Archive

Posts Tagged ‘arm’

ARM Unveils Embedded Systems Education Kit Based on NXP LPC4088 Cortex M4 MCU

October 31st, 2014 No comments

Following up on their first “Lab-In-a-Box” initiative based on Micro STM32F4-Discovery board and Wolfson audio card, ARM launched another low-cost toolkit, based on Embedded Artists LPC4088 QuickStart and Experiment boards, and called “Embedded Systems Education Kit”, to help university educators teach embedded systems design and programming concepts.

NXP_LPC4088_Devkit

LPC4088 QuickStart Board

The kit includes the following hardware, software tools, and teaching materials:

  • Embedded Artists LPC4088 QuickStart Board and LPC4088 Experiment Base Board
  • ARM Keil MDK-ARM Pro microcontroller development suite software licences
  • Complete teaching materials including lecture note slides, demonstration code and hands-on lab manuals with solutions in source for four embedded system courses:
    • ‘Efficient embedded systems design and programming’ teaches microcontroller fundamentals using NXP’s 32-bit ARM Cortex-M4 based LPC4088 microcontroller.
    • ‘Rapid embedded system design and programming’ delivers embedded systems design training for the high-level ARM mbed API
    • ‘OS design’ uses the royalty-free ARM Keil RTX RTOS to show how to design, program and optimize RTOS-based applications
    • ‘DSP’ teaches students about digital signal processing techniques and practice, especially for audio applications, using ARM Cortex-M4 based platforms.
NXP_LPC4088_Experiment_Board

LPC4088 Experiment Base Board

The education kit is available now for less than 20 Euros per student/per course, with all teaching materials provided free of charge to universities worldwide. Details can be found on ARM University Program website.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

ARM Unveils Mali-T800 Series GPUs, Mali-V550 VPU, and Mali-DP550 Display Processor

October 28th, 2014 3 comments

ARM has just announced several new Mali media IP: three Mali-T800 series GPUs (Mali-T820, Mali-T830, and Mali-T830) based on Midgard architecture, as well as Mali-V500 video accelerator, and the Mali-DP550 display processor.

ARM_Mali-T860_Mali-V550_Mali-DP550

Mali T800 Series GPU

The new Mali T-8xx GPUs are based on the same Midgard architecture used in Mali T-6xx and T-7xx GPUs, but deliver better power efficiency thanks to technologies such as ARM Frame Buffer Compression (AFBC), and Adaptive Scalable Texture Compression (ASTC) for imput bandwidth reduction, as well as Transaction Elimination and Smart Composition.

ARM provided some performance and energy-comparison between T800 and T600 series (but strangely nothing against T700):

  • The Mali-T820 GPU is optimized for entry-level products, achieving up to 40 percent more performance density compared to the Mali-T622 GPU.
  • The Mali-T830 GPU delivers up to 55 percent more performance than the Mali-T622 GPU.
  • The Mali-T860 GPU provides higher performance and 45 percent more energy-efficiency compared to the Mali-T628 GPU.

Mali-T860_GPU_Block_Diagram

Mali-T860 supports up to 16 shader cores whereas Mali-T820 and Mali T-830 are limited to 4 shader cores. Supported APIs include OpenGL ES 3.1/3.0/2.0/1.1, DirectX 11, OpenCL 1.2/1.1, and RenderScript. Mali-T860 also provides 10-bit YUV input and output at full speed, which could be especially useful for 4K video using HEVC codec.

More details can be found on Mali-T860, Mali-T830 and Mali-T820 product pages.

Mali-V550 Video Processing Unit

Mali-V550 video processor fully supports the HEVC standard, and the single core version can decode/encode 1080p60 HEVC video, whereas the eight core version can handle 4K @ 120 Hz HEVC decoding/encoding.

Mali-V550_VPU
Mali-V550 also benefits from new features such as Motion Search Elimination technology that reduces bandwidth by up to 35 percent, and will improve Wi-Fi Display/Miracast user experience. Up to 50% bandwidth reduction can also be achieve with AFBC. It also supports 10-bit YUV, so 10-bit HEVC/H.265 video be supported combined with Mali-T800 GPU, with the VPU “feeding” 10-bit decoded data to the GPU.  Other video codecs include the usual suspects, namely H.264, MPEG4, MPEG2, VP8, VC1, Real Media, H.263, MPEG-4 and JPEG. VP9 support is not mentioned. Driver and video streaming infrastructure is based on OpenMAX.

Visit Mali-V550 product page for more information.

Mali-DP550 Display Processor

Mali-DP550 display process will handle composition, scaling, rotation and image post-processing from the GPU in a single pass, and it also support Motion Search Elimination, and AFBC to reduce bandwidth use in order to maximize battery life. Up to seven layers of composition, up to 4K resolution, are supported, a co-processor interface enabled easy integration with third party IP blocks.

Mali-DP550Single and dual display output are supported, as well as various YUV/RGB pixel formats, including 10-bit YUV. More details can be found on ARM’s Mali-DP550 page.

All three new ARM Mali media IPs are available for immediate licensing, and consumer devices are expected in late 2015 and early 2016.

Via Anandtech.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Categories: Graphics Tags: arm, gpu, h.265, hevc, mali, mali-t860, vp8

Applied Micro X-Gene (64-bit ARM) vs Intel Xeon (64-bit x86) Performance and Power Usage

October 26th, 2014 5 comments

A group of researcher at CERN have evaluated Applied Micro X-Gene 1 64-bit ARM XC-1 development board against Intel Xeon E5-2650 and Xeon Phi SE10/7120 systems, and one of them, David Abdurachmanov, presented their findings at ACAT’ 14 conference (Advanced Computing and Analysis Techniques) by listing some of the issues they had to port their software to 64-bit ARM, and performance efficiency of the three systems for data processing of High Energy Physics (HEP) experiments like those at the Large Hadron Collider (LHC), where performance-per-watt is important, as computing systems may scale to several hundred thousands cores.

HEP_Test_Systems_X-Gene_Intel_Xeon
Intel Xeon Phi platform based on Many Integrated Cores (MIC) computer architecture was launched the HPC market, and contrary to the table above features 61 physical cores. Applied X-Gene 1 (40nm process) was used instead of X-Gene 2 built on 28-nm process which was not available at the time. The ARM platform ran Fedora 19, whereas the Intel processor used Scientific Linux CERN 6.5.

The researchers run the CERN’s CMSSW applications for testing. Let’s jump to the results.

AOM_X-Gene_1_vs_Intel_XeonAs expected Intel Xeon processor and Phi coprocessor both have more performance than X-Gene 1 ARM SoC.

X-Gene_Intel_Xeon_Phi_Performance_Per_WattHowever, when it comes to performance-per-watt, APM X-Gene 1 is clearly ahead of Intel Xeon E5-2650 and there’s no comparison against Xeon Phi systems.

The conclusion of the report reads as follows:

We have built the software used by the CMS experiment at CERN, as well as portions of the OSG software stack, for ARMv8 64-bit. It has been made available in the official CMS software package repository and via the CVMFS distributed file system used by Grid sites.

Our initial validation has demonstrated that APM X-Gene 1 Server-on-Chip ARMv8 64-bit solution is a relevant and potentially interesting platform for heterogeneous high-density computing. In the absence of platform specific optimizations in the ARMv8 64-bit GCC compiler used, APM X-Gene 1 shows excellent promise that the APM X-Gene hardware will be a valid competitor to Intel Xeon in term of power efficiency as the software evolves. However, Intel Xeon Phi is a completely different category of product. As APM X-Gene 2 is being sampled right now, built on the TMSC 28nm process, we look forward to extending our work to include it into our comparison.

You can read the full report “Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi” for details.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Beyond Semi Introduces 32-bit BA20 Core with Cortex M4 Performance Efficiency, and Cortex M0+ Silicon Area

October 24th, 2014 4 comments

Beyond Semiconductor and CAST have jointly announced BA20 32-bit embedded processor core with PipelineZero Architecture (zero-stage execution pipeline), that rivals with ARM Cortex A4 in terms of performance per MHz, while using about the same silicon area as an ARM Cortex M0+. which could be critical for applications such as wearables, sensors, and wireless communication, that may require both a small footprint and high performance efficiency.

Beyond_Semi_BA20_Block_Diagram

Beyond Semi BA20 Block Diagram

The company’s PipelineZero micro-archirtecture can execute one instruction per cycle, hence saving energy by doing more in less time, and by operating at lower clock rates.

Key features listed for BA20 IP core:

  • PipelineZero architecture for high performance efficiency with tiny silicon footprint
    • 3.04 DMIPs/MHz (vs ARM Cortex M4: 1.25 DMIPS/MHz)
    • 3.41 Coremarks/MHz (vs ARM Cortex M4: 3.40 CoreMarks/MHz)
    • 2µW/MHz (vs ARM Cortex M0+: 3µW/MHz)
    • 10K gates (0.01mm2) in 9-track 40G (vs 0.009mm2 for ARM Cortex M0+)
  • BA2 ISA Extreme Code Density for less instruction fetching energy usage
  • Interconnect – 32-bit wide AMBA AXI4-lite bus
  • Advanced power management
    • Dynamic clock gating and power shut-off of unused units
    • Software- and hardware-controlled clock frequency
    • Wake-up on tick timer or external interrupt
  • Optional Processor Units
    • Programmable Vectored Interrupt Controller Unit
    • Memory Protection Unit
    • Timer Unit
    • Debug Unit
      • MDB support
      • Trace port support
    • ROM Patching Unit
    • IEEE-754 compliant Floating Point Unit
    • Hardware Multiplier/Divider
  • Peripherals include GPIO, UART, Real-Time Clock, Timers, I2C, and SPI
  • Memory controllers, interconnects, and more

Beyond_BA20_vs_ARM_Cortex_M BA20 Processor IP Core, and peripherals IP are available now in RTL source code (Verilog) or FPGA netlists, and BeyondStudio Eclipse-based IDE for Windows or Linux can be used for software development. The company can also provide reference design boards with JTAG and serial debug/trace for both CPU and system, but no details have been provided about these hardware platforms.

As with all Beyond Semi processor Core, BA20 is royalty-free, and only a one-time license needs to be purchased. Further details can be found on Beyond Semi BA20 PilelineZero Embedded Processor page.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Categories: Beyond Semi BAxx Tags: arm, beyond semi, mcu

Samsung Officially Announces Exynos 7 Octa big.LITTLE ARM Cortex A53/A57 Processor

October 16th, 2014 7 comments

Samsung started to commit code related to Exynos 7 processor to mainline kernel in August, but at the time details were scarce, and many tech websites referred to a Exynos 5433 64-bit processor from Samsung. Exynos 5433 for a Cortex A53/A57 SoC did not make much sense as the company recently announced Exynos 5430 based on Cortex A15 and A7 cores, so finally Exynos 5433 has been renamed to Exynos 7 Octa.

Exynos_7_OctaHere’s what we know about Exynos 7 Octa from information on Exynos 7 Octa page and an older Anandtech article about Exynos 5433:

  • CPU – 4x Cortex A57 cores @ 1.9 GHz , 4x Cortex A53 cores @ 1.3 GHz
  • GPU – Mali-T760 @ 700 MHz
  • Memory Controller – 2x 32-bit @ 825MHz (13.2GB/s b/w)
  • Display – Up to WQHD (2560 x 1440) / WQXGA (2560 x 1600) resolutions
  • Video – Advanced multimedia format codec (MFC) including support for H.265/HEVC @ 60 fps
  • Camera – Up to 16 MP 30fps rear camera, Up to 5MP / 30 fps front-facing camera, with dual ISP allowing for simultaneous video recording.
  • Process – 20 nm HKMG

A57 cores are said to provide 57% more performance than the A15 cores found in Exynos 5 Octa processors, whereas. Mali-T760 GPU should deliver up to 74% enhanced graphics performance over Mali-T628 used in Exynos 5 Octa.

Samsung Exynos 7 is used in the international version of the Galaxy Note 4 smartphone.

Via G for Games.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Allwinner H8 Octa-core Processor is Designed for Game Consoles and OTT Boxes

October 10th, 2014 7 comments

Allwinner Technology has just introduced its new octa-core H8 System on Chip (SoC) for “high-end” gaming consoles and video OTT (over-the-top) boxes, right before the Hong Kong Electronics Fair taking place on October 13-16. The processor feature eight Cortex A7 cores clocked at up to 2.0 GHz, coupled with Imagination Technology PowerVR SGX544 GPU @ 700 MHz with support for OpenGL ES 2.0/1.1, OpenCL 1.1 APIs. 

Allwinner_logoOther key features includes:

  • Multi-format 1080p@60fps video processing including H.265/HEVC codec.
  • HDMI video output up to 1080P@60fps, with HDCP 2.0 support; support HDMI CEC
  • Integrated 8M image signal processor
  • USB – USB Host, and USB dual-role interfaces
  • Gigabit Ethernet MAC
  • Three SD/MMC controllers
  • SmartColor technology to deliver higher image quality and better visual effects
  • Manufactured with 28nm HPC (High-Performance Compact) process by TSMC.

We don’t have the full details, but it does look very similar to Allwinner A83T announced last month, but except of focusing on tablets, H8 focuses on Android TV boxes and game consoles. Interestingly, they’ve chosen not to include 4K UHD support in their SoC.

OTT boxes powered by Allwinner H8 are scheduled to hit the market in Q4 2014. That schedule might be a little optimistic, since H8 devices are still nowhere to be seen on Alibaba, or anywhere else on the web for that matter.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Linux 3.17 Released

October 9th, 2014 5 comments

Linus Torvalds announced the release of Linux Kernel 3.17 on Sunday:

So the past week was fairly calm, and so I have no qualms about releasing 3.17 on the normal schedule (as opposed to the optimistic “maybe I can release it one week early” schedule that was not to be).

However, I now have travel coming up – something I hoped to avoid when I was hoping for releasing early. Which means that while 3.17 is out, I’m not going to be merging stuff very actively next week, and the week after that is LinuxCon EU…

What that means is that depending on how you want to see it, the 3.18 merge window will either be three weeks, or alternatively just have a rather slow start. I don’t mind getting pull requests starting now (in fact, I have a couple already pending in my inbox), but I likely won’t start processing them for a week.

Anyway, back to 3.17. Nothing major happened during the last week, as you can see from the appended shortlog. Mostly drivers (i915, nouveau, ethernet, scsi, sound) and some networking fixes. With some misc noise all over.

Go out and test,

Linus

Kernel 3.16 added Nouveau drivers for GK20A GPU (Tegra K1), ARM64/EFI boot, improved support for Xen, KVM, EFI, NFS, as well as various changed to networking, and more…  Some noticeable changes for Linux 3.17:

  • Gamepads – Added Microsoft Xbox One controller support, improvements to Sony SIXAXIS support
  • Toshiba “Active Protection Sensor” support which stops your harddrive from spinning when the accelerator detects your laptop is in free fall…
  • “Cross-thread filter setting” for secure computing facility:
        int seccomp(unsigned int operation, unsigned int flag, const char *args);
    

    See manpage for details.

  • Enhanced AMD Radeon R9 290 support
  • Miscellaneous Nouveau driver improvements, including Kepler GPU fixes

New features and improvements specific to the ARM architecture include:

  • AllWinner
    • A10/A20 – IR driver
    • A31 – PIO/R_PIO external interrupts, DMAengine, GMAC
    • A23: Timers, UARTs, initial bringup, Basic clocks,  PIO/R_PIO drivers
    • New boards: ba10-tvbox; Merrii A31 Hummingbird; pcDuino V3
  • Rockchip
    • Enabled RK3288 SoC support
    • Added RK3xxx I2S controller, RK3288 clock controller, RK3066 and RK3188 clock driver.
    • Added RK3288 evaluation boards
  • Added basic support for Mediatek MT6589 SoCs
  • NEON implementation of crypto algorithms (SHA1; SHA512).
  • Marvell Kirkwood now fully “device tree-ified”, mach-kirkwood directory deleted
  • Added APM X-Gene SoC ethernet driver support.
  • Various changes for Broadcom BCM7xxx STB SoCs, Fresscale i.MX, Samsung Exynos & S5PV210, Nvidia Tegra, Renesas SH and TI AM43xx SoCs.
  • ARM64 / ARMv8 – Added 48-bit adress space, CONFIG_CC_STACKPROTECTOR (GCC’s -fstack-protector), audit support, and context tracking

I’ve also been asked about MIPS changes last time, so here it is:

  • Add Loongson-3B support
  • Add NUMA support for Loongson-3
  • BCM47XX: Detect more then 128 MiB of RAM (HIGHMEM)
  • BCM47XX: add Microsoft MN-700 and Asus WL500G
  • Support CPU topology files in sysfs
  • kernel: cpu-probe: Add support for the HardWare Table Walker
  • perf: Add hardware events for P5600

Further details on Linux 3.17 changes will soon be available on Kernelnewbies.org. For more details about ARM changes, remember to also check ARM architecture and drivers sections.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter