Gene 1, and IBM Power 8 were compared, all running Fedora 21, except the HP Moonshot 1500 ARM plarform running Ubuntu 14.04 and an older kernel. All four systems use gcc 4.9.2, and Racktivity intelligent PDUs were used for power measurement.

I’ll just share some of their results, you can read the presentation, or go through the benchmark results to find out more.

HEP-SPEC06_Results

HEP-SPEC06 Benchmark (Click to Enlarge)

HEP-SPEC06 is a new High Energy Physics (HEP) benchmark for measuring CPU performance developed by the HEPiX Benchmarking Working Group, and here it’s not surprising to see the low power solutions under-perform the more powerful Intel Xeon and Power 8 processors, with the latter taking the crown.

Geant_4_ParFullCMS

Geant 4 ParFullCMS (Click to Enlarge)

Geant 4 simulates the passage of particles through matter, something that you would expect the CERN to do regularly. Intel Xeon E3 outperforms  IBM Power8 processor here.

But let’s move on to power consumption, and performance per watt.

Idle Power Consumption (Click to Enlarge)

Idle Power Consumption (Click to Enlarge)

IBM OpenPower 8 has a much higher power consumption than other systems, and HP Moonshot ARM 64-bit X-Gene 1 consumes more than both Intel servers. The chart under full load (not shown here) also shows a similar pattern.

HEP_SPEC06_Per_Watt

HEP-SPEC06 per Watt (Click to Enlarge)

When it comes to performance per watt however, both HP Moonshot ARM and Power 8 systems are the least efficient here, and Intel systems provide the best ratio. Bear in mind that X-Gene 1 is manufactured with a 40nm process, while Applied Micro X-Gene 2  and 3 will be manufactured using 28nm and 16 nm FinFET processes, so some large efficiency gains could be expected here.

We may find out soon, as the CERN expects to add these two new processors, as well a Cavium ThunderX to their benchmarks in the future.

Thanks to David for the tip.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Relative Performance of ARM Cortex-A 32-bit and 64-bit Cores

April 9th, 2015 11 comments

Many people assume newer processors will be faster, or that 64-bit processor will provide a performance boost compared to 32-bit processors, but the reality can be quite different, and I’ve decided to have a look at ARM Cortex-A cores using ARMv7 (32-bit) and ARMv8 (64-bit) architecture, and see what kind of integer performance you can expect from each at a given frequency. To do so, I’ve simply use DMIPS/Mhz (Dhrystone MIPS/Megahertz) values listed on Wikipedia.

Vertical Scale: DMIPS / MHz

Vertical Scale: DMIPS / MHz


Drystone benchmark has no floating-point operating, so it’s a pure integer benchmark. I’m only looking at ARM core here, and once integrated in an SoC, other parameters like memory bandwidth, amount of cache,  GPU, etc.. will greatly affect the overall system performance. The figure above are per MHz, and it does not mean for example that a Cortex A5 processor will be slower than a Cortex A7 processor, as can be seen by the comparison between Amlogic S805 (4x Cortex A5) and Broadcom BCM2835 (4x Cortex A7), which shows the Amlogic processor is about 40% faster due to higher clock speed.

With that in mind, it can be seen than you may not expect all recent Cortex A53 processors to outperform existing Cortex A15 and A17 processors, and in some case even Cortex A9 processors, and the real performance benefit with 64-bit cores only start to show with Cortex A57, and especially Cortex A72 cores which is some cases could be twice as fast as Cortex A15 cores. The red zone on top of some bars represents the possible performance variation due to different implementations of the cores.

ARMv8 also brings some other improvement such as additional cryptographic extensions, an increase in the number of SIMD/floating point, and general purpose registers, and more, as shortly explained in that article. All of these should also deliver benefits provided the firmware and applications support them.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Scaleway Provides Dedicated ARM Servers for 10 Euros per Month, 0.02 Euro per Hour

April 2nd, 2015 3 comments

Earlier this year, Online Labs launched a beta hosting program using custom-designed C1 dedicated servers powered by Marvell Armada 370/XP quad core processor. The company has now launched a commercial service called Scaleway providing hosting service on these baremetal servers for 9.99 Euros per month, or 0.02 Euro per hour, as well as a “Infinite Storage” service with 1GB data for 0.02 Euros per month.

OnlineLabs-C1-FrontBoard

Rack with 18 C1 Servers

Here are the details of the 10 Euros plan:

  • Server based on Marvell Armada 370/XP quad core ARM Cortex A9 processor
  • Memory – 2GB Memory
  • Storage – 50GB SSD Disk
  • 1x Reserved public IPv4
  • 200Mbit/s – Unmetered bandwith
  • Operating Systems – Ubuntu, Debian, Fedora, ArchLinux ARM. Docker supported.

That’s no a VPS, but a dedicated server. For reference, I currently pay around $20 per month (Linode) for a server with an Intel Xeon E5-2680 dual core processor with 2 GB RAM and 50 GB SSD storage, and 3 TB free monthly bandwidth to host this blog. The Intel processor should be much more powerful than the Marvel one, but depending on your application, it might be enough. Overall Scaleway offer appears to be a decent deals, especially if you just need a server for development, where you’ll be charged per hour, so If you use the server 50 hour in a month, you’d only pay 1 Euros.

There are also options for higher bandwidth (1Gbit/s), 99.95% / 99.99% guaranteed uptime, extra storage (up to 1TB), bandwidth protection, and more. A simple REST API is available with the code soon-to-be on github.

You can find out more and/or sign-up for the service on Scaleway website.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Gigabyte MP30-AR0 is an ARM Server Motherboard Powered by Applied Micro X-Gene 1 SoC

March 27th, 2015 13 comments

So far, it’s been pretty hard to buy ARM server motherboards for individuals, as most, if not all, products were reserved to corporate entities, but with Gigabyte MP30-AR0 server motherboard featuring the first generation Applied Micro X-Gene 64-bit ARM processor this might be about to change. [Update: As mentioned in comments I was probably wrong here, since the motherboard is listed on the Gigabyte’s B2B website, and not its B2C website].

MP30-AR0MP30-AR0 specifications:

  • Processor – AppliedMicro X-Gene 1 processor with 8 ARMv8 cores up to 2.4GHz (TDP 45W)
  • System Memory – 8 x DIMM slots, Single, dual rank UDIMM modules @ 1333/1600 NHz supported (up to 16GB)
  • Storage – 4x SATA III 6Gb/s ports + 1x SD card slot
  • Connectivity – 2x 10GbE SFP+ LAN ports (integrated), 2x GbE LAN ports (Marvell 88E1512), 1x 10/100/1000 management LAN
  • Graphics – Video Integrated in Aspeed AST2400. 2D Video Graphic Adapter with PCIe bus interface up to 1920×1200@60Hz 32bpp.
  • Expansion Slots – 2x PCIe x16 (Gen3 x8 bus) slots
  • Other Internal I/O
    • 1 x CPU fan header
    • 4x system fan headers
    • 1x USB 2.0 header
    • 2x Front panel headers
    • 1x APM strap header
    • 1x HDD back plane board header
    • 1x PMBUS header
    • 1x BMC JTAG header, 1x JTAG PLD header
    • 1x BIOS_H header
    • 1x Chassis intrusion header
    • 1x SATA DOM jumper, 1x BIOS recovery jumper, 1x ACK selection jumper
    • 1x IPMB connector
  • Rear I/Os
    • 2x USB 2.0, 1x Mini USB
    • 1x VGA
    • 1x Serial
    • 2x SFP+, 3x RJ45
    • 1x ID button with LED, 1x Power button with LED, 1x Status LED
  • Power – 1x 24-pin ATX main power connector; 2x 4-pin ATX 12V power connectors
  • Dimensions –  244 × 244 mm (microATX form factor)
MP30-AR0 Motherboard (Click to Enlarge)

MP30-AR0 Motherboard (Click to Enlarge)

The motherboard supports Ubuntu 14.04, and can also be configured with Avocent MergePoint IPMI 2.0 web interface.

Pricing information is still to be announced according to the motherboard page, and the company also integrated it into R120-P30 single socket 1U rackmount server with a 350W PSU and support for 4 hard drives.

Via Tom Cubie

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

AMD “Hierofalcon” Octa-core ARM Cortex A57 Embedded Processors to Ship in H1 2015

March 26th, 2015 12 comments

AMD started using the ARM license(s) by embedding ARM Cortex A5 cores into some of their x86 processors to add TrustZone security, followed up with Opteron A1100 ARM Cortex A57 processors for servers, and now they’ll soon ship AMD Embedded R-Series SoCs featuring up to 8 Cortex A57 processors. The processors, codenamed “Hierofalcon”, target embedded data center applications, communications infrastructure, and industrial solutions.

AMD R-Series "Hierofalcon" SoC Block Diagram (Click to Enlarge)

AMD R-Series “Hierofalcon” SoC Block Diagram (Click to Enlarge)

AMD Embedded R-Series SoC will have the following key features:

  • Up to 8 ARM Cortex A57 cores with 4MB L2 cache (total)
  • Cache Coherent Network with 8MB L3 cache
  • Memory – 2x 64-bit DD3/4 channels with ECC up to 1866MHz; up to 128GB per CPU
  • I/Os:
    • Two 10GbE KR
    • 8x SATA 3 (6Gb/s) ports
    • 8 lanes PCIe Gen 3 (1×8, 2×4 or  1×4+2×2 configurations)
    • SPI, UART, I2C interfaces
  • System Control Processor – ARM Cortex A5 for TrustZone technology and 1Gb Ethernet port for system management
  • Crypto co-processor
  • Freedon Fabric
  • Manfacturing Process – 28 nm
  • Package – 27 x 27 mm SP1 BGA

The SoC is probably mostly targeting headless applications since there’s no embedded GPU, but you could still probably add a graphics card via PCIe if needed.

Hierofalcon SoCs are not exactly new since they were reported last year, but AMD Annual Report 2014 sheds some light to when solutions will be available:

In October 2014, we began sampling our first 64-bit ARM Cortex-A57-based AMD Embedded R-Series SoC, codenamed “Hierofalcon.” The AMD Embedded R-Series SoC platform is designed for embedded data center applications, communications infrastructure and industrial solutions and is expected to ship in the first half of 2015.

Via WCCFTech

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Categories: AMD Opteron, Processors Tags: amd, arm, cortex a57, server

Asus C201 Chromebook to be Powered by Rockchip RK3288 Processor

March 20th, 2015 2 comments

If you’ve been following this blog, you should know that Rockchip is working with Google on Chrome OS, so it was just a matter of time before a Rockchip powered Chromebook or Chromebox sees the light of the day. The first Rockchip RK3288 chromebook might end up being Asus C201 Chromebook with apparently a custom version of the Cortex A17 processor dubbed Rk3288-C, as OMG Chrome found out in Troxell’s 2015 brochure for K-12 education.

Asus_Chromebook_C201So far we only know a few details about the specifications:

  • SoC – Rockchip RK3288-C quad core Cortex A17 processor @ up to 1.8GHz
  • System Memory – 2 to 4 GB DDR3
  • Storage – 16GB eMMC
  • Display – 11.6″ display with 1366×768 resolution
  • Webcam – VGA resolution

The exact model name should be C201PA. Rockchip RK3288 should provide performance quite similar, and in some cases even better, to Intel Atom Z3735F, except possible when it comes to multimedia extensions, which may give an advantage to the Intel platform for tasks like video transcoding.

Troxell did not disclose pricing in the catalog, and instead asks customers to contact them for pricing. The company however says “the NEW C201 is Asus’s most affordable Chromebook to date”, so prices could be below $200. We can certainly hope to find out soon, as more RK3288 Chromebooks are announced.

Via Liliputing.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Embedded Systems Conference 2015 Schedule – May 6-7, 2015

March 11th, 2015 No comments

The Embedded Systems Conference took the name “Design West” for a couple of years, but this year, there’s no mention of Design West, and the Embedded System Conference 2015 will take place in Boston, MA, US on May 6-7, 2015. The 2-day event will have a demo hall, and well as sessions divided into 8 tracks:Embedded_Systems_Conference_2015

  • Connected Devices and the IoT
  • Embedded Software Design
  • Hardware: Design, I/O and Interfacing
  • Prototyping
  • Embedded Systems Design
  • Software: Design, Languages, & Quality
  • Fantastical Theater
  • Teardowns

The full schedule has now been posted, and I’ll build a virtual schedule with some of the sessions provided.

Wednesday May 6, 2015

  • 8:00 – 8:45 – Understanding Google/Nest Thread by Michael Anderson, Chief Scientist, The PTR Group, Inc.

The IoT will live or die based on its connectivity. In examining existing wireless protocols, Google/Nest found most of them lacking. In order to address the needs for low-power wireless communications in the home, Thread was created. Thread is an implementation of an IEEE 802.15.4 mesh-based network that provides IP connectivity using existing radio silicon. Come to this session to get the latest information on Thread, its capabilities and characteristics and how you can use Thread in your next IoT device.

  • 9:00 – 9:45 – Best Practices for Designing Hardware APIs by Matt Haines, Communications Manager, Electric Imp

We are rapidly heading toward a world in which most of the objects we interact with on a daily basis will be connected to the Internet. What does this world look like, and how do we design Connected Things that will live in this world? This presentation will address the issue of API design; a topic often talked about in web development but just as often overlooked in conversations about the IoT. What should we be thinking about when we’re designing an API for a connected product? Why do our connected products even need APIs? What strategies and best practices can we apply from web API design?

  • 10:00 – 10:45 – Choosing Between Multicore CPU, GPU & FPGA Technology for Vision Applications by Julianne Kline, Systems Engineer, National Instruments

FPGA, GPU, and multi-core CPU processing will be compared and contrasted. Examples will be highlighted on when customers may want to use one technology over the other. A heavier focus will be placed on FPGA technology. This presentation will discuss recommendations for when to integrate FPGA technology into vision applications, such as for image pre-processing, high-speed control, or processing parallelism. Types of algorithms well-suited to FPGA technology will also be discussed, and resources for accessing existing FPGA IP will be provided.

  • 11:00 – 11:45 – Mob Programming for Embedded Systems Software by Nancy Van Schooenderwoert, President, Lean-Agile Partners, Inc.

Mob Programming is a practice where a whole software team works together, at one computer, one line of code at a time, outperforming their previous work significantly in both quality and volume. Impossible? Maybe except for the teams actually doing it now. One team in California began in 2011, and it’s been spreading since. This session tells the story of the first embedded systems teams to use MobProgramming.This session is a double experience report plus a demo: Speaker Simon Clements-Hawes gives his observations as an embedded systems team member starting to use MobProgramming, and Nancy describes how to get a team started in MobProgramming. Thru video clips, the team’s coding of a LeanKit interrogator in C# will be shown using Mob Programming of course!

  • 14:00 – 14:45 – Is There an Arduino Debugger in the House? by Guido Bonelli, President, Innovative Electronic Solutions LLC

Arduino development and the hardware debugging landscape OR THE LACK THEREOF! In this session you will delve into the Arduino developer’s tool chain from a hardware perspective. What hardware debugging solutions are currently available and how Dr.Duino the Arduino hardware debugger can reduce your debugging pain. We shall discuss the blissful highs of easy firmware development on a standard platform while then exploring the lowliest of lows when debugging the hardware/firmware interactions.

  • 15:00 – 15:45 – ARMv8 Kernel Internals by Arun Thomas, Senior Principal Engineer, BAE Systems

This talk is meant to be a quick start guide for embedded developers who are new to the ARMv8 architecture. I will discuss how operating systems interface with the 64-bit ARMv8 architecture and will cover the ARMv8 specific kernel internals of Linux and FreeBSD. I will discuss how booting, memory management, exceptions, and interrupts work using examples drawn from the kernel source.

Thursday May 7, 2015

  • 08:00 – 08:45 – Open Source Software: Tips for Avoiding Licensing Surprises by Jason Kunze, Attorney, Nixon Peabody LLP

A practical, quick hitting summary of the key considerations that anyone developing, purchasing or licensing software should consider. After a brief discussion of legal basics, practical concerns relating to open source software will be explained through the lens of actual cases in this developing area of law. The participant will gain a general understanding of:

  1. The intellectual property rights that may attach to software
  2. The competing ideologies behind open source software and how this drives licensing terms
  3. Some of the leading open source software licenses and their relative level of restrictions
  4. Pitfalls to recognize and avoid in relation to open source software
  • 09:00 – 09:45 – How NOT To Do Embedded Development! Practical Lessons From Real Projects That Almost Went Off A Cliff by Dave Nadler, President, Nadler & Associates

In an interactive (Socratic) discussion, we’ll review some real-world projects in trouble and how they were sorted. Projects include an automated toll-collection system, an aircraft collision-avoidance system (cool movie!), a manufacturing instrumentation product, and an integrated flight computer. We’ll cover a variety of coding and testing techniques used to get these projects on track.

  • 10:00 – 10:45 – Designing for the IoT with Lower Power and Way More Intelligence by Dana Myers, Channel Marketing Manager, Wireless Connectivity Solutions, Texas Instruments

As the Internet of Things (IoT) has changed the way we live, do business and make decisions, it has also impacted engineers’ designs. This presentation will address the benefits and challenges of designing for the IoT in regards to low-power, integration and performance. This will let engineers weigh the tradeoffs of each connectivity architecture and provide a quick pathway to begin designing their products for the fast-growing IoT.

  • 11:00 – 11:45 – Squeezing the Most Out of Battery Life using ARM Cortex-M Processors by Jacob Beningo, Principal Consultant, Beningo Engineering

The proliferation of mobile devices has led to the need of squeezing every last micro-amp-hour out of batteries. Minimizing the energy profile of a micro-controller is not always straight forward. A combination of sleep modes, peripheral control and other techniques can be used to maximize battery life. In this session, strategies for optimizing micro-controller energy profiles will be examined which will extend battery life while maintaining the integrity of the system. The techniques will be demonstrated on an ARM Cortex-M processor.

  • 14:00 – 14:45 – Network Insecurity: Simple Hacks of ARM Cortex-M Devices by Jonny Doin, CEO, Grid Vortex Systems

The IoT is a very new domain of a very old activity: Embedded Systems Design, with a twist: connection to the most toxic of environments, the Internet. One of the main concerns of the IoT is how to cope with the massive amount of unanticipated network traffic and problems. Malformed packets, corrupted messages, specifically targeted attacks, buffer overflow exploits, spoofing, stuxnet emulation messages, denial of service, fake OTAP, and other exploits and attacks can transform your IoT devices into something you did not design for. This situation demands several good practices and programming concerns regarding network safety and security into even the smallest of things. Buffer integrity checks, full parameters domain verification, message authentication, data path integrity verification, and crypto security are among the needed elements of a safe and secure IoT system, and can be implemented on nearly any Embedded System. Examples of simple attacks on ARM Cortex-M devices will be presented, including RET2ZP and buffer attacks.

  • 15:00 – 15:45 – RTOS Smackdown: 7 RTOSes in 45 Minutes! by 7 speakers

There are a lot of Real Time Operating System (RTOS) options out there. Which one is right for your embedded system? Do you even need an RTOS at all? In this feisty presentation, one industry expert will argue that an RTOS is superfluous to requirements, while another will contend that an RTOS is an invaluable, “must-have” asset, even if your embedded application performs only a handful of tasks. After the dust dies down, proponents of seven of the leanest, meanest, coolest, hottest contenders in the RTOS multi-universe will take it in turns to explain why their RTOS is the bestest of the best.

If you’d like to attend the conference you can register online. Access to the demo hall is free, unless you come without registration, in which case you’d have to pay $75 for entry. A pass is required for the full conference and access to sessions with the following pricing:

  • SUPER EARLY BIRD (Ends January 30) – $799
  • EARLY BIRD (Ends March 6) – $949
  • ADVANCED (Ends May 1) – $1,149
  • REGULAR/ONSITE – $1,299

Seven vendors’ sponsored sessions can be attended with a free “demo hall” registration.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter