Posts Tagged ‘armv8’

$35 NanoPi M3 Octa Core 64-bit ARM Development Board is Powered by Samsung S5P6818 Processor

May 20th, 2016 24 comments

A few weeks after introducing NanoPC-T3 single board computer based on Samsung S5P6818 octa-core Cortex A53 processor, FriendlyARM is now launching a cost-down version called NanoPi M3 for just $35 with 1GB RAM, and booting from a micro SD card.


NanoPi M3 board specifications:

  • SoC – Samsung S5P6818 octa core Cortex A53 processor @ up to 1.4GHz with Mali-400MP GPU
  • System Memory – 1 GB 32-bit DDR3
  • Storage – 1x micro SD card slot
  • Connectivity – Gigabit Ethernet (RTL8211E), 802.11 b/g/n WiFi and Bluetooth LE 4.0 (Ampak AP6212) with on-board chip antenna and IPX antenna connector
  • Video Output / Display I/F – HDMI 1.4a up to 1080p60, LVDS, parallel RGB LCD
  • Audio I/O – HDMI, 3.5mm audio jack, 7-pin I2S header
  • Camera – 1x DVP interface
  • USB – 2x USB 2.0 type A host ports; 1x micro USB 2.0 client port; 2x USB 2.0 host ports via 8-pin header
  • Expansions Headers – 40-pin header
  • Debugging – 4-pin header for serial console
  • Misc – Power & reset buttons; power status LEDs.
  • Power Supply – 5V/2A via micro USB port; AXP228 PMIC
  • Dimension – 64 x 60 mm (6-layer PCB)

Cheap_Octa_Core_BoardThe board supports Android and Debian running on top of Linux 3.4. More technical details can be found in the Wiki. Samsung S5P processors are actually made by Nexell, and not supported at all in mainline Linux, so don’t expect support for a more recent kernel. Arnd Bergmann, one of Linux ARM SoC maintainers, even referred the code to as “awful“:

Source code is available but awful.

Specifically, this is a Linux-3.4 kernel that looks more like a Linux-2.6.28 platform port that was forward-ported.

Nevertheless, at $35 plus shipping ($10 in my case),  NanoPi-M3 must be the cheapest octa-core board available on the market so far. Visit the product page for more details and/or purchase the board.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

NXP Unveils i.MX 8 Multisensory Enablement Kit with Hexa Core ARMv8 Processor

May 17th, 2016 8 comments

Freescale, now NXP, i.MX 8 processors have been a long time coming, but finally the company has now unveiled a Multisensory Enablement Kit based on i.MX 8 hexa core ARMv8 processor combined with a Vulkan-ready & OpenCL capable GPU.

i.MX8_Multisensory_Enablement_KitKey features of the development kit:

  • Multisensory Processor Board
  • Multisensory Expansion Board
  • Isolation and separation of secure, safe and open domains
  • Rich compute (6x ARMv8 64-bit main CPUs, OpenCL GPU)
  • Vulkan-ready GPU with HW tessellation and geometry shading
  • Efficient, multi-screen (4x) support via HW virtualization
  • Failover-ready display path
  • Up to 8x camera input for 360 degree vision
  • Integrated vision processing
  • HDR enhanced video
  • Multi-sensor fusion and expansion
  • Multi-core audio and speech processing
  • NXP radio solution integration

However, at the time of writing, there’s very little information about i.MX8 processors themselves, but I’m confident much more info should soon surface as NXP FTF 2016 is taking place now until May 19, 2016. The press release about i.MX8 MEK does mention 4K video and graphics, and some security features. The company expects the processor to be used for for intuitive gesture control, voice recognition, natural speech recognition and audio acceleration, as well as healthcare and industrial applications such as connected vehicles.

NXP i.MX 8 MEK is said to be available now, together with the BSPs and middleware. More details should eventually be posted on i.MX8 MEK page.

[Update: I found a slide about i.MX8 with some details. Source: NXP Forums.

Click to Enlarge

Click to Enlarge

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Categories: Hardware, Linux, NXP i.MX Tags: 4k, armv8, automotive, devkit, nxp

How to Run Ubuntu 16.04 Aarch64 (64-bit ARM) Cloud Images on Your Intel/AMD Linux Computer with QEMU

May 10th, 2016 3 comments

With the recent launch of several low cost Cortex A53 development boards, 64-bit ARM hardware is now pretty common and inexpensive, but if you want to run 64-bit ARM code on your x86 Linux computer, Riku Voipio, a software engineer working for Linaro, wrote some instructions to run Ubuntu 16.04 Aarch64 Cloud image in QEMU. Ubuntu cloud images are “the official Ubuntu images and are pre-installed disk images that have been customized by Ubuntu engineering to run on public clouds that provide Ubuntu Certified Images, Openstack, LXD, and more. ”  So the instructions are also useful if you want to easily try such packages on 64-bit ARM platform.


Ubuntu 16.04 with Linux 4.4 Running on a Dual Core Cortex A57 Processor in QEMU

I’ve tried those instructions myself on my Ubuntu 14.04 machine with and AMD FX8350 processor, and they worked pretty well, and the only things I had to find out by myself was to install a recent version of qemu.

First, we’ll need to install qemu & cloud-utils, and download QEMU EFI firmware  as well as the Ubuntu 16.04 Xenial server Cloud image:

The instructions require qemu-system-aarch64 version 2.5, and my system only comes with qemu 2.0.0

So I had to find a qemu ppa to install a more recent version:

I now have version 2.5:

Since the Cloud images don’t come with default username and password, they need to configured with cloud-utils. To do so, I created cloud-utils as follows:

You simply need to change the file with your username, and RSA key, which should be in ~/.ssh/ If you don’t have that file you may want to read my post  showing how to create the SSH key and login without password. Cloud config can take many arguments, including packages to install during the first boot, and you can learn all about it on Cloud-init documentation.

Now you can initialize the cloud image, and run it:

The boot until the login prompt tool about 3 minutes on my machine. Here’s the boot log:

error: no suitable video mode found.
EFI stub: Booting Linux Kernel…
EFI stub: Using DTB from configuration table
EFI stub: Exiting boot services and installing virtual address map…
[ 0.000000] Booting Linux on physical CPU 0x0
[ 0.000000] Initializing cgroup subsys cpuset
[ 0.000000] Initializing cgroup subsys cpu
[ 0.000000] Initializing cgroup subsys cpuacct
[ 0.000000] Linux version 4.4.0-22-generic ([email protected]) (gcc version 5.3.1 20160413 (Ubuntu/Linaro 5.3.1-14ubuntu2) ) #39-Ubuntu SMP Thu May 5 16:54:53 UTC 2016 (Ubuntu 4.4.0-22.39-generic 4.4.8)
[ 0.000000] Boot CPU: AArch64 Processor [411fd070]
[ 0.000000] efi: Getting EFI parameters from FDT:
[ 0.000000] EFI v2.50 by EDK II
[ 0.000000] efi: SMBIOS=0x7c020000 SMBIOS 3.0=0x7bf90000 PROP=0x7f7b8d78 ACPI=0x7c040000 ACPI 2.0=0x7c040014
[ 0.000000] No NUMA configuration found
[ 0.000000] NUMA: Faking a node at [mem 0x0000000000000000-0x000000007fffffff]
[ 0.000000] NUMA: Adding memblock [0x40000000 – 0x7fffffff] on node 0
[ 0.000000] NUMA: Initmem setup node 0 [mem 0x40000000-0x7fffffff]
[ 0.000000] NUMA: NODE_DATA [mem 0x7fff2280-0x7fff3fff]
[ 0.000000] Zone ranges:
[ 0.000000] DMA [mem 0x0000000040000000-0x000000007fffffff]
[ 0.000000] Normal empty
[ 0.000000] Movable zone start for each node
[ 0.000000] Early memory node ranges
[ 0.000000] node 0: [mem 0x0000000040000000-0x000000007fffffff]
[ 0.000000] Initmem setup node 0 [mem 0x0000000040000000-0x000000007fffffff]
[ 0.000000] psci: probing for conduit method from DT.
[ 0.000000] psci: PSCIv0.2 detected in firmware.
[ 0.000000] psci: Using standard PSCI v0.2 function IDs
[ 0.000000] psci: Trusted OS migration not required
[ 0.000000] PERCPU: Embedded 17 pages/cpu @ffff80003ffc7000 s31128 r8192 d30312 u69632
[ 0.000000] Detected PIPT I-cache on CPU0
[ 0.000000] CPU features: enabling workaround for ARM erratum 832075
[ 0.000000] CPU features: enabling workaround for ARM erratum 834220
[ 0.000000] Built 1 zonelists in Node order, mobility grouping on. Total pages: 258048
[ 0.000000] Policy zone: DMA
[ 0.000000] Kernel command line: BOOT_IMAGE=/boot/vmlinuz-4.4.0-22-generic root=LABEL=cloudimg-rootfs vt.handoff=7
[ 0.000000] PID hash table entries: 4096 (order: 3, 32768 bytes)
[ 0.000000] software IO TLB [mem 0x77dc0000-0x7bdc0000] (64MB) mapped at [ffff800037dc0000-ffff80003bdbffff]
[ 0.000000] Memory: 923168K/1048576K available (8720K kernel code, 1006K rwdata, 3772K rodata, 760K init, 786K bss, 125408K reserved, 0K cma-reserved)
[ 0.000000] Virtual kernel memory layout:
[ 0.000000] vmalloc : 0xffff000000000000 – 0xffff7bffbfff0000 (126974 GB)
[ 0.000000] vmemmap : 0xffff7bffc0000000 – 0xffff7fffc0000000 ( 4096 GB maximum)
[ 0.000000] 0xffff7bffc0000000 – 0xffff7bffc1000000 ( 16 MB actual)
[ 0.000000] fixed : 0xffff7ffffa7fd000 – 0xffff7ffffac00000 ( 4108 KB)
[ 0.000000] PCI I/O : 0xffff7ffffae00000 – 0xffff7ffffbe00000 ( 16 MB)
[ 0.000000] modules : 0xffff7ffffc000000 – 0xffff800000000000 ( 64 MB)
[ 0.000000] memory : 0xffff800000000000 – 0xffff800040000000 ( 1024 MB)
[ 0.000000] .init : 0xffff800000cb5000 – 0xffff800000d73000 ( 760 KB)
[ 0.000000] .text : 0xffff800000080000 – 0xffff800000cb5000 ( 12500 KB)
[ 0.000000] .data : 0xffff800000d84000 – 0xffff800000e7fa00 ( 1007 KB)
[ 0.000000] SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=2, Nodes=1
[ 0.000000] Hierarchical RCU implementation.
[ 0.000000] Build-time adjustment of leaf fanout to 64.
[ 0.000000] RCU restricting CPUs from NR_CPUS=128 to nr_cpu_ids=2.
[ 0.000000] RCU: Adjusting geometry for rcu_fanout_leaf=64, nr_cpu_ids=2
[ 0.000000] NR_IRQS:64 nr_irqs:64 0
[ 0.000000] GICv2m: range[0x8020000:0x8020fff], SPI[80:144]
[ 0.000000] Architected cp15 timer(s) running at 62.50MHz (virt).
[ 0.000000] clocksource: arch_sys_counter: mask: 0xffffffffffffff max_cycles: 0x1cd42e208c, max_idle_ns: 881590405314 ns
[ 0.000135] sched_clock: 56 bits at 62MHz, resolution 16ns, wraps every 4398046511096ns
[ 0.006123] vt handoff: transparent VT on vt#7
[ 0.006565] Console: colour dummy device 80×25
[ 0.007325] console [tty0] enabled
[ 0.008449] Calibrating delay loop (skipped), value calculated using timer frequency.. 125.00 BogoMIPS (lpj=250000)
[ 0.008599] pid_max: default: 32768 minimum: 301
[ 0.009541] Security Framework initialized
[ 0.009610] Yama: becoming mindful.
[ 0.011833] AppArmor: AppArmor initialized
[ 0.015594] Dentry cache hash table entries: 131072 (order: 8, 1048576 bytes)
[ 0.017840] Inode-cache hash table entries: 65536 (order: 7, 524288 bytes)
[ 0.018889] Mount-cache hash table entries: 2048 (order: 2, 16384 bytes)
[ 0.018992] Mountpoint-cache hash table entries: 2048 (order: 2, 16384 bytes)
[ 0.029386] Initializing cgroup subsys io
[ 0.029795] Initializing cgroup subsys memory
[ 0.030134] Initializing cgroup subsys devices
[ 0.030245] Initializing cgroup subsys freezer
[ 0.030346] Initializing cgroup subsys net_cls
[ 0.030421] Initializing cgroup subsys perf_event
[ 0.030490] Initializing cgroup subsys net_prio
[ 0.030574] Initializing cgroup subsys hugetlb
[ 0.030676] Initializing cgroup subsys pids
[ 0.031176] ftrace: allocating 30291 entries in 119 pages
[ 0.725663] Remapping and enabling EFI services.
[ 0.726171] EFI remap 0x0000000004000000 => 0000000040000000
[ 0.726421] EFI remap 0x0000000009010000 => 0000000044000000
[ 0.726500] EFI remap 0x000000007be40000 => 0000000044010000
[ 0.726557] EFI remap 0x000000007bea0000 => 0000000044070000
[ 0.726576] EFI remap 0x000000007beb0000 => 0000000044080000
[ 0.726597] EFI remap 0x000000007bf30000 => 0000000044100000
[ 0.726615] EFI remap 0x000000007bf40000 => 0000000044110000
[ 0.726632] EFI remap 0x000000007bf50000 => 0000000044120000
[ 0.726656] EFI remap 0x000000007c020000 => 00000000441d0000
[ 0.726673] EFI remap 0x000000007c050000 => 00000000441e0000
[ 0.726689] EFI remap 0x000000007c060000 => 00000000441f0000
[ 0.726706] EFI remap 0x000000007c070000 => 0000000044200000
[ 0.726771] EFI remap 0x000000007c0f0000 => 0000000044280000
[ 0.726802] EFI remap 0x000000007c100000 => 0000000044290000
[ 0.726819] EFI remap 0x000000007c110000 => 00000000442a0000
[ 0.726842] EFI remap 0x000000007c1e0000 => 0000000044370000
[ 0.726858] EFI remap 0x000000007c1f0000 => 0000000044380000
[ 0.726876] EFI remap 0x000000007c200000 => 0000000044390000
[ 0.726951] EFI remap 0x000000007c280000 => 0000000044410000
[ 0.726981] EFI remap 0x000000007c290000 => 0000000044420000
[ 0.726998] EFI remap 0x000000007c2a0000 => 0000000044430000
[ 0.727016] EFI remap 0x000000007f5b0000 => 0000000044460000
[ 0.727036] EFI remap 0x000000007f600000 => 00000000444b0000
[ 0.727053] EFI remap 0x000000007f610000 => 00000000444c0000
[ 0.727071] EFI remap 0x000000007f650000 => 00000000444f0000
[ 0.727618] ASID allocator initialised with 65536 entries
[ 0.746070] Detected PIPT I-cache on CPU1
[ 0.747515] CPU1: Booted secondary processor [411fd070]
[ 0.749129] Brought up 2 CPUs
[ 0.749201] SMP: Total of 2 processors activated.
[ 0.749430] CPU: All CPU(s) started at EL1
[ 0.750222] alternatives: patching kernel code
[ 0.766144] devtmpfs: initialized
[ 0.775039] evm: security.selinux
[ 0.775075] evm: security.SMACK64
[ 0.775089] evm: security.SMACK64EXEC
[ 0.775102] evm: security.SMACK64TRANSMUTE
[ 0.775116] evm: security.SMACK64MMAP
[ 0.775129] evm: security.ima
[ 0.775142] evm: security.capability
[ 0.778658] SMBIOS 3.0.0 present.
[ 0.779858] clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 7645041785100000 ns
[ 0.782640] pinctrl core: initialized pinctrl subsystem
[ 0.794894] NET: Registered protocol family 16
[ 0.810548] cpuidle: using governor ladder
[ 0.823124] cpuidle: using governor menu
[ 0.823790] vdso: 2 pages (1 code @ ffff800000d89000, 1 data @ ffff800000d88000)
[ 0.824292] hw-breakpoint: found 6 breakpoint and 4 watchpoint registers.
[ 0.826321] DMA: preallocated 256 KiB pool for atomic allocations
[ 0.827846] Serial: AMBA PL011 UART driver
[ 0.855107] 9000000.pl011: ttyAMA0 at MMIO 0x9000000 (irq = 37, base_baud = 0) is a PL011 rev1
[ 0.893760] console [ttyAMA0] enabled
[ 0.946328] ACPI: Interpreter disabled.
[ 0.949605] vgaarb: loaded
[ 0.955849] SCSI subsystem initialized
[ 0.958552] usbcore: registered new interface driver usbfs
[ 0.959246] usbcore: registered new interface driver hub
[ 0.959790] usbcore: registered new device driver usb
[ 0.971932] NetLabel: Initializing
[ 0.972153] NetLabel: domain hash size = 128
[ 0.972377] NetLabel: protocols = UNLABELED CIPSOv4
[ 0.973808] NetLabel: unlabeled traffic allowed by default
[ 0.976092] clocksource: Switched to clocksource arch_sys_counter
[ 1.099009] AppArmor: AppArmor Filesystem Enabled
[ 1.100738] pnp: PnP ACPI: disabled
[ 1.149920] NET: Registered protocol family 2
[ 1.157502] TCP established hash table entries: 8192 (order: 4, 65536 bytes)
[ 1.158260] TCP bind hash table entries: 8192 (order: 5, 131072 bytes)
[ 1.158865] TCP: Hash tables configured (established 8192 bind 8192)
[ 1.160369] UDP hash table entries: 512 (order: 2, 16384 bytes)
[ 1.160845] UDP-Lite hash table entries: 512 (order: 2, 16384 bytes)
[ 1.162945] NET: Registered protocol family 1
[ 1.169176] Trying to unpack rootfs image as initramfs…
[ 38.466085] Freeing initrd memory: 20908K (ffff80002a69a000 – ffff80002bb05000)
[ 38.467445] kvm [1]: HYP mode not available
[ 38.471688] futex hash table entries: 512 (order: 4, 65536 bytes)
[ 38.472992] audit: initializing netlink subsys (disabled)
[ 38.474139] audit: type=2000 audit(37.848:1): initialized
[ 38.480527] Initialise system trusted keyring
[ 38.485484] HugeTLB registered 2 MB page size, pre-allocated 0 pages
[ 38.510331] zbud: loaded
[ 38.516406] VFS: Disk quotas dquot_6.6.0
[ 38.517291] VFS: Dquot-cache hash table entries: 512 (order 0, 4096 bytes)
[ 38.528806] fuse init (API version 7.23)
[ 38.532598] Key type big_key registered
[ 38.533202] Allocating IMA MOK and blacklist keyrings.
[ 38.546907] Key type asymmetric registered
[ 38.547225] Asymmetric key parser ‘x509’ registered
[ 38.548522] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 249)
[ 38.549875] io scheduler noop registered
[ 38.550151] io scheduler deadline registered (default)
[ 38.551097] io scheduler cfq registered
[ 38.557770] pci_hotplug: PCI Hot Plug PCI Core version: 0.5
[ 38.558156] pciehp: PCI Express Hot Plug Controller Driver version: 0.4
[ 38.559066] PCI host bridge [email protected] ranges:
[ 38.559706] IO 0x3eff0000..0x3effffff -> 0x00000000
[ 38.560395] MEM 0x10000000..0x3efeffff -> 0x10000000
[ 38.560672] MEM 0x8000000000..0xffffffffff -> 0x8000000000
[ 38.563045] pci-host-generic 3f000000.pcie: PCI host bridge to bus 0000:00
[ 38.563709] pci_bus 0000:00: root bus resource [bus 00-0f]
[ 38.564346] pci_bus 0000:00: root bus resource [io 0x0000-0xffff]
[ 38.564681] pci_bus 0000:00: root bus resource [mem 0x10000000-0x3efeffff]
[ 38.565020] pci_bus 0000:00: root bus resource [mem 0x8000000000-0xffffffffff]
[ 38.585136] Serial: 8250/16550 driver, 32 ports, IRQ sharing enabled
[ 38.615449] msm_serial: driver initialized
[ 38.620995] Unable to detect cache hierarchy from DT for CPU 0
[ 38.681657] brd: module loaded
[ 38.707298] loop: module loaded
[ 38.744265] vdb: vdb1 vdb15
[ 38.755415] libphy: Fixed MDIO Bus: probed
[ 38.755791] tun: Universal TUN/TAP device driver, 1.6
[ 38.756571] tun: (C) 1999-2004 Max Krasnyansky <[email protected]>
[ 38.769050] PPP generic driver version 2.4.2
[ 38.772339] ehci_hcd: USB 2.0 ‘Enhanced’ Host Controller (EHCI) Driver
[ 38.772918] ehci-pci: EHCI PCI platform driver
[ 38.773577] ohci_hcd: USB 1.1 ‘Open’ Host Controller (OHCI) Driver
[ 38.774282] ohci-pci: OHCI PCI platform driver
[ 38.775318] uhci_hcd: USB Universal Host Controller Interface driver
[ 38.781025] mousedev: PS/2 mouse device common for all mice
[ 38.785156] i2c /dev entries driver
[ 38.790822] device-mapper: uevent: version 1.0.3
[ 38.793082] device-mapper: ioctl: 4.34.0-ioctl (2015-10-28) initialised: [email protected]
[ 38.795243] ledtrig-cpu: registered to indicate activity on CPUs
[ 38.795611] EFI Variables Facility v0.08 2004-May-17
[ 38.808496] NET: Registered protocol family 10
[ 38.816988] NET: Registered protocol family 17
[ 38.817611] Key type dns_resolver registered
[ 38.818458] Registered cp15_barrier emulation handler
[ 38.818815] Registered setend emulation handler
[ 38.822549] registered taskstats version 1
[ 38.823009] Loading compiled-in X.509 certificates
[ 38.833206] Loaded X.509 cert ‘Build time autogenerated kernel key: a959bfeeeafa5217003d029b713b4f3761d43036’
[ 38.834712] zswap: loaded using pool lzo/zbud
[ 38.939508] Key type trusted registered
[ 39.135319] Key type encrypted registered
[ 39.135696] AppArmor: AppArmor sha1 policy hashing enabled
[ 39.136679] ima: No TPM chip found, activating TPM-bypass!
[ 39.138753] evm: HMAC attrs: 0x1
[ 39.141193] hctosys: unable to open rtc device (rtc0)
[ 39.146796] uart-pl011 9000000.pl011: no DMA platform data
[ 39.194827] Freeing unused kernel memory: 760K (ffff800000cb5000 – ffff800000d73000)
[ 39.195339] Freeing alternatives memory: 48K (ffff800000d73000 – ffff800000d7f000)
Loading, please wait…
starting version 229
[ 39.750435] random: systemd-udevd urandom read with 1 bits of entropy available
Begin: Loading essential drivers … [ 46.415344] md: linear personality registered for level -1
[ 46.515772] md: multipath personality registered for level -4
[ 46.620934] md: raid0 personality registered for level 0
[ 46.726240] md: raid1 personality registered for level 1
[ 46.926037] raid6: int64x1 gen() 474 MB/s
[ 46.992135] raid6: int64x1 xor() 397 MB/s
[ 47.060108] raid6: int64x2 gen() 892 MB/s
[ 47.128118] raid6: int64x2 xor() 588 MB/s
[ 47.196003] raid6: int64x4 gen() 1156 MB/s
[ 47.264122] raid6: int64x4 xor() 777 MB/s
[ 47.332052] raid6: int64x8 gen() 538 MB/s
[ 47.400093] raid6: int64x8 xor() 450 MB/s
[ 47.468291] raid6: neonx1 gen() 330 MB/s
[ 47.536209] raid6: neonx1 xor() 189 MB/s
[ 47.604233] raid6: neonx2 gen() 398 MB/s
[ 47.672095] raid6: neonx2 xor() 163 MB/s
[ 47.740157] raid6: neonx4 gen() 440 MB/s
[ 47.808224] raid6: neonx4 xor() 238 MB/s
[ 47.876048] raid6: neonx8 gen() 385 MB/s
[ 47.944072] raid6: neonx8 xor() 230 MB/s
[ 47.944350] raid6: using algorithm int64x4 gen() 1156 MB/s
[ 47.944628] raid6: …. xor() 777 MB/s, rmw enabled
[ 47.944939] raid6: using intx1 recovery algorithm
[ 47.952791] xor: measuring software checksum speed
[ 47.996241] 8regs : 1440.000 MB/sec
[ 48.036207] 8regs_prefetch: 1445.000 MB/sec
[ 48.076186] 32regs : 1336.000 MB/sec
[ 48.116043] 32regs_prefetch: 1343.000 MB/sec
[ 48.116350] xor: using function: 8regs_prefetch (1445.000 MB/sec)
[ 48.123591] async_tx: api initialized (async)
[ 48.216579] md: raid6 personality registered for level 6
[ 48.216952] md: raid5 personality registered for level 5
[ 48.217259] md: raid4 personality registered for level 4
[ 48.475262] md: raid10 personality registered for level 10
Begin: Running /scripts/init-premount … done.
Begin: Mounting root file system … Begin: Running /scripts/local-top … done.
Begin: Running /scripts/local-premount … [ 49.365334] Btrfs loaded
Scanning for Btrfs filesystems
Warning: fsck not present, so skipping root file system
[ 50.489875] EXT4-fs (vdb1): mounted filesystem with ordered data mode. Opts: (null)
Begin: Running /scripts/local-bottom … done.
Begin: Running /scripts/init-bottom … Warning: overlayroot: debug is busted
[ 52.425729] systemd[1]: System time before build time, advancing clock.
[ 52.602459] systemd[1]: Detected virtualization qemu.
[ 52.602901] systemd[1]: Detected architecture arm64.Welcome to Ubuntu 16.04 LTS![ 52.615513] systemd[1]: Set hostname to .
[ 52.631062] systemd[1]: Initializing machine ID from random generator.
[ 52.633892] systemd[1]: Installed transient /etc/machine-id file.
[ 54.777420] systemd[1]: Created slice System Slice.
[ OK ] Created slice System Slice.
[ 54.787015] systemd[1]: Created slice system-getty.slice.
[ OK ] Created slice system-getty.slice.
[ 54.791265] systemd[1]: Listening on Journal Socket.
[ OK ] Listening on Journal Socket.
[ 54.827391] systemd[1]: Starting Create list of required static device nodes for the current kernel…
Starting Create list of required st… nodes for the current kernel…
[ 54.839431] systemd[1]: Reached target User and Group Name Lookups.
[ OK ] Reached target User and Group Name Lookups.
[ 54.900677] systemd[1]: Listening on Journal Audit Socket.
[ OK ] Listening on Journal Audit Socket.
[ 54.937520] systemd[1]: Listening on Syslog Socket.
[ OK ] Listening on Syslog Socket.
[ 55.061147] systemd[1]: Mounting Debug File System…
Mounting Debug File System…
[ 55.125920] systemd[1]: Created slice system-serial\x2dgetty.slice.
[ OK ] Created slice system-serial\x2dgetty.slice.
[ 55.130335] systemd[1]: Listening on udev Control Socket.
[ OK ] Listening on udev Control Socket.
[ 55.166043] systemd[1]: Listening on /dev/initctl Compatibility Named Pipe.
[ OK ] Listening on /dev/initctl Compatibility Named Pipe.
[ 55.203000] systemd[1]: Created slice User and Session Slice.
[ OK ] Created slice User and Session Slice.
[ 55.230696] systemd[1]: Started Forward Password Requests to Wall Directory Watch.
[ OK ] Started Forward Password Requests to Wall Directory Watch.
[ 55.270726] systemd[1]: Starting Uncomplicated firewall…
Starting Uncomplicated firewall…
[ 55.302712] systemd[1]: Set up automount Arbitrary Executable File Formats File System Automount Point.
[ OK ] Set up automount Arbitrary Executab…ats File System Automount Point.
[ 55.342570] systemd[1]: Listening on LVM2 metadata daemon socket.
[ OK ] Listening on LVM2 metadata daemon socket.
[ 55.437727] systemd[1]: Mounting Huge Pages File System…
Mounting Huge Pages File System…
[ 55.478207] systemd[1]: Reached target Swap.
[ OK ] Reached target Swap.
[ 55.505859] systemd[1]: Reached target Slices.
[ OK ] Reached target Slices.
[ 55.653438] systemd[1]: Mounting POSIX Message Queue File System…
Mounting POSIX Message Queue File System…
[ 55.671273] systemd[1]: Reached target Encrypted Volumes.
[ OK ] Reached target Encrypted Volumes.
[ 55.826639] systemd[1]: Starting Remount Root and Kernel File Systems…
Starting Remount Root and Kernel File Systems…
[ 55.895229] systemd[1]: Listening on Journal Socket (/dev/log).
[ OK ] Listening on Journal Socket (/dev/log).
[ 55.978436] systemd[1]: Listening on Device-mapper event daemon FIFOs.
[ OK ] Listening on Device-mapper event daemon FIFOs.
[ 56.039144] systemd[1]: Listening on udev Kernel Socket.
[ OK ] Listening on udev Kernel Socket.
[ 56.338358] systemd[1]: Starting Load Kernel Modules…
Starting Load Kernel Modules…
[ 56.393745] systemd[1]: Listening on LVM2 poll daemon socket.
[ OK ] Listening on LVM2 poll daemon socket.
[ 56.554266] systemd[1]: Starting Nameserver information manager…
Starting Nameserver information manager…
[ 56.634591] systemd[1]: Starting Monitoring of LVM2 mirrors, snapshots etc. using dmeventd or progress polling…
Starting Monitoring of LVM2 mirrors… dmeventd or progress polling…
[ 56.742477] systemd[1]: Starting Journal Service…
Starting Journal Service…
[ 57.001027] systemd[1]: Mounted POSIX Message Queue File System.
[ OK ] Mounted POSIX Message Queue File System.
[ 57.064715] systemd[1]: Mounted Debug File System.
[ OK ] Mounted Debug File System.
[ 57.101124] systemd[1]: Mounted Huge Pages File System.
[ OK ] Mounted Huge Pages File System.
[ 57.227288] systemd[1]: Started Create list of required static device nodes for the current kernel.
[ OK ] Started Create list of required sta…ce nodes for the current kernel.
[ 57.258454] systemd[1]: Started Uncomplicated firewall.
[ OK ] Started Uncomplicated firewall.
[ 57.304651] EXT4-fs (vdb1): re-mounted. Opts: (null)
[ 57.527628] systemd[1]: Started Remount Root and Kernel File Systems.
[ OK ] Started Remount Root and Kernel File Systems.
[ 58.358611] systemd[1]: Started Nameserver information manager.
[ OK ] Started Nameserver information manager.
[ 59.850589] Loading iSCSI transport class v2.0-870.
[ 60.059388] systemd[1]: Started LVM2 metadata daemon.
[ OK ] Started LVM2 metadata daemon.
[ 60.205315] systemd[1]: Starting Load/Save Random Seed…
Starting Load/Save Random Seed…
[ 60.467673] iscsi: registered transport (tcp)
[ 60.479537] systemd[1]: Starting udev Coldplug all Devices…
Starting udev Coldplug all Devices…
[ 60.566825] systemd[1]: Starting Create Static Device Nodes in /dev…
Starting Create Static Device Nodes in /dev…
[ 60.630029] systemd[1]: Started Journal Service.
[ OK ] Started Journal Service.
Starting Flush Journal to Persistent Storage…
[ OK ] Started Load/Save Random Seed.
[ 62.065118] systemd-journald[368]: Received request to flush runtime journal from PID 1
[ OK ] Started Flush Journal to Persistent Storage.
[ 62.627589] iscsi: registered transport (iser)
[ OK ] Started Load Kernel Modules.
[ OK ] Started Monitoring of LVM2 mirrors,…ng dmeventd or progress polling.
Starting Apply Kernel Variables…
Mounting FUSE Control File System…
[ OK ] Mounted FUSE Control File System.
[ OK ] Started Create Static Device Nodes in /dev.
Starting udev Kernel Device Manager…
[ OK ] Started Apply Kernel Variables.
[ OK ] Started udev Coldplug all Devices.
[ OK ] Started udev Kernel Device Manager.
[ OK ] Reached target Local File Systems (Pre).
[ OK ] Started Dispatch Password Requests to Console Directory Watch.
[ OK ] Found device /dev/ttyAMA0.
[ OK ] Found device /dev/disk/by-label/UEFI.
Mounting /boot/efi…
[ OK ] Mounted /boot/efi.
[ OK ] Reached target Local File Systems.
Starting Initial cloud-init job (pre-networking)…
Starting Tell Plymouth To Write Out Runtime Data…
Starting Set console keymap…
Starting Create Volatile Files and Directories…
Starting LSB: AppArmor initialization…
Starting Commit a transient machine-id on disk…
[ OK ] Started Tell Plymouth To Write Out Runtime Data.
[FAILED] Failed to start Set console keymap.
See ‘systemctl status console-setup.service’ for details.
[ OK ] Started Commit a transient machine-id on disk.
[ OK ] Listening on Load/Save RF Kill Switch Status /dev/rfkill Watch.
[ OK ] Started Create Volatile Files and Directories.
Starting Network Time Synchronization…
Starting Update UTMP about System Boot/Shutdown…
[ OK ] Started Update UTMP about System Boot/Shutdown.
[ OK ] Started Network Time Synchronization.
[ OK ] Reached target System Time Synchronized.
[ OK ] Started LSB: AppArmor initialization.
[ OK ] Reached target System Initialization.
[ OK ] Started Trigger resolvconf update for networkd DNS.
[ OK ] Listening on ACPID Listen Socket.
[ OK ] Listening on D-Bus System Message Bus Socket.
Starting Socket activation for snappy daemon.
Starting Seed the pseudo random number generator on first boot…
Starting LXD – unix socket.
[ OK ] Started Daily Cleanup of Temporary Directories.
[ OK ] Started Daily apt activities.
[ OK ] Reached target Timers.
[ OK ] Listening on UUID daemon activation socket.
[ OK ] Started ACPI Events Check.
[ OK ] Reached target Paths.
[ OK ] Listening on Socket activation for snappy daemon.
[ OK ] Listening on LXD – unix socket.
[ OK ] Reached target Sockets.
[ OK ] Reached target Basic System.
Starting LXD – container startup/shutdown…
[ OK ] Started Deferred execution scheduler.
[ OK ] Started Regular background program processing daemon.
[ OK ] Started D-Bus System Message Bus.
[ OK ] Started ACPI event daemon.
Starting System Logging Service…
Starting Login Service…
Starting Accounts Service…
[ OK ] Started FUSE filesystem for LXC.
Starting LSB: Record successful boot for GRUB…
Starting LSB: MD monitoring daemon…
[ OK ] Started Login Service.
[ OK ] Started System Logging Service.
Starting Authenticate and Authorize Users to Run Privileged Tasks…
[ OK ] Started LSB: Record successful boot for GRUB.
[ OK ] Started LSB: MD monitoring daemon.
[ OK ] Started Authenticate and Authorize Users to Run Privileged Tasks.
[ OK ] Started Accounts Service.
[ OK ] Started Seed the pseudo random number generator on first boot.
[ OK ] Started LXD – container startup/shutdown.
[ 137.551732] cloud-init[502]: Cloud-init v. 0.7.7 running ‘init-local’ at Thu, 11 Feb 2016 16:29:14 +0000. Up 126.47 seconds.
[ OK ] Started Initial cloud-init job (pre-networking).
[ OK ] Reached target Network (Pre).
Starting Raise network interfaces…
[ OK ] Started Raise network interfaces.
Starting Initial cloud-init job (metadata service crawler)…
[ OK ] Reached target Network.
[ 183.824988] cloud-init[984]: Cloud-init v. 0.7.7 running ‘init’ at Tue, 10 May 2016 13:09:14 +0000. Up 162.17 seconds.
[ 183.856568] cloud-init[984]: ci-info: +++++++++++++++++++++++++++++++++++++Net device info++++++++++++++++++++++++++++++++++++++
[ 183.896700] cloud-init[984]: ci-info: +——–+——+—————————-+—————+——-+——————-+
[ 183.944499] cloud-init[984]: ci-info: | Device | Up | Address | Mask | Scope | Hw-Address |
[ 183.979733] cloud-init[984]: ci-info: +——–+——+—————————-+—————+——-+——————-+
[ 184.003937] cloud-init[984]: ci-info: | lo | True | | | . | . |
[ 184.024728] cloud-init[984]: ci-info: | lo | True | ::1/128 | . | host | . |
[ 184.040806] cloud-init[984]: ci-info: | eth0 | True | | | . | 52:54:00:12:34:56 |
[ 184.059981] cloud-init[984]: ci-info: | eth0 | True | fe80::5054:ff:fe12:3456/64 | . | link | 52:54:00:12:34:56 |
[ 184.076902] cloud-init[984]: ci-info: +——–+——+—————————-+—————+——-+——————-+
[ 184.096749] cloud-init[984]: ci-info: +++++++++++++++++++++++++++Route IPv4 info++++++++++++++++++++++++++++
[ 184.119901] cloud-init[984]: ci-info: +——-+————-+———-+—————+———–+——-+
[ 184.135772] cloud-init[984]: ci-info: | Route | Destination | Gateway | Genmask | Interface | Flags |
[ 184.159764] cloud-init[984]: ci-info: +——-+————-+———-+—————+———–+——-+
[ 184.183873] cloud-init[984]: ci-info: | 0 | | | | eth0 | UG |
[ 184.221910] cloud-init[984]: ci-info: | 1 | | | | eth0 | U |
[ 184.235614] cloud-init[984]: ci-info: +——-+————-+———-+—————+———–+——-+
[ 184.251771] cloud-init[984]: Generating public/private rsa key pair.
[ 184.267717] cloud-init[984]: Your identification has been saved in /etc/ssh/ssh_host_rsa_key.
[ 184.287923] cloud-init[984]: Your public key has been saved in /etc/ssh/
[ 184.299763] cloud-init[984]: The key fingerprint is:
[ 184.319922] cloud-init[984]: SHA256:5nfgM60p9uPLbYwOS9asle9xORwZn8f2w1Wn1/jxyv8 [email protected]
[ 184.347770] cloud-init[984]: The key’s randomart image is:
[ 184.368899] cloud-init[984]: +—[RSA 2048]—-+
[ 184.387884] cloud-init[984]: | |
[ 184.421722] cloud-init[984]: | |
[ 184.460441] cloud-init[984]: | . o|
[ 184.501071] cloud-init[984]: | B=|
[ 184.544642] cloud-init[984]: | S . =oO|
[ 184.575731] cloud-init[984]: | o + + ..**|
[ 184.607402] cloud-init[984]: | = Xo+ =o+|
[ 184.652524] cloud-init[984]: | ooBoOo+ o.|
[ 184.679908] cloud-init[984]: | .o=O=+ o.E|
[ 184.699730] cloud-init[984]: +—-[SHA256]—–+
[ 184.723963] cloud-init[984]: Generating public/private dsa key pair.
[ 184.747842] cloud-init[984]: Your identification has been saved in /etc/ssh/ssh_host_dsa_key.
[ 184.768001] cloud-init[984]: Your public key has been saved in /etc/ssh/
[ 184.787953] cloud-init[984]: The key fingerprint is:
[ 184.806946] cloud-init[984]: SHA256:KzpBU/Zr4F1VzPQL/SjCTZudKOk1n4AXjCVEx8sgc8g [email protected]
[ 184.815690] cloud-init[984]: The key’s randomart image is:
[ 184.827854] cloud-init[984]: +—[DSA 1024]—-+
[ 184.855475] cloud-init[984]: | . ++.o=o |
[ 184.866056] cloud-init[984]: | o E o*o +. |
[ 184.875487] cloud-init[984]: | o . +.++o ..|
[ OK ] Started Initial cloud-init job (metadata service crawler).
[ 184.897020] cloud-init[984]: | o . …=o*.oo|
[ OK ] Reached target Network is Online.
Starting /etc/rc.local Compatibility…
[ 185.021564] cloud-init[984]: | . o oSo* @ +..|
[ 185.051657] cloud-init[984]: | . . +o = = . |
Starting iSCSI initiator daemon (iscsid)…
[ OK ] Reached target Cloud-config availability.
Starting Apply the settings specified in cloud-config…
Starting OpenBSD Secure Shell server…
[ 185.504541] cloud-init[984]: | …. . o |
[ OK ] Started /etc/rc.local Compatibility.
[ 186.110577] cloud-init[984]: | .. . |
[ 186.542021] cloud-init[984]: | .. |
[ 186.557503] cloud-init[984]: +—-[SHA256]—–+
[ 186.585582] cloud-init[984]: Generating public/private ecdsa key pair.
[ 186.609651] cloud-init[984]: Your identification has been saved in /etc/ssh/ssh_host_ecdsa_key.
[ 186.625636] cloud-init[984]: Your public key has been saved in /etc/ssh/
[ 186.657904] cloud-init[984]: The key fingerprint is:
[ 186.801267] cloud-init[984]: SHA256:8AlCHJTqwT2ZHsSrQWYCamH0IP6rI1DR9rXcGPckoms [email protected]
[ 186.909225] cloud-init[984]: The key’s randomart image is:
[ 187.041113] cloud-init[984]: +—[ECDSA 256]—+
[ 187.093113] cloud-init[984]: |== =+o |
[ 187.173249] cloud-init[984]: |* O.B + o . |
[ 187.305466] cloud-init[984]: |.O B.=o+ B + |
[ 187.461236] cloud-init[984]: |. B B.o++.. . |
[ 187.601078] cloud-init[984]: | o * o .S |
[ 187.647573] cloud-init[984]: |. o o E |
[ 187.972585] cloud-init[984]: |. . . |
[ 188.117766] cloud-init[984]: |… |
[ 188.313919] cloud-init[984]: |… |
[ 188.425282] cloud-init[984]: +—-[SHA256]—–+
[ 188.540492] cloud-init[984]: Generating public/private ed25519 key pair.
[ OK ] Started iSCSI initiator daemon (iscsid).
[ 188.655394] cloud-init[984]: Your identification has been saved in /etc/ssh/ssh_host_ed25519_key.
Starting Login to default iSCSI targets…
[ 188.804741] cloud-init[984]: Your public key has been saved in /etc/ssh/
[ 189.156485] cloud-init[984]: The key fingerprint is:
[ 189.274441] cloud-init[984]: SHA256:1nftC58SMDp4u2HEzdOJT0TQNGvLqgv2INuYUBnlgAs [email protected]
[ 189.362913] cloud-init[984]: The key’s randomart image is:
[ 189.410176] cloud-init[984]: +–[ED25519 256]–+
[ 189.821593] cloud-init[984]: | .. . .++ |
[ 189.965319] cloud-init[984]: | E . + ..o |
[ 190.016843] cloud-init[984]: | . .. . + |
[ 190.084884] cloud-init[984]: | . o ..oo* o. |
[ 190.137893] cloud-init[984]: | o Soo=+*. .|
[ 190.235385] cloud-init[984]: | . o.+ .=o . |
[ 190.504702] cloud-init[984]: | . . +.oo. o. .|
[ 190.680403] cloud-init[984]: | . B =.o .o o|
[ OK ] Started OpenBSD Secure Shell server.
[ 190.832058] cloud-init[984]: | + . =o .+ |
[ 190.897369] cloud-init[984]: +—-[SHA256]—–+
[ OK ] Started Login to default iSCSI targets.
[ OK ] Reached target Remote File Systems (Pre).
[ OK ] Reached target Remote File Systems.
Starting LSB: automatic crash report generation…
Starting LSB: Set the CPU Frequency Scaling governor to “ondemand”…
Starting Permit User Sessions…
Starting LSB: daemon to balance interrupts for SMP systems…
[ OK ] Started Permit User Sessions.
Starting Terminate Plymouth Boot Screen…
Starting Hold until boot process finishes up…
[ OK ] Started Hold until boot process finishes up.
[ OK ] Started Serial Getty on ttyAMA0.
[ OK ] Started Getty on tty1.
[ OK ] Reached target Login Prompts.
[ OK ] Started Terminate Plymouth Boot Screen.
[ OK ] Started LSB: Set the CPU Frequency Scaling governor to “ondemand”.
[ OK ] Started LSB: daemon to balance interrupts for SMP systems.
[ OK ] Started LSB: automatic crash report generation.Ubuntu 16.04 LTS ubuntu ttyAMA0ubuntu login:

You won’t be able to login there however, so instead you can access the emulated server via ssh:

No password will be asked since we’re using an ssh key.

A few commands confirm we are indeed running Ubuntu 16.04 with Linux 4.4 on a dual core Cortex A57 processor:

I’ve also run linpack benchmark:

Emulation from x86 to ARM is affecting the results quite a bit here. For reference, a Raspberry Pi 2 achieves about 113300 KFLOPS for the same benchmark. You’ll also noticed specifically compiling for Cortex-A57 CPU improves the performance by about 10%, even in qemu.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Debian on DragonBoard 410c Development Board

May 6th, 2016 29 comments

I purchased Qualcomm DragonBoard 410c development board last year, and first tested it and run some benchmark on the 96Boards compliant hardware with Android. I found that it was still work-in-progress, and decided to wait before trying Debian on the board. I’ve now done so, and will report by experience installing Debian Linux, playing with the board, and running Phoronix benchmarks to compare it to other ARM Linux boards.

Installing Debian on DragonBoard 410c

The first challenge is to navigate through the documentation that is not always clear or up-to-date. I eventually ended up on DragonBoard 410c Wiki on Github.

DragonBoard_410c_Debian_Android_Opearting_SystemsYou then have to decided which image you want. While there are two official operating systems with Android and Debian, you can three “entities” releasiong their own images. For Debian specifically, you have the Linaro image, and Reference Platform Build (RPB) image. I could not find any changelog or known issues with the former, but the latter as its own Wiki with the latest release being RPB 16.03 (March 2016), and the next one scheduled to be RPB 16.06 in June.

That’s the current list of known issues

  • bug 285 USB host doesn’t detect any plugged devices
  • bug 121 [RPB] Cannot soft power off or shutdown db410c
  • bug 284 [RPB] Dragon board Display sleep not working
  • bug 289 [RPB] USB devices don’t work after reboot
  • bug 207 [RPB] Bluetooth does not work on Dragon board debian
  • bug 153 [RPB] Missing information about hwpack usage

USB host not working did not inspire confidence, so I first tested the Linaro image. The (other) Wiki points to the “latest version”, but the link would point to Linaro Debian 16.02 release, while I could find a more recent Linaro Debian 16.04 which I downloaded in a terminal:

I used a micro SD card to install it. If you use Windows, simply use Win32DiskImager, but in computer running Linux or in Windows via Windows subsystem for Linux, you may want to do it in the terminal. First check the SD card device with lsblk. Mine was /dev/sdb, but your may be different, and I use /dev/sdX in the command below tp flash the Debian installer to a micro SD card:

Now remove the micro SD card from your computer and insert it in to the board, set the jumper to boot from SD card on the DragonBoard 410c, and connect the power. I could see LED 1 blinking, but nothing on my HDMI TV. Last time, I did not  manage to make the serial console (requiring a 1.8V USB to TTL board or cable) using Hardkernel ODROID board, so I went to the support forums, and after several minutes of reading, I found that the RPB image is recommended, as well as a clear explanation between the Linaro and RPB images:

Use the Reference Platform Build instead of the Linaro release. The Reference Platform is an integrated build with support for multiple boards, and that is where all engineering effort is going. The Linaro build is the old single-platform image that we’re not working on anymore.

The reference platform will run on all 96boards CE (Consumer Edition) and EE (Enterprise Edition), while the Linaro image is built specifically for a given board, and they are not really working on it. [Update: This answer was specific to Hikey board, and for DragonBoard 410c there are two images provided by Qualcomm Landing Team and the Reference Platform team]

So let’s start again from scratch using the RPB image, and download the bootloader, Linux kernel and rootfs to my Ubuntu computer:

Now find a micro USB to USB cable to connect to DragonBoard 410c, install fastboot…

.. and check the device is detected:

Good. After making sure the jumper switch is set to 0000 on the board again, we can  extract the three files, and install Debian as follows:

That was a lot of commands to install the operating system… Now you can unplug the board, remove the micro USB cable, and connect the power again. After a few seconds, you should see the kernel log, and eventually LXDE desktop environment.

Click to Original Size

Click to Original Size

You’ll be asked to configure WiFi, and you’re basically done.

DragonBoard 410c Debian System Info

I’ve then run a few command to learn more about the image and system:

One of the main advantage of 96Boards should be recent Linux version,and that’s exactly what we have here with Linux 4.4 running on the board. Out of a total of 866MB reported RAM, 64MB is free, and the 6.9GB rootfs has 4.8 GB available to the user. Snapdragon 410 SoC is correctly reported as being a quad core Cortex A53 (0xd03) processor.

I used file utility to make sure a 64-bit rootfs is being used here:

Finally, there’s a bunch of modules pre-loaded on the board:

Testing Debian on DragonBoard 410c

The thing that often do not work on ARM Linux board are 3D graphics and hardware video decoding, so I’ve specifically tested these two, and also played with the pre-installed Chromium browser.

If I understand correctly the debian image comes with Freedreno open source graphics driver, and if that’s the case I have the first ever platform with working open source 3D graphics drivers:

So that means both framebuffer and X11 3D graphics acceleration are working. Nice !

I also tried to play Tuxracer as it was part of the board’s test results provided by Linaro.

It works, but it’s so slow that it’s barely playable (see video below).

I installed VLC to play 1080op h.264 videos, but based on the CPU usage the system is clearly using software decoding, and there’s no audio via HDMI. I’ve asked about those two issues on the forums about 24 hours ago, but I have yet to get a reply.

Chromium loads OK, but I did notice some freezes during use, and YouTube will struggle at full screen at 1080p, in similar way to many other low end ARM Linux platforms.

DragonBoard 410c Linux Benchmarks

Let’s install the latest version of Phoronix…

…and run some benchmarks to compare against other development boards:

After over 3 hours the results are in. Bear in mind that the board does not have heatsink, just a metallic shield, and this may affects the performance. It’s also running an OS with a 64-bit ARM rootfs, while platforms like Raspberry Pi 3 features a 64-bit processor running 32-bit code.

Click to Enlarge

Click to Enlarge

I like to check John the Ripper for multi-threaded performance.

DragonBoard_410c_Phoronix_John_The_RipperWhile FLAC audio encoding is nice to single threaded performance.


In theory the CPU performance of Snapdragon 410 and Broadcom BCM2837 (as found in RPi 3) should be equal since both are quad core Cortex A53 processors @ 1.2 GHz, but for some reasons DragonBoard 410c is a little slower in the multi-threaded benchmark, and quite faster during FLAC audio encoding likely due to software differences (Aarch64 vs Aarch32).

You can find the full results @

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Setup Guide & Mini Review of BQ Aquaris M10 Ubuntu Edition Tablet from a Developer’s Perspective

April 30th, 2016 21 comments

BQ Aquaris M10 UBuntu Edition is the first officially supported Ubuntu tablet on the market. Blu, a frequent commenter on this blog, has purchased the Full HD version, and in the guest post below, shares his experience setting up the device for development purpose, before shortly providing his overall impressions about the tablet itself.

Quick introduction

Ever since I had to retire my trusty-but-ancient ARM notebook (a Genesi Efika iMX51) I’ve been looking for a new ARM notebook or perhaps a 2-in-1 device, that I could use for development on the go. The basic requirements are long battery life, passive cooling and reasonable price. Also, Just Enough Power™ for running vim, a couple of toolchains (gcc/clang with gold) and, well, enough grunt to run my coding experiments. Naturally, BQ M10 Ubuntu Edition immediately got my attention to the extent of me placing an order, which got delivered this past week. Allow me to share my impressions from the M10 so far.

Click to Enlarge

Click to Enlarge

First thing first: turning the M10 into a coder’s productivity device

There is plenty of know-how on the web regarding how to ‘unlock’ a Ubuntu Touch device into a full-fledged Linux box, but here we will describe the minimum steps to achieve this, moreover without the need for a desktop. The M10 needs to be on a Wifi network with Internet access, though.

From the Ubuntu Store, install the terminal application – access to the store requires a registration with a valid email address. Once we have that, we have proper control over our device via the on-screen kbd or via a physical Bluetooth or micro USB kbd.

What we immediately see from the above is that the device hosts a quad Cortex-A53 r0p3 (CPU part 0xd03), and the userspace is armhf – ’CPU architecture’ in /proc/cpuinfo should say ‘AArch64’ for an arm64 userspace; instead it says ‘8’ on an armhf userspace.

Typing on the on-screen kbd is a mere curiosity, so before we get ourselves a decent Bluetooth kbd or a micro USB-to-female-USB adapter (for a standard usb kbd) we will need something better to type on. Getting an ssh server on the device takes a minimal effort – the package is already installed, it just needs enablement. We also need a public ssh key ready on the desktop machine, as the ssh server is factory-configured for public-key access only. So, assuming we have our public key handy on the desktop, we need to do the following in our M10 home:

Now we can ssh to [email protected]_ip and enjoy a proper kbd. Apropos, the final step of actually enabling the ssh server should also be achieved via engaging the tablet’s Developer mode in the About This Device tab in the system settings.

A quick look at the mounted filesystem shows that the rootfs is mounted as read-only, and that can be a show-stopper for any apt-get we plan to do next. So we need to enable read-write mode on the root fs via:

Please note that the system will automatically reboot after this command; our rootfs will be write-enabled after that. Then we can:

Just be warned that keeping the rootfs in write-enabled state actually disables OTA updates of the tablet fw. So once we’re done with apt-get for the day, we might want to:

For reference, these are the g++ and clang++ versions that we can get on the tablet currently from the standard vivid repositories:

Running (natively-built) binaries from within our home folder takes some tinkering, though. The reason for that is apparmor – this daemon is factory-configured to not allow the execution of apps from the /userdata mount-point (/userdata/user-data is where our home is at). To solve that inconvenience, we need to find the app profile of our indispensable terminal app, and edit it appropriately to allow the execution of binaries from our home.

Please note the actual version of the terminal app might be different. In there we find the following lines:

And add to them:

Followed by:

So, now we can build and test our code on the M10. A couple of notes:

  • Since this is an armhf userland, i.e. it’s 32-bit ARM, the default target of gcc/g++ is thumb2 (as per Canonical’s worldview) – one might want to pass -marm to the compiler for a few more percents of performance.
  • There’s a compressed ramdrive of the size of 0.5GB taken from our precious little 2GB RAM; it’s used as a swap partition. Whether that’s a beneficial decision for our purposes is not clear.
  • The Cortex-A53 in the MT8163A (i.e. the 1.5GHz version) appears to be somewhat slower in this configuration than other vendor’s A53s of the same revision (e.g. Rockchip’s RK3368 @ 1.51GHz). I don’t know what to attribute this to yet. Could be because of intricacies of the scheduler and/or performance manager, though the latter should be bog standard cpufreq. Or because of the lxc container with a minimal android providing the display painting services. Or it could be a hw difference somewhere in the cache hierarchy. An investigation is pending in the indefinite future.

Informal impressions

The M10 is a solidly-built piece of ‘luggable’ electronics, AKA portable things you always lug along in your backpack for 24/7 accessibility. Whenever I’ve found myself wishing for something more in the M10, it’s normally been a sw issue. Back to my original criteria for a productivity portable, its battery life is nice – lasts between one and two days of trivial coding use – vim, build, test, repeat. The pricing is slightly on the upper side for this class of hw, IMO, but hey, early adopters’ premium (which apparently I was willing to pay). For the price one gets a cluster of Cortex-A53 at (almost) industry-standard performance levels, 2GB of RAM and 16GB of eMMC (of ~150MB/s read BW). The quality of the screen also bears mentioning – it’s quite nice – better than that of my aging Acer netbook.

That said, the things that need improving going forward:

  • Android needs to go; Canonical need to pull their act together and provide a proper 100% Linux on this class of devices. Whether that includes ‘muscling’ vendors like MediaTek into conformance or just paying for the development of native graphics stacks – that’s rather irrelevant to the end user.
  • Along the above: out with the armhf and in with the arm64 userspaces on aarch64 hw – it’s about darn time.
  • Prices need to get more realistic, but that’s a matter of market adoption, I guess. At least, for the price of the M10 one should be able to get 4GB or RAM.
Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

NanoPC-T3 Octa-core Cortex A53 Single Board Computer Sells for $60

April 29th, 2016 12 comments

FriendlyARM launched NanoPC-T2 single board computer based on Samsung 5P4418 quad core Cortex A9 processor about 3 months ago, and the company has now an update based on Samsung S5P6818 Octa-Core A53 processor with the exact same interfaces and features including Gigabit Ethernet, WiFI, and Bluetooth, HDMI 1.4a, 30-pin expansion headers, etc…

Click to Enlarge

Click to Enlarge

NanoPC-T3 specifications:

  • SoC – Samsung S5P6818 octa core Cortex A53 processor @ up to 1.4GHz with Mali-400MP GPU
  • System Memory – 1 or 2GB 32bit DDR3 RAM
  • Storage – 8GB eMMC flash, and 1x SD card slot
  • Connectivity – Gigabit Ethernet (RTL8211E), 802.11 b/g/n WiFi and Bluetooth LE 4.0 (Ampak AP6212) with on-board chip antenna and IPX antenna connector
  • Video Output / Display I/F- 1x HDMI 1.4a, LVDS, MIPI DSI, parallel RGB LCD
  • Audio I/O – HDMI, 3.5mm audio jack, on-board microphone
  • Camera – 1x DVP interface, 1x MIPI CSI interface
  • USB – 2x USB 2.0 type A host ports; 1x micro USB 2.0 OTG port; 2x USB 2.0 host ports via 8-pin header
  • Expansions Headers – 30-pin header for GPIO, 8-pin header for power signals, reset and LED 1-2
  • Debugging – 4-pin header for serial console
  • Misc – Power switch, reset button, 1x power & 2x user LEDs, RTC battery header, boot selection button (SD card / eMMC)
  • Power Supply – 5V/2A via power barrel; AXP228 PMIC
  • Dimension – 100 x 60 mm (6-layer PCB)

64-bit_octa-core_ARM-development-boardThe board can run Android and Debian from eMMC flash or SD card like its predecessor, as well as Ubuntu Core with Qt, and software and hardware documentation can be found on the Wiki. The board ships with the heatsink shown in the top picture.

The board can be bought on FriendlyARM website for $60 + shipping via China Post ($10), Fedex ($14) or DHL ($34). Shipping fees in brackets are for my location, so you may get other quotes.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

ARM Cortex A72 is Getting into Sub $200 Android Smartphones Thanks to Mediatek Helio X20 SoC

April 7th, 2016 18 comments

Flagship Android smartphones now ship with processors featuring Cortex A72 cores,  or custom variants from Samsung or Qualcomm, and normally cost several hundred dollars. Some new smartphones recently announced with MediaTek Helio X20 deca-core processor lower the price barrier in the $250 to $400 range, but at least two upcoming models will bring the cost below $200: Doogee P7 ($169.99), and Vernee Apollo Lite ($199.99). So let’s see what we’ve got for those prices.

Doogee P7

Doogee_F7Doogee P7 (preliminary) Specifications:

  • SoC – Mediatek Helio X20 (MT6797) deca-core processor with 2x Cortex A72 cores @ 2.5 GHz, 4x Cortex A53 cores @ 2.0 GHz, and 4x Cortex A53 cores @ 1.4 GHz and ARM Mali-T880MP GPU @ 850 Mhz
  • System Memory – 3GB RAM
  • Storage – 16 GB storage and micro SD slot up to 64GB (shared with dual SIM slot)
  • Display – 5.5″ capacitive touchscreen, 1920×1080 resolution; 160K colors
  • Cellular Connectivity
    • 2G – GSM 850/900/1800/1900MHz
    • 3G – WCDMA 900/2100MHz
    • 4G – FDD LTE Band 1/3/7/8/20
    • Dual SIM Card Dual Standby (One Micro SIM Card)
  • Connectivity – 802.11 b/g/n WiFi, Bluetooth 4.0, GPS/A-GPS, and FM radio
  • Camera – 13.0 MP rear camera with flash and auto-focus, 8.0 MP front-facing camera
  • USB – 1x micro USB OTG port
  • Audio – Speaker, microphone, and 3.5mm audio jack
  • Sensors – gravity, others? (TBD)
  • Battery – 3600 mAh battery
  • Dimensions – 159.6 x 82.1 x 9.5 mm
  • Weight – 170 grams

The phone will run Android 6.0, and ships with a charger and USB cable. You can find some more details on DoogeeMobile, where they show the $169.99 price tag in comments (likely without shipping).  There will also be a Doogee P7 Pro version with 32GB storage and 4GB RAM, better camera and display that should sell for $200. It’s unclear when the two versions of the phone will be available, as they keep postponing them.

Vernee Apollo Lite

Vernee_Apollo_LiteVernee Apollo Lite is the little brother of Vernee Apollo with Helio X20, 6GB RAM, and 128 GB, but selling for half price thanks to lower, but still decent (preliminary)  specifications:

  • SoC – Mediatek Helio X20 (MT6797) deca-core processor with 2x Cortex A72 cores @ 2.5 GHz, 4x Cortex A53 cores @ 2.0 GHz, and 4x Cortex A53 cores @ 1.4 GHz and ARM Mali-T880MP GPU @ 850 Mhz
  • System Memory – 4GB RAM
  • Storage – 32 GB storage + micro SD slot
  • Display – 5.5″ capacitive touchscreen, 1920×1080 resolution
  • Cellular Connectivity – No details yet; Dual SIM Card Dual Standby (SIM + SIM, or SIM + micro SD configuration)
  • Connectivity – TBD
  • Camera – 16.0 MP rear camera, 5.0 MP front-facing camera
  • USB – 1x USB type C port
  • Sensors – Compass, gyroscope
  • Battery – TBD
  • Dimensions – TBD
  • Weight – TBD

The phone will also run Android 6.0, and is expected to launch in May for $199.99 + shipping. The company announced the phone on their Facebook page.

Even though the complete specifications are not available for Apollo Lite and Doogee P7, both devices appear to be pretty good smartphones considering the price point.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Amlogic S912 Processor Specifications

April 6th, 2016 15 comments

Amlogic plans to launch at least three new processors for OTT boxes and set-top boxes this year: Amlogic S905X, Amlogic S912, and Amlogic S905D.  We already knew Amlogic S905 specifications, but I’ve recently received a document with some more details about Amlogic S912 revealing Mali-T820 GPU, a lack of USB 3.0 support, but still some interesting features such as HDMI 2.0a, 4K VP9, 10-bit H.265, Gigabit Ethernet Mac, and so on.

Click to Enlarge

Click to Enlarge

Amlogic S912 specifications with highlights in bold showing differences with Amlogic S905X:

  • CPU Sub-system –  Octa core ARM Cortex-A53 CPU up to 2 GHz (DVFS) with two CPU clusters one optimized for high performance (big) and the other for low power (LITTLE)
  • 3D Graphics Processing Unit –ARM Mali-T820MP3 GPU up to 750MHz (DVFS) with 3 shader engines supporting OpenGL ES 1.1/2.03.1, DirectX 11 FL9_3, OpenCL 1.1/1.2 full profile and RenderScript.
  • 2.5D Graphics Processor – Fast bitblt engine with dual inputs and single output, programmable raster operations (ROP) and polyphase scaling filter, etc..
  • Crypto Engine – AES/AES-XTS block cipher with 128/192/256 bits keys, DES/TDES block cipher, hardware crypto key-ladder operation and DVB-CSA for transport stream encryption,  built-in hardware True Random Number Generator (TRNG), CRC and SHA-1/SHA-2/HMAC SHA engine
  • Video/Picture CODEC
    • Amlogic Video Engine (AVE-10) with dedicated hardware decoders and encoders
    • Supports multiple “secured” video decoding sessions and simultaneous decoding and encoding
    • Video/Picture Decoding
      • VP9-10 Profile-2 up to [email protected]
      • H.265 HEVC [email protected] up to [email protected]
      • H.264 AVC [email protected] up to [email protected], H.264 MVC up to 1080p @60fps
      • MPEG-4 [email protected] up to [email protected] (ISO-14496)
      • WMV/VC-1 SP/MP/AP up to [email protected]
      • AVS-P16(AVS+) /AVS-P2 JiZhun Profile up to [email protected]
      • MPEG-2 MP/HL up to [email protected] (ISO-13818)
      • MPEG-1 MP/HL up to [email protected] (ISO-11172)
      • RealVideo 8/9/10 up to [email protected]
      • WebM up to VGA
      • MJPEG and JPEG unlimited pixel resolution decoding (ISO/IEC-10918)
      • Supports JPEG thumbnail, scaling, rotation and transition effects
    • Video/Picture Encoding
      • Independent JPEG and H.264 encoder with configurable performance/bit-rate
      • JPEG image encoding
      • H.264 video encoding up to [email protected] with low latency
  • Video Post-Processing Engine – Dolby Vision, HDR10 and HLG HDR processing, motion adaptive 3D noise reduction filter, advanced motion adaptive edge enhancing de-interlacing engine, 3:2 pull-down support, deblocking filters, etc..
  • Video Output
    • Built-in HDMI 2.0a transmitter including both controller and PHY with 3D, CEC, HDR and HDCP 2.2, [email protected] max resolution output
    • CVBS 480i/576i standard definition output
    • RGB888 TTL interface up to 1920×1080
  • Camera Interface – ITU 601/656 parallel video input with down-scalar, supports camera input as YUV422, RGB565,16bit RGB or JPEG
  • Audio Decoder and Input/Output
    • Supports MP3, AAC, WMA, RM, FLAC, Ogg and programmable with 7.1/5.1 down-mixing
    • I2S audio interface supporting 8-channel (7.1) input and output
    • Built-in serial digital audio SPDIF/IEC958 output and PCM input/output
    • Built-in stereo audio DAC
    • Dual-channel digital microphone PDM input
    • Supports concurrent dual audio stereo channel output with combination of analog+PCM or I2S+PCM
  • Memory and Storage Interface
    • 16/32-bit SDRAM memory interface running up to DDR2400
    • Supports up to 2GB DDR3/4, DDR3L, LPDDR2, LPDDR3 with dual ranks
    • Supports SLC/MLC/TLC NAND Flash with 60-bit ECC
    • SDSC/SDHC/SDXC card and SDIO interface with 1-bit and 4-bit data bus width supporting up to UHS-I SDR104
    • eMMC and MMC card interface with 1/4/8-bit data bus width fully supporting spec version 5.0 HS400
    • Supports serial 1, 2 or 4-bit NOR Flash via SPI interface
    • Built-in 4k bits One-Time-Programming memory for key storage (That must be where DRM / HDCP keys are programmed)
  • Network
    • Integrated IEEE 802.3 10/100/1000M Gigabit Ethernet MAC controller with RGMII interface
    • Integrated 10/100M PHY interface
    • Supports Energy Efficiency Ethernet (EEE) mode
  • Digital Television Interface
    • Transport stream (TS) input interface with built-in demux processor for connecting to external digital TV tuner/demodulator and one output TS interface
    • Built-in PWM, I2C and SPI interfaces to control tuner and demodulator
    • Integrated CI+ port and ISO 7816 smart card controller
  • Integrated I/O Controllers and Interfaces
    • 3x USB 2.0 high-speed USB I/O, 2x USB Host and one USB OTG
    • Multiple UART, I2C and SPI interface with slave select
    • Multiple PWMs
    • Programmable IR remote input/output controllers
    • Built-in 10bit SAR ADC with 2 input channels
    • General Purpose IOs with built-in pull up and pull down
  • System, Peripherals and Misc. Interfaces
    • Integrated general purpose timers, counters, DMA controllers
    • 24 MHz crystal input
    • Embedded debug interface using ICE/JTAG
  • Power Management
    • Multiple external power domains controlled by PMIC, and internal ones controlled by software
    • Multiple sleep modes for CPU, system, DRAM, etc.
    • Multiple internal PLLs for DVFS operation
    • Multi-voltage I/O design for 1.8V and 3.3V
    • Power management auxiliary processor in a dedicated always-on (AO) power domain that can communicate with an external PMIC
  • Security
    • Trustzone based Trusted Execution Environment (TEE)
    • Secured boot, encrypted OTP, encrypted DRAM with memory integrity checker, hardware key ladder and internal control buses and storage
    • Protected memory regions and electric fence data partition
    • Hardware based Trusted Video Path (TVP) , video watermarking and secured contents (requires SecureOS software)
    • Secured IO and secured clock
  • Package – LFBGA 15 x 15 mm, 0.65 ball pitch, RoHS compliant

That means Amlogic S905X and S912 have the exact same video playback capabilities, although S912 will also support Dolby Vision HDR standard. The main differences are the eight Cortex A53 cores clocked at 2.0 GHz (instead of 4x A53 @ 1.5 GHz), and the more power ful Mali-T820MP3 GPU, as well as support for LCD panel (e.g. for tablets) thanks to an extra RGB interface. Finally S912 has three USB interfaces, instead of just two for S905X.

Amlogic 2016 roadmap shows S905X is scheduled for Q1 2016, and S912 for Q2 2016,  but it’s likely we need to add one or two more quarters before we get any Android 6.0 devices based on the new processors.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter