Archive

Posts Tagged ‘big little’

Mediatek MT8173 is a big.LITTLE Cortex A72 / A53 Quad Core Processor for Tablets

March 2nd, 2015 1 comment

Mediatek MT8173 first showed up in the Linux kernel as a quad core Cortex A57 / A53 processor, but now that Mediatek has officially announced the processor, it turns out the Cortex A57 cores are actually the new Cortex A72 cores, with a similar architecture, but more powerful, about 1.8 times faster.

Mediatek_MT8173Key features listed by the company:

  • Processor – Heterogeneous 64-bit Multi-Core big.LITTLE architecture up to 2.4GHz featuring ARM Cortex-A72 and ARM Cortex-A53 64-bit CPU. Big cores and LITTLE cores can run at full speed at the same time for peak performance requirement
  • GPU – Imagination PowerVR GX6250 GPU with support for OpenGL ES 3.1, OpenCL. Performance:  350Mtri/s and 2.8 Gpix/s.
  • Display Support
    • WQXGA display (2560×1600) up to 60 Hz with TV-grade picture quality enhancement. Up to 120 Hz mobile display for other resolutions.
    • HDMI and Miracast support for multi-screen applications
  • Video – Ultra HD 30fps H.264/HEVC(10-bit)/VP9 hardware video playback
  • Camera – 20MP camera ISP with video face beautify and LOMO effects
  • Security hardware accelerator – Supports Widevine Level 1, Miracast with HDCP;  HDCP 2.2 for premium video to 4k TV display

Tablets based on MT8173 processor should hit the shelves in H2 2015. MT8173 is being showcased at Mobile World Congress 2015 in Barcelona, Spain at MediaTek’s booth – Hall 6, Stand 6E21.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

ARM Unveils Cortex A72 Processor and Mali-T880 GPU

February 4th, 2015 4 comments

ARM has just announced their new Cortex A72 ARMv8 core with 3.5 times the performance of Cortex A15 ARMv7 cores, together with Mali-T880 GPU delivering 1.8 times the performance of  Mali-T760, and CoreLink CCI-500 Cache Coherent Interconnect to link the new CPU, GPU and I/Os together.

ARM Cortex A72

Cortex-A72Some of the key features of the new core include:

  • Architecture – ARMv8-A
  • Multicore – 1-4x SMP within a single processor cluster, and multiple coherent SMP processor clusters through AMBA 5 CHI or AMBA 4 ACE technology
  • ISA Support
    • AArch32 for full backward compatibility with ARMv7
    • AArch64 for 64-bit support and new architectural features
    • TrustZone security technology
    • NEON Advanced SIMD
    • DSP & SIMD extensions
    • VFPv4 Floating point
    • Hardware virtualization support
  • Cache – 48KB I-cache, 32KB D-cache, and 512 KB to 2MB L2 cache with ECC
  • Debug & Trace – CoreSight DK-A57
  • Process – 16nm FinFET

A cluster can support up to 4 Cortex A72 cores clocked up to 2.5 GHz in mobile devices and higher frequencies for larger form factor devices such as servers. Cortex A72 cores may also be combined with low power Cortex A53 cores in big.LITTLE configuration for power efficient SoCs.

Cortex_A72_Performance

Relative Performance – Cortex A15 vs Cortex A57 vs Cortex A72

ARM also claims 75% power usage reduction in typical mobile workloads thanks to the new 16nm FinFET manufacturing processor. Expected applications include premium smartphones, larger screen mobile devices, enterprise networking, servers, wireless infrastructure, digital TV, and automotive ADAS/IVAI.

ARM Mali-T880 GPU

Mali-T880_GPUTechnical specifications for Mali-T880 GPU:

  • Anti-Aliasing – 4x MSAA, 8x MSAA, 16x MSAA
  • API Support
    • OpenGL ES 1.1, 1.2, 2.0, 3.0, 3.1
    • OpenCL 1.1, 1.2
    • DirectX 11 FL11_2
    • RenderScript
  • Bus Interface – AMBA4, ACE-LITE
  • L2 Cache – 256 to 2048KB (256 to 512KB for every 4 shader cores
  • Memory System – Virtual Memory with built-in Memory Management Unit (MMU)
  • Multi-Core Scaling – 1 to 16 cores
  • Adaptive Scalable Texture Compression (ATSC) – Low dynamic range (LDR) and high dynamic range (HDR) for 2D and 3D images
  • ARM Frame Buffer Compression (AFBC) – 4×4 pixel block size (lossless image compression format)
  • Transaction Elimination – 16×16 pixel block size (Only performs a partial update to the frame buffer with the changed pixel blocks)
  • Smart Composition – 16×16 pixel block size (Identical pixel blocks of input surfaces are not read, not processed for composition and not written to final frame buffer)

The GPU is also manufactured with 16nm FinFET process. Mali-T880MP16 can be clocked up to 850 MHz, and outputs up to 1700 million triangles per second, and 13.6 gigapixels per second. That’s 1.8 times better performance than Mali-T760, and ARM also claims 40% more energy efficiency.

ARM Cortex A75 processor, Mali-T880 GPU, CoreLink-C500 cache coherent interconnect, Mali-DP550 display processor unit, and  Mali-V550 video processor can be combined to create SoCs support 4K video output, and decoding up to 120 fps.

Ten partners have already become licensees including Rockchip, Mediatek, and HiSilicon, and products are expected in (early) 2016. Further details may be found on ARM’s Cortex A72 and Mali-T880 product pages.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

H88 HummingBird Development Board Powered by Allwinner A80 Comes with 4GB RAM, Built-in GPS, 4G LTE Support

February 2nd, 2015 12 comments

Merrii Technology is having some fun churning out Allwinner A80 development boards, and after A80 OptimusBoard, H8 Hummingbird, here comes H88 HummingBird. The new board is somewhat similar to H8, but is quite larger, and features 4GB RAM, built-in GPS, and a few other goodies.

H88_HummingBirdH88 HummingBird specifications:

  • SoC – AllWinner A80 octa-core processor with 4x Cortex 15, 4x Cortex A7 cores in big.LITTLE configuration with Imagination Technologies PowerVR GC6230 GPU compliant with OpenGL ES 3.0/2.0/11, OpenCL 1.1, and DirectX 9.3
  • System Memory – 4GB DDR3
  • Storage – 8GB internal storage (Hynix H27UCG8T2BTRBC), micro SD slot up to 32 GB
  • Video Output/ Display Interfaces
    • HDMI 1.4 up to 4K UHD resolution
    • RGB/LVDS interface
    • EDP LCD + TP interface
    • MIPI LCD interface
    • VGA output
  • Audio – HDMI, headphone jack,LINE-IN,
  • Camera I/F – Parallel and MIPI CSI interface. Integrated 16MP camera
  • Connectivity – Gigabit Ethernet (Realtek RTL8211D/E), dual band Wi-Fi 802.11 b/g/n & Bluetooth 4.0, GPS with external antenna
  • USB – 1x USB 3.0 OTG, 2x USB 2.0 host ports
  • Debugging – UART, JTAG
  • Expansion
    • mini PCIe slot for 4G module
    • Header with access to GPIOs, ADC, HSIC, UART, SPI, I2C and Power Signals
  • Misc – IR receiver, reset and power LEDs, power switch, Reset, power and u-boot buttons, 6x ADC keys, RTC with battery
  • Power Supply – 12V via power barrel, battery, or 4V via USB OTG port; PMIC: AXP806 + AXP809 PMIC
  • Dimensions – 188 x 155 x 35 mm

H88_HummingBoard_3D_ViewThe company provides support for Android 4.4.2 and Linux 3.4 for the board, including source code. However, based on past experience, support is not that good, especially for non-Chinese speakers. You can find some more details including headers’ pinout on Merrii H88 Hummingbird page. There’s no price information, but it looks like the board might be used in A80 Pro development kit that sells for $1,300 on Aliexpress….

Thanks to mininodes for the tip.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Fujitsu MB86S70 and MB86S73 ARM Cortex A15 & A7 Processors Run Linux for the Embedded Market

November 28th, 2014 1 comment

I like to check the ARM Linux kernel mailing list from time to time, as you may discover a few upcoming ARM processors. This week I found out Exynos 5433 and Exynos 7 are actually two different processors (thanks David!), and that AMD had submitted code for their 64-bit ARM Opteron A1100 SoC for servers. I also noticed a patchset for Fujitsu MB86S7X SoCs, and since I don’t often mention Japanese silicon vendors, probably because they now mainly deal mostly with the embedded market that gets very little press, and most information is in Japanese, I decide to have a look.

Fujitsu MB86S70 Block Diagram

Fujitsu MB86S70 Block Diagram

There seems to be four SoC parts in MB86S7x family with MB86S70 quad core processor with two ARM Cortex A15 and two ARM Cortex A7 cores in big.LITTLE configuration, and MB86S73 with two ARM Cortex A7 cores only, as well as MB86S71/72 with 2x A15 and 2x A7, with all featuring a single or quad core Mali-T624 GPU.

Fujitsu provided a comparison tables for both MB86S70 and MB86S73 processors in English, but there’s very little info about MB86S71/72 SoCs.

Block Function MB86S70 MB86S73
CSS
DMC
CPU Cortex-A15
2 cores Up to 2.4GHz 1MB-L2C
-
CPU Cortex-A7
2 cores up to 800MHz 256k-L2C
Cortex-A7
2 cores up to 1.2GHz 512k-L2C
3D/GPGPU Mali-T624
4 cores @ 400MHz 128k-L2C
Mali-T624
1 core @400MHz 32k-L2C
MEMC 2-ch DDR3-1.333Gbps 32bit 1-ch DDR3-1.333Gbps 64bit
SCB CPU ARM Cortex M3 @ 125MHz ARM Cortex M3 @ 125MHz
LAN GbE, WoL, TCP Acceleration GbE, WoL, TCP Acceleration
FLASH-IF HSSPI, NOR, eMMC, NAND
SecureBoot (SROM/NOR)
HSSPI, NOR, eMMC, NAND
SecureBoot (SROM/NOR)
SERIAL-IF 3x UART, 16x GPIO, 10x I2C 3x UART, 16 GPIO, 3x I2C
MPB CODEC 1080p Multi Encode, 4 stream H.264 Decode
32k × 32k JPEG CODEC
32k × 32k JPEG CODEC
Display HDMI-1.4a HDCP
MIPI-DSI 1Gbps-4Lane
LVDS (CLK 1ch / data 4ch)
CAPTURE 1-ch RBG/YUV 720p capture only -
TSIF 2 serial TS Demux -
AUDIO 2-ch I2S (I/O Independent) + 4ch
I2S (HDMI)
2-ch I2S (I/O Independent)
SD 1-ch SDIO UHS-I 1ch SDIO UHS-I
HSIOB PCIe 2-ch PCIe-Gen2-4Lane + Data Scrambler 2-ch PCIe-Gen2-4Lane + Data Scrambler
USB USB3 Host 2ch USB3 Host
USB USB2 HDC 1ch USB2 Host, 1ch USB2 Device

MB86S70 is the more powerful of the two, not only when it comes with CPU power, but also with regards to multimedia capabilities with 1080p encode, and 4-k encode, TS demux, and RGB/YUV 720p video capture, whereas MB86S73 does not seem to support hardware video decoding / encoding at all, providing only JPEG acceleration, and an LVDS interface, so it’s mostly probably desinted to be used in control panels for example. Both processors however feature high-speed interfaces like USB 3.0 host, Ggiabit Ethernet, and PCI-E interface, the latter being not so common in ARM SoCs, and only found in a few products like Freescale i.MX6 and Tegra K1 SoCs.

Fujitsu MB86S73 Block Diagram

Fujitsu MB86S73 Block Diagram

The company also provides evaluation boards for their two processors, together with a software development platform based on Linux with support for OpenGL, OpenCL, and OpenMAX for graphics and video decoding, and they’ve also started getting some code to mainline kernel.

MB86S70 (Left) and MB86S73 (Right) Evaluation Kits (Click to Enlarge)

MB86S70 (Left) and MB86S73 (Right) Evaluation Kits (Click to Enlarge)

More information is available in Japanese only on Fujitsu’s Platform SoC page, and a presentation (PDF) made at Java Day Tokyo 2014.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

AllWinner A80 Octa Core big.LITTLE Processor CPU Usage Under Various Loads in Android 4.4 (Video)

November 23rd, 2014 4 comments

Allwinner A80 is one of the few octa core processors featuring ARM’s big.LITTLE technology currently available on the market. The processor comes with four ARM Cortex A15 (big) cores, and four ARM Cortex A7 (LITTLE) core, and tasks will be scheduled to different processor depending on the load to optimize power consumption on mobile devices. However, earlier big.LITTLE processors like Samsung Exynos 5410 has some serious limitations, as they only supported “cluster migration” meaning you could only use the Cortex A7 cluster or Cortex A15 cluster at any given time, so Exynos 5410 could only make use of four cores at most due to hardware limitations. They also used to be two software implementations: In-kernel Switching (IKS) and Global Task Scheduling (GTS). The former could only handle one type of core at the same, and the latter, which I believe is now used in all new devices, can handle any combination of cores, so an octa core big.LITTLE SoC can indeed make use of all its eight cores.

Antutu_3D_CPU_Usage
To make sure it was the case with Allwinner A80 SoC, I did a little test using PVRMonitor app on Tronsmart Draco AW80 mini PC. I did this test to check all eight cores can be used, and to see which cores and how many cores are used for various loads such as multi-tab web browsing and gaming. The scheduler was set to Performance with No-frills CPU Control app.

I’ve run Antutu, the Android stock Browser with multiple tabs open, and Beach Buggy Blitz 3D racing games in the video above. The takeaway for this short test is that Allwinner A80 can run its eight cores simultaneously, but in typical use, it’s rare to see more than four cores used simultaneously. I forgot to include video playback in the video, so I tried to play 4K videos and H.265 videos with Kodi 14, and normally (hardware video decoding) only two Cortex A15 are used (around 30% per core),  and when software video decoding is needed (H.265), at most four cores are used, so it looks like Kodi has not been optimized yet to make full use of octa systems, at least on Allwinner A80.

So in Android mini PCs, there’s usually very little gain from an octa core processor instead of a quad core processor, unless you run apps that can make use of all cores such as video transcoding apps, or you want it convert it into a Linux mini PC to compile software or run a server.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Tronsmart Draco AW80 is an Allwinner A80 Android mini PC with Up to 4GB RAM

October 31st, 2014 20 comments

An Allwinner A80 board for TV boxes / mini PC started to show up in the upcoming Z8C Alice TV box a few weeks ago, and the board, or another one with exactly the same layout, made it into Tronsmart Draco AW80 Meta and Telos mini PCs with respectively 2GB RAM/16GB eMMC, and 4GB RAM/32GB eMMC, and selling for $149.99 and $199.99 on GeekBuying.

Tronsmart_AW80_DracoTronsmart Draco AW80 Meta/Telos specifications:

  • SoC – AllWinner Ultra Core A80 4x Cortex 15, 4x Cortex A7 big.LITTLE processor with Imagination Technologies PowerVR GC6230 GPU with support for OpenGL ES 1.1/2.0/3.0, Directx 9.3
  • System Memory – 2GB (Meta), or 4GB (Telos) DDR3
  • Storage – 16 GB (Meta) or 32GB (Telos) eMMC + SD card slot + SATA port (via a USB 2.0/3.0 bridge)
  • Video  Output – HDMI 1.4b + AV port
  • Audio – HDMI, AV, and optical S/PDIF
  • (Main) Video Codecs – H.265/VP9 up to 1080p @ 30 fps (software decode?), H.264/VP8 up to 4K2K @ 30fps, 1080p120, or 720p240
  • Connectivity – Gigabit Ethernet, Wi-Fi 802.11 a/b/g/n/ac with external antenna, Bluetooth 4.0
  • USB – 1x USB 3.0 OTG port (full size), 2x USB 2.0 host ports
  • Misc – IR receiver
  • Power Supply – 12V/2A
  • Dimensions – 16.4 x 16.4 x 2.75 cm
  • Weight – 442 grams

Allwinner_A80_TV_Box_Connectors

The box runs a rooted Android 4.4 firmware pre-loaded with XBMC/Kodi, Netflix, Youtube, Hulu Plus, Plex Skype, and supporting OTA updates. Linux (Ubuntu/Fedora?) beta images will be released by the end of November. Draco AW80 is sold with a simple IR remote control, a SATA cable, and HDMI cable, a male to male USB cable (for OTG port), a power adapter, and a user’s manual. Allwinner A80 Antutu scores are usually all over the place, but for reference only, this device manages to get 55,106 points in Antutu 5.1.5. Beside the fast processor, this is only of the rare boxes with fast interface include Gigabit Ethernet, USB 3.0, and SATA. The main downside is that the price is very close to competing fanless Intel based mini PCs.

Tronsmart Draco AW80 Meta (2GB/16GB) will ship now, but the 4GB RAM version, AW80 Telos is only available for pre-order with shipping scheduled for the end of November. I understand people who purchased Tronsmart Orion R28 Beta may be able to get a $20 discount, and an SDK for the device will be released. However, based on previous experience, the Android SDK is likely to be outdated.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Samsung Officially Announces Exynos 7 Octa big.LITTLE ARM Cortex A53/A57 Processor

October 16th, 2014 7 comments

Samsung started to commit code related to Exynos 7 processor to mainline kernel in August, but at the time details were scarce, and many tech websites referred to a Exynos 5433 64-bit processor from Samsung. Exynos 5433 for a Cortex A53/A57 SoC did not make much sense as the company recently announced Exynos 5430 based on Cortex A15 and A7 cores, so finally Exynos 5433 has been renamed to Exynos 7 Octa.

Exynos_7_OctaHere’s what we know about Exynos 7 Octa from information on Exynos 7 Octa page and an older Anandtech article about Exynos 5433:

  • CPU – 4x Cortex A57 cores @ 1.9 GHz , 4x Cortex A53 cores @ 1.3 GHz
  • GPU – Mali-T760 @ 700 MHz
  • Memory Controller – 2x 32-bit @ 825MHz (13.2GB/s b/w)
  • Display – Up to WQHD (2560 x 1440) / WQXGA (2560 x 1600) resolutions
  • Video – Advanced multimedia format codec (MFC) including support for H.265/HEVC @ 60 fps
  • Camera – Up to 16 MP 30fps rear camera, Up to 5MP / 30 fps front-facing camera, with dual ISP allowing for simultaneous video recording.
  • Process – 20 nm HKMG

A57 cores are said to provide 57% more performance than the A15 cores found in Exynos 5 Octa processors, whereas. Mali-T760 GPU should deliver up to 74% enhanced graphics performance over Mali-T628 used in Exynos 5 Octa.

Samsung Exynos 7 is used in the international version of the Galaxy Note 4 smartphone.

Via G for Games.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Allwinner A80 Android TV Boxes Coming Soon, Starting with Zero Devices Z8C Alice

October 12th, 2014 19 comments

Allwinner A80 based tablets such as Onda V989, and development boards such as A80 OptimusBoard started to ship one to two months ago, but there was absolutly no news about Android mini PCs / media player based on the latest Allwinner processor. This is about to change as ZeroDevices twitted about their Z8C Alice TV Box, apparently designed by Sunchip, and in collaboration with a UK based digital signage company called Eclipse Digital Media.

Zero_Devices_Z8C_AlicePreliminary technical specifications that we can infer from the picture above:

  • SoC – AllWinner Ultra Core A80 4x Cortex 15, 4x Cortex A7 big.LITTLE processor with Imagination Technologies PowerVR GC6230 GPU with support for OpenGL ES 1.1/2.0/3.0, Directx 9.3
  • System Memory – N/A
  • Storage – ?? GB eMMC + SD card slot + SATA port (most probably via a USB 2.0/3.0 bridge)
  • Video  Output – HDMI + AV port
  • Audio – HDMI, AV, and optical S/PDIF
  • Connectivity – Gigabit Ethernet, Wi-Fi, probably Bluetooth too
  • USB – 1x USB 3.0 OTG port, 2x USB 2.0 host ports
  • Misc – IR receiver (not soldered on the picture above).
  • Power Supply – N/A
  • Dimensions – N/A

There’s a header at the back of the picture that might be used to connect a small board with for power button, and/or LEDs (TBC). The four through holes very close to the power barrel and S/PDIF connector is most likely the UART pins. Zero Devices also started a thread on Freaktab, where they posted a picture with showing the device get 54,253 points in Antutu. For some reasons, Antutu scores reported with devices and boards powered by Allwinner A80 have varied a lot from just a little over 30,000 to 65,000 depending on the firmware used, so any score should be taken with a grain of salt.

Pricing and availability are unknown at this stage.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter