Archive

Posts Tagged ‘development kit’

Dragino LoRa/GPS HAT Board for Raspberry Pi Sells for $32

July 27th, 2016 8 comments

There are several ways to play with LoRaWAN protocol on the Raspberry Pi including RisingHF Discovery kit or Cooking Hacks LoRa Shield for Raspberry Pi, but the latter requires you to spend close to $100 just for the shield, the complete Lora discovery kit costs close to $400. Dragino Tech LoRa/GPS HAT board should be a more cost effective way to get started with LoRa on Raspberry Pi, as it sells for $32 + shipping on Tindie.

LoRa-GPS_Hat_Raspberry-Pi

Dragino LoRa/GPS HAT specifications:

  • Connectivity
    • LoRa
      • Semtech SX1276/SX1278 transceiver @ 433/868, or 915 MHz (Country dependent, pre-configured in the factory)
      • 168 dB maximum link budget.
      • +20 dBm – 100 mW constant RF output vs. +14 dBm high efficiency PA.
      • Programmable bit rate up to 300 kbps.
    • GPS
      • L80 GPS module based on Mediatek MT3339 SoC
      • Horizontal Position Accuracy: autonomous <2.5 m CEP.
      • TTFF@-130dBm with EASY (AGPS): Cold Start <15s,Warm Start <5s,Hot start <1s;
      • TTFF@-130dBm without EASY (AGPS):Cold Start <35s,Warm Start <30s,Hot Start <1s.
      • Timing Accuracy:1PPS out 10ns,Reacquisition Time <1s.
      • GPS automatic switching between internal patch antenna and external active antenna
  • Built-in temperature sensor and low battery indicator
  • Low power consumption (no specific data)
  • Dimensions – 60 x 53 x 25 mm; HAT compliant with Raspberry Pi 2 Model B/Raspberry Pi 3.
  • Weight – 30g

The package includes the HAT board, 4x brass spacers, 4x screws, 4x nuts, and an external antenna suitable for 433, 868, or 915 MHz as needed.

Dragino HAT with Antenna connected to Raspberry Pi 3 Board

Dragino HAT with Antenna connected to Raspberry Pi 3 Board

The board also comes with some apparently decent documentation explaining how to use both LoRa and GPS with the Raspberry Pi 2 or 3, as well as links to schematics (PDF), and other technical documentation. Some typical applications of such board include automated meter reading, home and building automation, wireless alarm and security systems, industrial monitoring and control, and long range irrigation systems.

Beside Tindie, the board can also be purchased on Eleduino for $39 shipped, and by the end of this article, I’ve also come across an even cheaper Dragino Lora Shield for Arduino (433 MHz) selling for $19 on Seeed Studio. More details can also be found in Dragino Tech LoRa/GPS HAT page.

Gateworks Ventana GW5530 SBC is Designed for Drones, Robots, and Digital Signage

July 21st, 2016 No comments

Gateworks Ventana is a family of boards based on NXP i.MX6 processor designed for embedded applications, and often include one or more mini PCIe ports for expansion. Their latest single board computer – Ventana GW5530 –  is powered by an NXP i.MX 6Dual processor coupled with 512MB RAM, 256MB storage, a mini PCIe port, a micro SD / SIM card slot, micro HDMI output, and some I/Os.

Click to Enlarge

Click to Enlarge

Ventana GW5530 specifications:

  • SoC – NXP i.MX6 Dual Core ARM Cortex-A9 processor @ 800MHz with Vivante 2D and 3D GPUs
  • System Memory – 512MB DDR3 (Up to 2GB as option)
  • Storage – 256MB flash (Up to 2GB as option), micro SD/SIM card slot, serial configuration EEPROM
  • Video & Audio Output – micro HDMI 1.4 port
  • Connectivity – Optional u-blox EVA-M8M GPS Receiver with MMCX or u.FL Antenna Connector
  • USB – 1x micro USB 2.0 OTG Port
  • Sensors – 9-axis inertial module (accelerometer/gyro/magnetometer)
  • Expansion
    • High-Power Gen 2.0 mini-PCIe Socket with USB 2.0 Support
    • SIM socket (shared with micro SD card)
    • Video input header for CVBS, Y/C, YPrPb
    • Digital and serial I/O header
  • Debugging – JTAG connector
  • Misc – RTC with battery backup, voltage and temperature monitor, programmable watchdog timer, reset header, LED header
  • Power Supply – 8 to 60V DC input via 2-pin header; Reverse voltage protection
  • Power Consumption – [email protected] (typical); 7W Available for mini-PCIe socket
  • Dimensions – 100x35x13 mm
  • Weight – 28 grams
  • Temperature Range – -40°C to +85°C

    Click to Enlarge

    Click to Enlarge

The company can provide OpenWrt, Android, Yocto Linux, and OpenEmbedded board support packages (BSP) for the board. Some documentation can be found on Ventana wiki. The boards targets “small embedded applications such as Man Portable Units (MPUs), Unmanned Aerial Vehicles (UAV) equipment, digital signage, and robotics”.

Block Diagram

Block Diagram

The board is available now, with pricing not disclosed, and 1 year warranty. Gateworks GW11038 development kit with GW5530 SBC, OpenWrt BSP, USB and video cables, power supply, and a JTAG programmer can also be purchased for evaluation. More details can be found on Gateworks Ventana GW5530 product page.

sModule SBC-x6818 Development Kit based on Samsung S5P6818 Processor Includes a 7″ Touchscreen

July 13th, 2016 4 comments

For some reasons, Samsung S5P4418 and S5P6818 quad and eight Cortex A53 core processors – likely made by Nexell – have been quite popular with embedded systems companies based in China. So after Graperain, Boardcon, and FriendlyARM, there’s at least one another company offering solutions with either processor, as sModule, a subsidiary of CoreWind, has now launched systems-on-module, single board computers, and development kits with the 64-bit ARM SoCs. In this post, I’ll cover one of their development kit including their CORE6818 CPU module, a baseboard, and an optional 7″ capacitive touch display..

Samsung_S5P6818_Board_with_LCD_DIsplaysModule SBC-x6818 development kit specifications:

  • CORE6818 CPU module
    • SoC – Samsung S5P6818 octa-core ARM Cortex A53 processor @ 1.4 to 1.6 GHz with Mali-400MP 3D GPU
    • System Memory – 1GB DDR3 (2GB optional)
    • Storage – 8GB eMMC Flash (4 & 16GB optional)
    • Ethernet – Realtek RTL8211E Gigabit Ethernet transceiver
    • 180-pin “interface” to baseboard
    • Power Supply – 3.7 to 5.5V DC input; 3.3V / 4.2V DC output; AXP228 PMIC
    • Dimensions – 68 x 48 x 3 mm (8-layer PCB)
    • Temperature range – -10 to 70 deg. C
  • SBC-x6818 Baseboard
    • Storage – 2x micro SD card slots
    • Video Output / Display I/F – 1x HDMI up to 1080p30, LCD, 20-pin LVDS, and 20-pin MIPI DSI interfaces; optional 7″ capacitive touch screen (1024×768 resolution)
    • Audio – HDMI, and 3.5mm headphone jack, speaker header, built-in microphone
    • Connectivity – Gigabit Ethernet
    • USB – 4x USB 2.0 host ports, 1x mini (micro?) USB OTG port
    • Camera – 1x 20-pin camera interface
    •  Expansion
      • “GPIO” header with ADC, UART, SPI, SPDIF, and GPIOs
      • ADC terminal block
      • Serial – 2x DB9 UART interfaces, 2x UART headers
    • Misc – IR receiver; power, menu, volume, and return buttons;  RTC with battery (not populated?); PWM buzzer; boot selector: eMMC, SD card, or USB (with fastboot?)
    • Power
      • 5V/2A DC via power barrel;
      • Power out header with 12V, 3.3V, and GND
      • 2-pin battery header for 4.2V lithium battery
    • Dimensions – 185 x 110 mm

The company provides Android 4.4, Ubuntu 12.04, and Linux 3.5 + qt 5.0 for the board. As with other boards based on Samsung/Nexell S5P processors, don’t expect software updates for the firmware, so if you need security patchsets or the latest kernel features this won’t work for you. You can find a few details about the hardware on the Wiki.

Samsung_S5P6818_SBC

While other companies kept their price secret, sModule published prices for all their modules and boards, and even allow you to purchase them by PayPal or bank transfer. Their CORE4418 module starts at $49, while the development kit above goes for $119 with the touch screen, and $109 without. The more compact iBOX6818 single board computer – they call it card computer – with 2GB RAM goes for $75. More details can be found on sModule products page.

SiFive Introduces Freedom U500 and E500 Open Source RISC-V SoCs

July 12th, 2016 5 comments

Open source used to be a software thing, with the hardware design being kept secret for fear of being copied, but companies such as Texas Instruments realized that from a silicon vendor perspective it would make perfect sense to release open source hardware designs with full schematics, Gerber files and SoM, to allow smaller companies and hobbyists, as well as the education market, normally not having the options to go through standard sales channels and the FAE (Field Application Engineer) support, to experiment with the platform and potentially come up with commercial products. That’s exactly what they did with the Beagleboard community, but there’s still an element that’s closed source, albeit documented: the processor itself.

Freedom U500 Block Diagram

Freedom U500 Block Diagram

But this could change soon, as SiFive, a startup founded by the creators of the free and open RISC-V architecture, has announced two open source SoCs with Freedom U500 processor and Freedom E300 micro-controller.

Freedom U500 (Unleashed family) platform key specifications:

  • U5 Coreplex with 1 to 8 U54 cores @ 1.6GHz+
  • RV64GC Architecture (64- bit RISC-V)
  • Multicore, Cache Coherency Support
  • High Speed Peripherals: PCIe 3.0, USB3.0, GbE, DDR3/4
  • TSMC 28nm

The SoC supports Linux, and targets applications such as machine learning, storage, and networking.

Freedom E300 Block Diagram

Freedom E300 Block Diagram

Freedom E300 (Everywhere family) platform key specifications:

  • E3 Coreplex
  • RV32IMC/RV32EMC Architecture
  • On chip Flash, OTP, SRAM
  • TSMC 180nm

Three real-time operating systems, including FreeRTOS, have already been ported to Freedom E300 for embedded micro-controllers, IoT, and wearable markets.

Open source SoCs are made to be customizable to match your applications exact needs, instead of picking on existing SoC matching your requirements but with some uneeded features. SiFive also explains that “storage customers talks about custom instructions for bit manipulation so they can use one not 10 instructions for 10x speed up”. But before you get to Silicon, you’d normally ruin and customize the core on FPGA boards and three boards are currently available for development and evaluation:

  • Freedom U500:
  • Freedom E300 – Digilent Arty FPGA development kit powered by Xilinx XC7A35T-L1CSG324I FPGA, with 256 MB RAM, 16 MB flash, and vairous expension ports. Price: $99
Click to Enlarge

Xilinx Virtex-7 FPGA VC707 devkit – Click to Enlarge

You also have detailed documentation about the SoCs, U5 nd U3 coreplex, the development kits, software and tools, as well as developer forums, on SiFive developers website. You can also directly checkout the code and SDK on github.

RISC-V instructions set is royalty-free, so compared to the entry level $40,000 ARM license for startups using Cortex M0 MCU, it should provide some savings. It does not help with manufacturing costs which should remain the same. but SiFive expects that open source SoC could be manufactured through a “moderate” crowdfunding campaign.  I have not been able to figure out SiFive business model yet, unless they plan on selling their own chips too, and/or provide customization services to customers.

Lots more information can be found on Sifive website.

Via EETimes

WiThumb is an ESP8266 WiFi USB Adapter with Motion and Temperature Sensors (Crowdfunding)

July 1st, 2016 10 comments

There are now plenty of Espressif ESP8266 boards or module to play with, but most of them require some cables or wires, at least for power. WiThumb does not need any of that as it’s designed to be plugged into any USB ports, and includes a 6-axis motion sensor, and a temperature sensor.

WiThumb

WiThumb USB dongle specifications:

  • SoC – Espressif ESP8266 32-bit MCU with 802.11b/g/n WiFi
  • Storage – 4MB Flash memory
  • Sensors – Temperature sensor (+/- 0.25C typical accuracy, -40 to 125 C range), 6-axis gyroscope + accelerometer
  • Expansion – Breadboard friendly through holes with 1x 10-bit ADC, I2C and 4x GPIOs
  • USB – USB type A connector
  • Misc – Reset and flash buttons
  • Power – 5V via USB port
  • Dimensions – 4.8 x 2.2 cm

The USB stick can be programmed like most ESP8266 board, i.e. via USB using the Arduino IDE.

WiThumb_Car_Monitoring_TV_MonitoringIn case you wonder what kind of application it could be useful for, the developer has come up with a few ideas including an Internet connected thermometer, an IMU (Inertial measurement unit) for drones and robots, home/office security (using motion sensors), IoT gateway,WiFi sniffer,Monitor or TV usage logging, driving habits logger (with accelerometer), and many others with you augment the USB stick capabilities through I2C, GPIO or ADC.

As many other projects, WiThumb has gone to Kickstarter to get funds for mass production, and has almost reached its lowly $2,000 funding target. A $19 pledge should get you WiThumb, but you may want to add $3 more to get the plastic case too, and there are rewards with multiple WiThumb. Shipping adds $4 to the US, and $10 to the rest of the world for one unit, and only a little more if you purchase several units. Delivery is scheduled for November 2016, except the “developer’s deal” reward (September 2016). You may also want to checkout hackarobot.com for info about previous projects by the developer, and access to support forums.

VATek VMB8202D Enmoder SoC Supports DVB, ATSC, DTMB and ISDB Modulation, H.264 & MPEG-2 Encoding up to 1080p30

June 3rd, 2016 11 comments

Terrestrial digital TV transmitters normally cost over 1,000 dollars because there are usually implemented with expensive FPGA chips, but Taiwan based VATek has designed a low cost chips such as VMB8202D Enmoder (aka B2 Enmoder) capable of encoding 1080p60 video input to MPEG-2  (1080p30 max) or H.264 (SD resolution max), and transmitting the resulting video over DVB-C, DVB-T, ATSC, DTMB, or ISDB-T standards.
DVB_Encoder_Chip

Click to Enlarge

Click to Enlarge

VATek B2 Enmoder SoC specifications:

  • CPU – 32-bit RISC @ 400MHz
  • Memory – Built-in DDR
  • Modulation Engine – VATek Multi-standard Modulator 1.0 ATSC / DTMB / DVB-T / DVB-C
  • Media Encoder – VATek Ultral Low Latency HD Encoder supporting 1080p30 or SD MPEG-2 and SD H.264 encoding
  • Audio Formats – MPEG-1 Layer 2, AAC
  • Raw Video Inputs – 1x ITU-R BT.1120 or 2x ITU-R BT.656 up to 74.25MHz pixel clock
  • Raw Audio Inputs – I2S up to 48kHz sample rate
  • Stream Input Interface – Ethernet,  Transport Serial serial interface, or USB 2.0 device
  • Stream Engine – Auto Stream Regulator / Advance Header generator
  • Encryption – DVB CSA V1 & V2 / Triple DES
  • Baseband outputs – IQ / IF up to 50MHz
  • MER (modulation error rate) – 45.08 dB as measured with Agilent N9010 signal analyzer.
  • Peripheral I/O – UART / I2C / SPI
  • Control Interfaces – I2C / USB
  • Control Protocol – VATek Gateway for I2C & USB
  • Typical Power Consumption – 2.5 W
  • Operating Temperature – 0 to 70 deg. C
  • Package – 128-LQFP package

VATEK_B2_ENMODER_Modulation_CapabilitiesThe company informed me that the chip supports Linux, and there API allows for control of many of the video encoder and modulation parameters, including bit rate, latency, GOP, quant control, and frequency, bandwidth, FFT, GI, code rate… They also have sample code for STmicro STM32 to control the chip via I2C on their reference/evaluation platform.

VATek also have a modular only chip (A1) without video encoder where the video encoding must be handled by a external processor (e.g. ARM SoC), as well as a lower end B1 Enmoder chip called that supports 720p60 max, and the same modulation standards as B2, except ISDB-T.

Click to Enlarge

DTV modulation platform – Click to Enlarge

The company is also working on DTV modulation boards based on B1 and B2 that will be open source hardware with both API tools, PCB layout, etc.. released, so that developers can integrates the board into drones, use for HAM radio, and surveillance or DTV applications. The solution will be launched on Kickstarter in a few weeks for around $200 (A1 board + RF board) and $400 (B2 board + RF board + video input board as pictured above).

You can contact the company or find some more info on VATek Enmoder product page.

$20 MediaTek LinkIt 7687 Arduino Compatible WiFi IoT Board Runs FreeRTOS

April 22nd, 2016 No comments

MediaTek Labs has already launched several WiFi boards for IoT applications starting with LinkIt ONE, and later LinkIt Smart 7688 running OpenWrt, and the company is now about to launch LinkIt 7687 HDK (Hardware Development Kit) powered by Mediatek MT7687F Cortex-M4 SoC,  running FreeRTOS, and developed & produced by Silicon Application Corp (SAC).

LinkIt_7687LinkIt 7687 (WS3489) board specifications:

  • SoC – MediaTek MT7687F ARM Cortex-M4F MCU @ 192MHz with 352 KB SRAM, 64KB ROM, and 2 MB serial flash in package, integrated security engine, and built-in 802.11n WiFi. 8×8 mm 68-pin QFN package
  • Connectivity – 1×1 802.11 b/g/n WiFi with on-module PCB antenna and U.FL connector.
  • USB – 1x micro USB for power, debugging (Coresight Debug Access Port + Virtual COM)
  • Expansion
    • Arduino Uno Rev. 3 headers + an extra 8-pin extension connector.
    • Mass Storage Device (MSD) flash programming interface.
    • Reserved headers for power consumption (current) measurement.
  • Misc – LEDs for UART communication, power, and 6x user customizable; 3x push buttons for reset, RTC interrupt, and external interrupt; configuration jumpers for power source and boot mode (embedded flash or UART)
  • Power supply – 5V via micro USB port, or 1.8 to 3.2V using VIN pin
  • Dimensions – 108.5 x 60.5 mm
  • Weight – 25 grams
  • Temperature Range – Operating: -40 to 85°C
Mediatek MT7687F Block Diagram

Mediatek MT7687F Block Diagram

This is the first board for MediaTek LinkIt Development Platform for RTOS, which is said to provide “the convenience of a single toolset and common APIs implemented over a popular RTOS”, in this case, FreeRTOS with additional components such as TCP/IP, SSL/TLS, HTTP (client and server), SNTP, DHCP daemon, MQTT, XML and JSON. You can download MediaTek LinkIt SDK v3.0, compatible with Windows and Linux operating systems, to work on it.

LinkIt_for_RTOS

Documentation for the board, including datasheets, a user’s guide, and the hardware reference files, can be found on Hardware Development Kits for the MediaTek LinkIt Development Platform for RTOS page.

Mediatek MT7687 HDK and MT7687 WiFi module are shown to be “coming so” for respectively $19.99 and $4.99.

Via HackerBoards (previously LinuxGizmos)

The First Devices and Routers with WiFi 802.11ad Delivering Up 7Gbit/s Transfer Rates at 60 GHz Will Be Available This Year

March 7th, 2016 7 comments

802.11ad is the latest and fastest WiFi standard working in the 60 GHz band and delivering up to 7 Gbit per second data transmission rates. The 60 GHz  frequency band offers both advantages and disadvantages because it does not penetrate through walls nor water, meaning it can only be used within a room limiting the range, but at the same time it’s more secure since it cannot be snooped from the outside, and for people who worry about health effects it does not penetrate the human body. 802.11ad routers will also be able to switch to 2.4 and 5.0 GHz frequency bands in order to go through walls.

The table above nicely summarize the key features of 802.11ad over 802.11ac and 802.11n, however the throughput row shows the theoretical maximum throughput, but in practice, using 802.11ac as example, clients are often limited to 433 or 866 Mbps, and distance and obstacles will even lower the performance further.

Wikipedia also list the following key features for WiGig MAC and PHY Specification version 1.1:

  • Supports data transmission rates up to 7 Gbit/s – more than ten times faster than the highest 802.11n rate
  • Supplements and extends the 802.11 Media Access Control (MAC) layer and is backward compatible with the IEEE 802.11 standard
  • Physical layer enables low power and high performance WiGig devices, guaranteeing interoperability and communication at Gigabit rates
  • Protocol adaptation layers are being developed to support specific system interfaces including data buses for PC peripherals and display interfaces for HDTVs, monitors and projectors
  • Support for beamforming, enabling robust communication at distances beyond 10 meters. The beams can move within the coverage area through modification of the transmission phase of individual antenna elements, which is called phase array antenna beamforming.
  • Widely used advanced security and power management for WiGig devices

Applications for the higher bandwidth include faster download speeds, 4K wireless video, in-room gaming, etc…

60 GHz Frequency Bands for 802.11ac per Regions/Countries

60 GHz Frequency Bands for 802.11ac per Regions/Countries

If you want more technical details or/and finding how to test WiFi 802.11ad device, Agilent’s Wireless LAN at 60 GHz – IEEE 802.11ad Explained application note should be a good read.

TP-Link 802.11ad Router

TP-Link 802.11ad Router

So when will 802.11ad become available? Very soon, as TPLink unveiled Talon AD7200 Multi-band 802.11ad Wi-Fi Router at CES 2016, supporting up 7200Mbps Wi-Fi speeds over 2.4GHz (800Mbps), 5GHz (1733Mbps), and 60GHZ (4600Mbps) bands, and scheduled to be available in “U.S. stores in early 2016”, while LeEcho, previously known as LeTV, has just launched Le Max Pro (X900) smartphone featuring 802.11ad WiFi in China (also found in Aliexpress), and showcased in ARMDevices.net video where Qualcomm demonstrates 802.11ad with the phone by streaming a 4K video at 50 Mbps to a 802.11ad dock connected an UltraHD TV, and downloading data up to 2.6 Gbps with the phone.

Intrinsyc’s Snapdragon 820 Tablet Mobile Development Platform (MDP) also features 802.11ad, and according to a Qualcomm’s press release, Acer and Asus are working on 802.11ad notebooks, and USB adapter  reference designs and development kits will be offered by Sibeam and Peraso.