Archive

Posts Tagged ‘gps’

Wio GPS is a $40 Grove & Arduino Compatible Bluetooth 3.0 + GSM/GPRS + GPS Tracker Board

April 21st, 2017 No comments

After Wio Link and Wio Node boards, Seeed Studio has added a new board to their Wio (Wireless Input Output) family with Wio GPS board based on Microchip SAMD21 Cortex M0+ MCU for Arduino compatibility, and Mediatek MT2503 ARM7 processor for GPS, Bluetooth 3.0, and 2G (GPRS) connectivity.

Click to Enlarge

Wio GPS board specifications:

  • MCU – Microchip ATSAMD21G18A-MU ARM Cortex M0+ MCU @ 48 MHz with 256KB flash, 32KB SRAM
  • Wireless SoC – Mediatek MT2503 ARM7EJ-S processor @ 260 MHz
  • Storage – micro SD slot (shared with nano SIM slot)
  • Connectivity (built-in MT2503 in Quectel MC20 module)
    • Bluetooth 2.1 + EDR, 3.0 with SPP Profile and HFP-AG Profile; u.FL connector for external antenna
    • Quad band 2G GSM/GPRS  with u.FL connector for external antenna and nano SIM card slot
    • GNSS – GPS + BeiDou + QZSS with u.FL connector for external antenna
  • Audio – Speaker footprint (+/-), 3.5mm AUX jack with mic and stereo audio
  • Expansion – 6x Grove Connectors (2x Digital, 2x Analog, 1x UART, 1x I2C)
  • USB – 1x micro USB port for power and firmware update
  • Misc – RGB LED, GSM power button, reset button
  • Power Supply – 5V via micro USB port, 2-pin JST 1.0 header for battery
  • Dimensions – 54.7mm x 48.2mm
  • Weight – 45 grams; antennas add 9 grams

While you can already do much of the things achieved with Wio GPS using an Arduino board, and corresponding GPRS/GPS shields, Seeed Studio’s board offers a more compact solution, and access to over 180 modules via the grove connectors. The board can be programmed with the Arduino IDE, and in due time a Wiki will be setup showing how to get started with the board.

Wio GPS Board with tis three antennas (GPS, Bt, GSM) is available for pre-order for $39.90 on Seeed Studiofor pre-order for $39.90 on Seeed Studio, and shipping is scheduled for June 1st. The company also plans to released an 4G /LTE version in Q3 2017.

MatchX LoRaWAN Solution Supports up to 65,535 Sensor Nodes per Gateway

April 14th, 2017 4 comments

MatchX is a startup with offices in Chicago, Shenzhen, and Berlin, that provides a complete LoRaWAN solution with their MatchBox gateway based on SX1301 concentrator and Mediatek MT7628N processor, as well as MatchStick, MatchModule, and MatchCore sensors with up to 65,535 of those connecting to a single  gateway.

MatchBox LoRaWAN/WiFi/GPRS/GPS Gateway

Outdoor and Indoor Enclosures for MatchBox – Click to Enlarge

MatchBox specifications:

  • Processor – Mediatek MT7628AN MIPS WiSoC @ up to 580 MHz
  • System Memory – 128MB DDR2 RAM
  • Storage – 16MB FLASH
  • Connectivity
    • LoRa – Semtech SX1301 + 2x SX1257@+27dbm  Output Power; 470/868/915Mhz frequency range, -146dBm sensitivity
    • 10/100M Ethernet
    • 802.11n 2×2 WiFi @ 300 MHz
    • Optional GPRS via SIM800H, 85.6 kbps (downlink/uplink) + micro SIM card slot
    • GPS via UBlox Max 7C
    • Antennas – 2x u.FL antennas for WiFi, u.FL or chip antenna for LoRa, GPS and GPRS modules
  • USB – 1x USB 2.0 port, 1x USB type C exposing 4 or 6 GPIOs and UART
  • Misc – RGB LED, 8x GPIO, on/off switch, reset button
  • Power Supply – Passive 24V POE, or  5V/2A via USB-C port
  • Power Consumption – 5W on average, 10W max.
  • Dimensions – 140 x 78 x 30mm
  • Temperature Range – -20°C to 85°C
  • Certification: CE, FCC, LoraWAN

The gateway runs OpenWrt or LEDE operating system. The company can receive packets from nodes up to 20km away in ideal conditions (line of sight, good weather…), and the company claims 4 gateways can cover Berlin’s RingBahn, and 17 gateways cover Silicon Valley Area, of course provided there’s not a very large number of nodes, exceeding the capacity of the gateways.

MatchStick & MatchCore LoRa Sensor Nodes

MatchStick

The company has two main products to connect sensors to the gateway with MatchStick and MatchCore sharing most of the same specifications, except the MatchStick is larger, supports many more sensors, and offers longer battery life:

  • MCU – Dialog SmartBond DA14680 ARM Cortex M0 micro-controller with 18 Mbit flash, 64 kB OTP memory, 128 kB Data SRAM, 128 kB ROM, and BLE 4.2 support
  • Connectivity
    • LoRa – Semtech SX1276 @+20dbm output power; 470/868/915Mhz; -146dBm Sensitivity; LoraWAN V1.0.2, Class A/B/C; on-board antenna
    • Bluetooth 4.2 LE @ +3dBm with on-board antenna
    • SIMCOM SM28L GPS module (MatchStick only)
  • Sensors
    • Inertial Sensor – Accelerometer, Magnetometer and Gyroscope
    • MatchStick only, selection of:
      • Air Sensor – CO, CO2, Methane
      • Fire Sensor – Smoke, and IR fire detection
      • Flood Sensor – Water leak detection
      • Movement Sensor – Human movement detection
      • Light Sensor – Gesture, color and ambient light detection
      • Agricultural Sensor – Soil moisture detection
      • Electricity Sensor – Relay control or power consumption
  • USB – 1x USB interface with 6 flexible GPIOs, SWD, Reset and power
  • Misc – RGB LED, reset & user buttons
  • Power Supply – 5V/1A via USB-C connector for charging the battery
  • Battery
    • MatchStick – Panasonic 18650 @ 3000mAh good for up to 10 years on a charge
    • MatchBox – CR2032 battery (300 mAh) good for up to 3 years on a charge
  • Power Consumption
    • Sleep Power – 30-50 uA
    • BLE Power – TX: 3.4 mA, RX: 3.7mA
    • LoRa Power – TX: 120mA @ 20dBm, RX: 9.9mA
  • Dimensions
    • MatchStick – 147 x 32 x 32 mm
    • MatchCore – 52 x 34 x 18 mm
  • Temperature Range – -20°C to 85°C
  • Certification: CE, FCC, LoraWAN

MatchCore

Both models can be programmed using Dialog DA1468X SDK, a community has been setup, as well as a developer’s blog, but so far I’ve been pretty quite, as the company works on completing development. There’s very little info about MatchModule , which will be a 25x25mm LoRa module that can be integrated into your own project. The only info I’ve got about is in the table below.

The MatchBox gateway should sell for around $299, while MatchStick and MatchCore should go for $28 and $16 respectively, I assume in their minimal configuration, as final price will depend on the choice of sensors.

You may be able to find some more details on Matchx.io website.

Particle Asset Tracker Kit v2 2G/3G GPS Location Tracker Supports Grove Modules

April 13th, 2017 No comments

Particle, the maker of IoT boards such as Electron 2G/3G module, has launched it second Asset Tracker Kit – based on Electron – with a smaller case, improved GPS performance, satellite support for GPS, GLONASS, Galileo & BeiDou, and compatibility with Seeed Studio Grove modules.

Click to Enlarge

Asset Tracker Kit v2 hardware specifications:

  • MCU – STMciro STM32F205 ARM Cortex M3 micro-controller @ @ 120 MHz with  1MB Flash, 128K RAM
  • Cellular Connectivity – U-Blox SARA U-series (3G) or G-series (2G) modem + NanoSIM card slot + u.FL connector for Antenna
  • Location
    • 72-channel u-bloxM8 engine with support for GPS/QZSS L1 C/A, GLONASS L10F, BeiDou B1I, Galileo E1B/C, SBAS L1 C/A: WAAS, EGNOS, MSAS, GAGAN
    • Update rates: Single GNSS: up to 18 Hz, 2 Concurrent GNSS: up to 10 Hz
    • Position accuracy of 2.5 m, sensitivity of -167 dBm
    • Acquisition times: Cold starts: 26s, Aided starts: 2s, Reacquisition: 1s
    • On board ceramic GPS antenna with LNA and bandpass filter with ability to switch to external active antenna
  • Expansion
    • 2x 18-pin header with  28 GPIOs (D0-D13, A0-A13), TX/RX, 2 GNDs, VIN, VBAT, WKP, 3V3, RST
    • 2x quick connect grove sensor ports
  • Sensor – Built in 3 axis IMU
  • Battery – 2,000 mAh LiPo battery
  • Dimensions –  board: 10.3 cm x 3.6 cm x 0.76 cm (1.27 cm including headers)
  • Operating temperature of –40° C to 85° C

Particle Asset Tracker Kit v2 comes with Electron board with either 2G or 3G connectivity, the “Asset Tracker Shield” PCB with GPS, the battery, antennas for GPS and cellular, a weatherproof case, a USB cable, a breadboard, a pinout reference card, and a Particle SIM card with 3 months of Particle’s 1MB monthly data plan. After three months, the plan cost $2.99 per month for up to 1MB data (equivalent to thousands of message), and $0.99 for each extra MegaBytes. There’s no contract and the plan can be stopped anytime.  The company also provides an Arduino Library for the asset tracker with examples for GPS, accelerometer, and wakonmove, as well as access to Particle Cloud to store and analyze the data.

There are three models of the kit for sale, Asset Tracker 2G for $109, as well as Asset Tracker 3G (America/Australia) and Asset Tracker 3G (Europe/Asia/Africa) both going for $129. Particles kits will provide much more flexibility than the 3G + GPS tracker kits available on Aliexpress for $70 and up, and should be much easier to get started with then rolling your own with Orange Pi-2G IoT board, a cheap GPS modules such as NavSpark mini, plus battery and case.

Linux based iWave Systems OBD-II Dongle Comes with 4G LTE and GPS

March 27th, 2017 1 comment

OBD-II dongles that you connect to your car’s OBD-II port have been around for several years, but they were initially simple devices with USB or Bluetooth connectivity that you control with your smartphone or computer. More recently we’ve seen more complex OBD-II head-up-diplays, and boards such as Macchina M2 open source hardware OBD-II board that takes various XBee modules for 4G, Ethernet, WiFi, Bluetooth, GPS, and so on. iWave Systems, a company better known for their system-on-modules, has now unveiled their own OBD-II dongle with NXP i.MX 6UL processor running Linux, and integrating 4G LTE and GPS by default.

iWave Systems OBD-II dongle specifications:

  • Processor – NXP i.MX 6UL ARM Cortex-A7 processor @ 528/696MHz
  • Memory –  256 MB DDR3 (Optionally upgradeable to higher capacity)
  • Storage – 256 MB NAND Flash (optionally upgradeable to higher capacity).
  • Connectivity – Built-in 4G Modem with antenna, optional WiFi & Bluetooth 4.0 LE module
  • Positioning – GPS Receiver
  • Sensors –  Accelerometer,  Gyroscope, Magnetometer
  • Car Interface – OBD-II connector
  • Misc – Optional status & power LEDs
  • Power Supply – 12V Input via OBD II port; optional battery to keep the dongle on for a few minutes
  • Temperature Range – -10°C to +60°C
  • Dimensions – 63 x 48 x 24mm (excluding OBD II Connector)

The company has not provided that much details on the software side, except that the dongle runs Linux.

iWave Systems OBD-II dongle targets fleet management, emission testing, vehicle testing, and vehicle data logger applications.

The company focuses on the B2B market, so if you want to purchase in quantities for your specific project you can inquire for a quote or more details via their OBD-II device page.

Goblin 2 Arduino Compatible IoT Board Includes SIM5320A 3G & GPS Module

February 21st, 2017 No comments

Veracruz, Mexico based Verse Technology has recently launched Goblin 2, an Arduino compatible IoT development, based on Atmel/Microchip ATmega328P MCU, featuring a built-in SIM5320A 3G and GPS module, supporting RS-485 communication, and providing 3.3/5 and 24V power output.

Goblin 2 board specifications:

  • MCU – Microchip Atmel ATMega328P AVR MCU @ 16 MHz with 1KB EEPROM, 32kB Flash, 2kB SRAM
  • Wireless connectivity via Simcom SIM5320A  USB 2.0 module:
    • Dual-Band UMTS/HSDPA 900/2100MHz
    • Quad-Band GSM/GPRS/EDGE 850/900/1800/1900MHz
    • 1x SIM card slot
    • High accuracy 16 channel GPS
  • Expansion I/Os
    • 6x ADC input with 10 bits resolution
    • 10x digital in/out including 5 PWM
    • RS-485 protocol @ 10Mbps for up to 256 nodes on the bus
    • Header to Keypad, microphone and speaker for SIM I/O
  • Misc – 8 LEDs for power, battery, networking, RS485, UART, plus one user LED; Power switch, RS-485 /GPIO switch, program / SIM AT+ switch
  • Power Supply – 5V via micro USB port, solar panel up to 5V/200mA, 3.7V battery charger
  • Power Output- 5V @ 3A , 3.3V @ 300 mA and 24 V @ 500 mA
  • Dimensions – 65.5mm x 82.2mm

The board can programmed like any other Arduino compatible with the Arduino IDE uploading the code via the micro USB port, or if you want more control over the board using Atmel Studio.

Documentation can be found on Verse Technology website’s Docs page, and examples can be found directly on Github.

Goblin 2 is now for sale for $134 + shipping on the company’s website, and you may want to visit Goblin 2 product page for further details. In case, you are mostly interested in SIM5320 module’s features for your project, Adafruit sells a $80 FONA 3G breakout board to interface with your own board, and provides good documentation. Alternatively, you’ll also find SIM5320 modules (~$30) and breakout boards (~$50) on Aliexpress. The module has been around for several years, so it should be pretty easy to integrate into your own project. Note the last letter in the product name is for the continent, namely A is for America, E for Europe & Asia Pacific, and J for Japan.

SigFox Launches Spot’it Low Cost GPS-Free IoT Geolocation Service

February 17th, 2017 2 comments

Asset tracking was traditionally done using a combination of cellular and GPS technology, and LPWAN standards like LoRa & Sigfox promised to lower the cost of communication and hardware while still relying on GPS technology, but Sigfox has just announced Spot’it geolocation service, which will get rid of GPS all together, and instead use radio signal strength analysis and deep learning techniques in order to provide location information both outdoors and indoors.

Key benefits listed by the company include:

  • Lowest-cost IoT location service – Spot’it does not require any additional hardware or software upgrades, and the device does not have to transmit more messages, meaning there is no impact on the solution operating cost for customers.
  • Low energy – Spot’it does not rely on energy intensive GPS technology, nor require additional processing or any more energy than what Sigfox-enabled devices already consume.
  • Enabled through a planetary network – Spot’it is embedded in Sigfox’s global network footprint and represents the first global IoT geolocation offer. This allows the simplification of global supply chain management: once a device is registered into the Sigfox Cloud, the geolocation service is available in all territories where the network is present.
  • Unlike traditional GPS-tracking, Sigfox Spot’it works both indoors and outdoors.

For this to work, you’ll need to be covered by Sigfox’s network in one of the 31 countries currently covered, so coverage is not exactly “global” yet. The service does not need any new hardware, and you can use existing Sigfox modules, which you can get for as low as $2 (in quantities), and track them at low cost. Sigfox has not provided that much details on how they are doing it, but they still explained Spot’it was the first big data based Sigfox server, which relies on their Cloud service analyzing signal strength to determine the location.

So there are still unanswered questions, such as accuracy of the system, and how much the company charges for the geolocation service on top of the network access fee.

Categories: Uncategorized Tags: cloud, gps, IoT, lpwan, sigfox

$99 Ping is a Tiny GPS Tracker that Works with Bluetooth and Cellular Connectivity (Crowdfunding)

February 6th, 2017 6 comments

Ping GPS Tracker is really small, last several months on a charge, and works with GPS, Bluetooth, and Cellular (GSM/EDGE or HSPA/UMTS) connectivity. It helps you track kids, pets, bags, keys, bicycles, cars or anything that may be lost or stolen using your iOS or Android smartphone.

Ping GPS Tracker Potential Use Cases

Ping GPS tracker specifications:

  • Connectivity
    • HSPA/GSM module + embedded 3G module
    • Bluetooth Low Energy module
    • GPS + GLONASS module
  • Sensor – 3-axis accelerometer
  • Misc – Inset tactile button for check-in & SOS, LED activity indicator
  • Battery – 300 mAh custom lithium ion battery good for about 3 months
  • Dimensions – 34 x 34 x 12 mm (PMMA silicone & elastomer materials)
  • Weight – About 30 grams
  • Waterproof – Up to 10 meters

You’d use GPS + cellular connectivity when you are far from the tracked asset, and Bluetooth to locate it when it’s close. A button allows for your kid to send a signal (short press) when they’ve reached destination, or an SOS message (long press) in case of issue.

The app will list all your tracked assets with estimated remaining battery life, you can click on the one you want to check out, and it should show on the map a short time later. One feature that appears to be missing is geofencing, which can be useful if a kid or an older person, for example suffering of Alzheimer, go beyond the limit you  defined on the map. The project is popular so maybe they’ll add it if people request it.

Ping GPS tracker has recently been launched on Indiegogo, and the project has raised over $300,000 so far. A $99 pledge should get you the tracker with a clip attachment, a charging cable, and one year free service with Cellular connectivity included for the US, Canada, and Mexico. If you want coverage outside of North America, you’ll need to add $10 extra at activation time for coverage in 157 countries for one year. After the first year, you’ll need to spend $3 per month to pay for cellular connectivity. Shipping is free to the US, but adds $20 to $30 to the rest of the world, and delivery is scheduled for July 2017.

There are also such tiny GPS trackers with SIM card support on Aliexpress for $30 and up, such as TKSTAR LK106, but the ones I found don’t work with an app, lack Bluetooth, and battery life is limited to 5 to 10 days.

Categories: Android, Hardware, Video Tags: 2g, 3G, ble, cellular, gps, indiegogo

Qualcomm Officially Unveils Snapdragon 835 Octa-core Processor for Smartphones, Mobile PCs, Virtual Reality…

January 4th, 2017 1 comment

Qualcomm first mentioned Snapdragon 835 processor in November, but at the time, they only disclosed it would be manufactured using 10nm process technology in partnership with Samsung, and claimed the obvious “faster and lower power consumption” compared the previous generation. The company has now provided much more info ahead of CES 2017.

snapdragon-835-block-diagramSnapdragon 835 key features and specifications:

  • Processor – 8x Kryo 280 cores used into two clusters:
    • performance cluster with 4x cores @ up to 2.45 GHz with 2MB L2 cache
    • efficient cluster with 4x cores @ up to 1.9 GHz with 1MB L2 cache
  • GPU – Adreno 540 GPU with support for OpenGL ES 3.2, OpenCL 2.0 full, Vulkan, DX12
  • DSP – Hexagon 682 DSP with Hexagon Vector eXtensions and Qualcomm All-Ways Aware technology
  • Memory I/F – dual channel LPDDR4x
  • Storage I/F – UFS2.1 Gear3 2L, SD 3.0 (UHS-I)
  • Display – UltraHD Premium-ready , 4K Ultra HD 60 Hz, 10-bit color depth, DisplayPort, HDMI, and USB Type-C support
  • Video – Up to 4K @ 30 fps capture, up to 4K @ 60 fps playback, H.264, H.265 and VP9 codecs.
  • Audio – Qualcomm Aqstic audio codec and speaker amplifier; Qualcomm aptX audio playback support: aptX Classic, aptX HD
  • Camera – Spectra 180 ISP; dual 14-bit ISPs up to 16MP dual camera, 32MP single camera
  • Connectivity – 802.11ad multi-gigabit, integrated 802.11ac 2×2 WiFi with MU-MIMO (tri-band: 2.4, 5.0 and 60 GHz); Bluetooth 5.0
  • Modem – X16 LTE modem; downlink up to 1 Gbps, uplink up to 150 Mbps
  • Location – GPS, Glonass, BeiDou, Galileo, and QZSS systems content protection
  • Security – Qualcomm SecureMSM technology, Qualcomm Haven security suite, Qualcomm Snapdragon StudioAccess content protection
  • Charging – Quick Charge 4 technology, Quacomm WiPower technology
  • Manufacturing – 10nm FinFET (Samsung)

Snapdragon 835 will use about 25 percent less power than Snapdragon 820, while being 35 percent smaller, and delivering 25 percent faster 3D graphic rendering. The processor is expected to be found in premium consumer devices such as smartphones, VR/AR head-mounted displays, IP cameras, tablets, mobile PCs, and more. The first devices announced with Snapdragon 835 are Osterhout Design Group (ODG) R-8  augmented/virtual reality smartglasses and ODG R-9 smartglasses and devkit for wide field of view (WFOV) experiences

You’ll find more details on Snapdragon 835 product page.