Archive

Posts Tagged ‘gpu’

FOSDEM 2015 Schedule – January 31 – February 1 2015

January 29th, 2015 7 comments

FOSDEM (Free and Open Source Software Developers’ European Meeting) takes place every year during the first week-end of February. This year the developer-oriented event expects to bring over 5000 geeks to share ideas and collaborate on open source projects. Contrary to most other events, it’s free to attend, and you don’t even need to register, just show up. FOSDEM 2015 will take place on January 31- February 1 in Brussels.

Fosdem_2015There will be 551 sessions divided into 5 keynotes, 40 lightning talks, 6 certification exams, and with the bulk being developer rooms and main tracks,  divided into 7 main tracks this year: Languages, Performance, Time, Typesetting, Hardware, Security and Miscellaneous.

I’m not going to attend, but it’s still interested to see what will be talked about, and I’ve concocted my own little virtual program out of the main tracks and developers’ rooms. There’s a few minutes overlap between some talks on Sunday.. Oh well.

If you won’t be able to attend, you should be able to watch the video and access the slides in a few weeks, as most sessions will be recorded.

What is the current status of Allwinner support in upstream u-boot and the kernel, which SoCs are supported, and which features (sound, video, etc.) are supported ?

The linux-sunxi community has been slowly but steadily working on getting Allwinner SoCs like the A10 supported in upstream u-boot and the kernel.

This talk will present the current status of Allwinner support upstream. Which SoCs are supported and which ones are not (yet) supported ? Which blocks if the supported SoCs are supported, and which are not ? Why are some SoCs / blocks not supported, and what are the plans to get them supported ? This are some of the questions this talk tries to answer.

Not all free operating systems are feature-full POSIX systems. FreeRTOS is a minimal operating system which is designed to run on micro-controllers, and provide real-time scheduling. It is used in industrial automation and automotive.

A brief introduction to FreeRTOS, depending on audience preference, will be followed by either a hands-on workshop using PCs, or a demonstration on a board. The workshop includes how to get started, what can be done with it, and what type of features and pitfalls to expect from FreeRTOS.

As ADAS and infotainment require more electronics, using an hypervisor is a solution to gather multiple boards into one. Xvisor is an open source lightweight hypervisor for embedded systems that perfectly fits the needs of the automative industry. It is a complete monolithic type-1 hypervisor with full virtualization and paravirtualisation support, showing better performances than KVM. We, OpenWide and the Institute for Technological Research SystemX, are working on its port on i.MX6 boards.

F*watch is an infinitely hackable GPS watch with many sensors based on a 100% Free design. Everything is Free, from the PCB and watch housing design to the software stack. Moreover, only Free software tools have been used during the development.

F*watch. Why should your watch be different?

The talk describes the development process and shows a first prototype, along with performance measurements and future plans.

The lowRISC project was established in the summer of 2014 with the aim of producing a complete open-source System-on-Chip in volume, with low-cost development boards. Alex Bradbury, one of the co-founders of the project will discuss the progress to date and the path to the first test chip. lowRISC implements the open RISC-V instruction set architecture and is exploring ideas on improving security via tagged memory and increasing flexibility through the addition of RISC-V ‘Minion’ cores to implement soft peripherals. This talk will discuss the potential benefits of a fully open-source hardware ecosystem, the challenges of getting to first silicon, and how the open source community at large can help.

Digital cameras provide almost every feature you could want. But if they don’t, you are forced to upgrade or go without. CHDK is a project which allows you to program new functionality to the majority of Canon cameras, in either C, Lua, or Basic. The talk features background on the project, code, tools, and the methods of compiling and introducing a new firmware into the camera.

Over the course of 1 hour, Steven Goodwin will guide the audience through the entire process of taking a normal (proprietary) camera and converting it into an open source version by installing custom firmware on it. He will then cover some of the features available (such as the on-device scripting language) and continue by explaining how to build and debug your own functionality. Starting with simple grids, continuing with games, and time-lapse code. And ending with a fully recompiled firmware running on the device.

The video4linux kernel subsystem reports which colorspace the captured video uses. But what does that really mean, and what do you have to do to correctly reproduce those colors? This talk will dive into the crazy world of colorspaces and give you a practical guide to colorspace handling. I will also demonstrate colorspace handling, both right and wrong.

Kernel profiling tools status on ARM and ARM64: – perf status, – ARM and ARM64 support, – callchain unwinding mechanisms and support, – patches status: merged, pending, in development, – links to discussions (LKML) and patches.

The profiling tools in the kernel are changing at a fast pace. This talk is about the support for ARM and ARM64 architecture and the development of features for these architectures, namely the callchain unwinding. The presentation goes over: – the detailed description of the feature, – the methods used to do the callchain unwinding (fp, exidx, dwarf etc.), – the status of the on-going patches, – the remaining work to be done, – the links to patches, discussions on the mailing lists, – -if needed and if time allows- a demo of the feature.

Building a medical device requires to follow certain rules specially when health care depend on it. The presentation will explain how Yocto help us in Kaptalia to solve this issue. In particular we will focus on fast boot, update with unskilled user base, Bluetooth Low Energy, security and data privacy.

During this event we will show how our team succeeded to build our first OS, start from a company with medical expert only and no prior expertise on embedded systems. At the end, a live demonstration for using the the monitor and sensor will be held.

LAVA is a python service created by Linaro for testing software on hardware which accepts test jobs to perform on selected hardware to provide a black box to continuous integration tests. Bisecting is a technique for finding commit in version control system that broke the software. Git provides the powerful “git bisect” subcommand for this purposes. In this talk we give and introduction to LAVA and explain howto combine LAVA and git bisect to automatically find offending commits in the Linux kernel.

Prospero Technologies has made a Linux based Digital Video Recorder which constantly records all UK broadcast TV so that the consumer no longer needs to schedule recordings. This will be a talk on the technologies used to achieve this, the open source software on the consumer device and how you can build your own 30 channel DVR.

The final version of the DVR uses a Freescale i.MX6 CPU with a video processing unit running a Linux built with Yocto. The talk will cover how well this is supported by gstreamer and how we built a QT application to display our HTML5 interface.

More and more embedded projects require support for advance connectivity. With it, comes the requirement to enforce a better security as well as private data protection. Using the layer model of Yocto, we show how we can extract from a complex project such as Tizen, advance connectivity and security and apply it to any embedded project.

The Internet of Things (IoT) is growing fast and opens large opportunities to embedded Linux. Unfortunately traditional embedded Linux has been weak when it comes to security and complex connectivity enabling. Tizen which has been developed as a Linux base OS for connected object (phone, TV, car) is on the other side very well equipped in that area. We will start by explaining what is Tizen architecture and how it provides Security and Connectivity facilities on top of a base Linux. We will then show how Yocto and Tizen-meta can be used to create embedded devices which benefit from several years of work done by the Tizen community. In particular we will review : – the mandatory access control enabling in an embedded device – the enforcement of good behavior by applications – resource access control – connectivity layers – HTML5 App enabling. – multi user mode enabling.

The ARM LLVM backend has been around for many years and generates high quality code, yet there are still standard benchmarks where GCC is generating more efficient code than LLVM. The goal of this talk is to get a better understanding of why the GCC-generated code for those benchmarks is executing more efficiently and also about finding out what we need to do on the LLVM side to address those code generation deficiencies. This talk presents current performance numbers for the SPEC CPU benchmark suites on ARM, comparing the performance of LLVM and GCC, with the main focus on the SPEC CPU integer benchmarks. To dive a little bit deeper, we will also have a closer look at the generated assembly code of selected benchmarks where LLVM is performing worse than GCC and use the results of this performance analysis to point out potential code generation opportunities for LLVM.

Connectivity is crucial for Internet of Things concept. For moving devices like position data loggers is typical solution GSM network. I will show you how you can use different types of GSM network for your IoT projects.

GSM network is easy way how to connect almost any device to internet. There are lot of GSM modules on market from different vendors but all devices has one thing in common – AT commands. There is standardized AT commands set for GSM networks. Using AT command you can send text messages, read phone number from list on SIM card, connect to internet and much more. I will show you basic command set for HTTP communication using basic GSM module SIM900 and Arduino.

This talk will give an overview over the Linux backports project and how to use it. The Linux backports project makes it possible to use a driver from a recent Linux mainline kernel with an older kernel version.

When you have a vendor board support package which does not use a bleeding edge mainline kernel, like it is the case most times, but you want to use some driver from a bleeding edge Linux kernel you can use backports. Backports “automatically” generates a tar with many drivers from a specific Linux mainline kernel which can be used with older kernel versions.

In this talk I will describe how the backports project, with its compatibility layer, the spatches and the normal patches. For practical usage I will show how to use backports with your own kernel in addition I will give a brief overview on how to add a new driver to backports.

Patchwork is a toolkit for connecting various devices into a network of things or, in a more broad case – Internet of Things (IoT). The main goal of creating this toolkit is to have a lightweight set of components that can help to quickly integrate different devices (i.e. Arduino, Raspberry Pi, Plugwise, etc) into a smart environment and expose specific devices’ capabilities as RESTful/SOAP/CoAP/MQTT/etc services and data streams.

The key features of patchwork include:

  • Lightweight (no RAM-consuming sliced pie of Java and OSGi, only bare necessities)
  • Cross-platform (can be deployed on OSX/Linux/Windows, tested on Raspberry Pi and BeagleBone Black boards)
  • Language-agnostic (device agents can be written in any programming language, APIs can be consumed by app written in any programming language)
  • Easily deployable (no JARs, no Eggs or Wheels for the core components, just a single native binary with statically linked dependencies)
  • Easily extendable (integrate new devices without modification of the core components, drop in solution)
  • Interchangeable (not happy with current existing Device Gateway or Catalog? replace it with another implementation without breaking the infrastructure)
  • Not re-inventing the wheel (we re-use as many existing technologies and components as possible)

libcurl is the world’s most used and most popular Internet transfer library, already used in every imaginable sort of embedded device out there. How did this happen and how do you use libcurl to transfer data to or from your device?

Embedded devices are very often network connected these days. Network connected embedded devices often need to transfer data to and from them as clients, using one or more of the popular internet protocols.

Daniel once founded the project and is still lead developer and maintainer of the curl project, making curl and libcurl. He is also active within IETF and maintain several other open source projects. Daniel is employed by Mozilla.

This presentation will reveal the process of porting Tizen:Common to open source hardware developer boards with SoC manufactured by Allwinner, Rockchip or Intel such as OLinuXino, Radxa Rock, Minnowboard. The following topics will be covered:

  • Building Tizen ARMv7 and x86 images from scratch
  • Adapting the Linux kernel, bootloader and Tizen:Common to popular single board computers
  • Do it yourself (DIY) open-source hardware Tizen tablet or laptop
  • Sharing knowledge and experience of the community.
The presentation will also provide information about U-Boot, Yocto project, the Linux-Sunxi and Linux-Rockchip, Minnowboard communities.

Although Tegra K1 uses the same Kepler architecture as NVIDIA desktop cards that Nouveau already supports, there are other challenges that need to be addressed before Nouveau can drive K1’s graphic acceleration: the fact that the GPU does not reside on the PCI bus requires architectural changes in the Nouveau core. The absence of dedicated GPU memory directly interferes with the way Nouveau is used to do memory management and leads to potentially sub-optimal behavior. Also, in a system where all devices share the same system memory, PRIME support is mandatory to perform any useful work and the relevance of a driver-agnostic memory allocator becomes perceptible.

This talk will discuss these challenges, and in particular the consequences of using a unified memory architecture, in the hope of triggering discussions that will help improving the general support of GPU architectures for new mobile platforms.

A brief look at the past, present, and future of the KiCad project. The discussion will be primarily on what near and long term future development is planned for the project as well as discussing the potential for collaboration with other EDA projects.

Yocto has an alleged steep learning curve. It can be a challenge for modules and evaluation board manufacturers to add support for their devices in Yocto as they don’t necessarily have a software background. This talk will highlight the steps required, techniques and good practices to create a well integrated machine configuration allowing to build images using the Yocto Linux build system. The Crystalfontz support from meta-fsl-arm-extra will be used to illustrate the talk.

The bitbox console is a small open hardware & open source game console. I will present the rationale behind it and the current status of the project, detail the hardware conception and particularly video signal generation from a cortex-m4 chip with no video subsystem. I will then proceed to show the different elements of the software stack : kernel, video engines, the boot loader and, finally, current programs and games, including a Gameboy emulator and a full motion video player.

If you want to build your own schedule before going, you can check the full list of events by subjects, but an easier way to organize your day is to check the sessions in chronological order, by checking out Saturday and Sunday schedules.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Linux 3D GPU Acceleration Demo on Rockchip RK3288 based Firefly Board

January 26th, 2015 8 comments

Several devices and development boards based on Rockchip RK3288 processor already support Linux, usually with images based on Ubuntu, including Ugoos UM3 / UT3, Open Hour Chameleon, and Firefly-RK3288 among others. What these images lack however, is support for 2D and 3D graphics acceleration with the GPU, and hardware video decoding/encoding with the VPU. But Jas-hacks has made some progress with 3D graphics support.

Rockchip_RK3288_3D_GPU_AccelerationHe has managed to add GPU acceleration via EGL/OpenGL ES bringing 3D acceleration to the platform, but 2D support is not there yet, meaning X11 still heavily relies on software rendering. But the implementation is still good enough to run the usual es2gears and glmark2-es2 benchmarks. as well as some WebGL demos in Chromium. Performance is currently underwhelming, with 50 points in glmark-es2, even a bit lower than the score (54 points) I got with ODROID-X board powered by Exynos 4412 SoC with a Mali-400MP4 GPU, and running Unity desktop in Ubuntu Linaro 12.11. The desktop environment used also appears to greatly affect glmark-es2 performance, with Unity being much slower than LXDE for example. But let’s get to the demo.

Since the image used for the demo is a minimal image for testing, it has not been released, and you can’t try by yourself just yet. But I’m sure GPU acceleration will eventually make it to Ubuntu for Firefly-RK3288, and possibly other RK3288 hardware platforms where the manufacturer or/and the community are involved with Linux development.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Nvidia Announces Tegra X1 64-bit Octa-core Processor with 256-Core Maxwell GPU

January 5th, 2015 15 comments

CES 2015 has started, and the first company to present their innovations is Nvidia. Last year their introduced Tegra K1, the first mobile processor with a desktop GPU with support for OpenGL. They’ve now raised the bar with Tegra X1, an octa-core 64-bit ARM processor with a 256-core Maxwell GPU delivering 1.5x to 2x the performance of Tegra K1, and supporting 4K60 video playaback with H.265 and VP9 codecs.

Tegra_X1Some geekbench benchmark comparing X1, K1, and Apple A8x.

Tegra_X1_BenchmarkNvidia CEO also claiemd Tegra X1 is the first mobie SoC delivering over 1 Teraflops, something that was achieving around year 2,000 with 20,000 Pentium pro processor consuming 1 millions Watts, while X1 SoC only consumes about 10 Watts.

Nvidia_Tegra_X1_TeraflopsPower efficiency is said to have improved too, as Maxwell GPU is said to delivers more performance with similar power efficiency.

Nvidia_Tegra_X1_power_efficiency

They also introced Drie CX mini computer for automotive application featuring Tegra X1. It can handle 16.6M pixel, or 2x 2K displays @ 60 Hz, and runs QNX, Linux, or Android.
Nvidia_Drive_CX_mini_ComputerThe company also showcase a Cockpit demo during the presentation.

And they’ve also announced Drive PX board with two Tegra X1 processors, 12-camera inputs for autonomous cars that drive themselves.

Nvidia_Drive_PXThe board uses a new technology called Deep Neural Networks for better object detection.

More information should be published soon on Nvidia Tegra page.

Update. Some specs:

Tegra X1 supports all major graphics standards, including Unreal Engine 4, DirectX 12, OpenGL 4.5, CUDA®, OpenGL ES 3.1 and the Android Extension Pack, making it easier for developers to bring PC games to mobile.
Tegra X1’s technical specifications include:

  • 256-core Maxwell GPU
  • 8 CPU cores (4x ARM Cortex A57 + 4x ARM Cortex A53)
  • 60 fps 4K video (H.265, H.264, VP9)
  • 1.3 gigapixel of camera throughput
  • 20nm process
Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

3D Graphics Acceleration in Linux on Allwinner A80 based Cubieboard4

January 2nd, 2015 11 comments

Allwinner A80 is a powerful octa-core processor found in development boards and TV boxes such as Cubieboard4 or Tronsmart Draco AW80. Some early Ubuntu images and instructions had already been released for A80 Optimusboard and Draco AW80, but none of these featured GPU drivers for 3D acceleration, which to be honest, has limited advantages in Linux desktop distributions since desktop environments and most apps require full OpenGL support, i.e. not only OpenGL ES, and the only ARM SoC that can provide OpenGL support without external graphics card is Nvidia Tegra K1 SoC. Having said that GPU drivers would pave the way for smooth OpenELEC / Kodi user interface support in Allwinner A80 Linux distributions. That’s only one part of the puzzle, since the GPU normally handles the user interface, while the VPU takes care of video decoding.

Cubieboar4_Linux_GPU_DriversThe good news is that CubieTech release updates images for their Cubieboard4 (CC-A80) development with PowerVR GC6200 GPU support, which you can download on Baidu:

  • linaro-cb4-emmc-vga-v0.3.img.7z is the eMMC flash image with VGA output
  • linaro-cb4-emmc-hdmi-v0.3.img.7z.md5 is the eMMC flash image with HDMI output

The company also provided instructions they followed to create the image, using two files they got from Allwinner rogue_km.tar.gz , and discimage-release-1.4-fix_buffer_ideas_20141216_no_gl.tar.gz, available on Cubieboard server.

The steps below have been completed in an Ubuntu 14.04 computer’s terminal window, and may need some corrections, since I’ve mostly edited them from an email but not tried myself:

  1. Build drivers
    tar -zxpf rogue_km.tar.gz
    cp -rf rogue_km linux-3.4/modules
    cd rogue_km/build/linux/sunxi_linux && make -j4

    The two drivers files dc_drmfbdev.ko and pvrsrvkm.ko can be found in linux-3.4/modules/rogue_km/binary_sunxi_linux_xorg_release/target_armhf directory

  2. Copy drivers to SD card
    You’ll need to download and extract Linaro Ubuntu 14.04 rootfs, and copy the drivers to a bootable sdcard in the rootfs partition

    mkdir -p <path_to_rootfs>/lib/modules/3.4.3/extra
    cp dc_drmfbdev.ko pvrsrvkm.ko <path_to_rootfs>/lib/modules/3.4.39/extra/
    sync 
  3. Copy libraries to rootfs
    sudo tar -zxpf discimage-release-1.4-fix_buffer_ideas_20141216_no_gl.tar.gz
    cd <path_to_rootfs>/usr/local/pvr
    cp -rf etc/ <path_to_rootfs>/
    cp -rfd include share <path_to_rootfs>/usr
    cp -rfd lib/xorg <path_to_rootfs>/usr/lib
    cp -rfd lib/* <path_to_rootfs>/usr/lib/arm-linux-gnueabihf
    cp -rf ssl <path_to_rootfs>/etc
    cp -rf ssl/misc/ <path_to_rootfs>/usr/lib/ssl
    cd discimage/usr/
    cp -rfd lib/* <path_to_rootfs>/usr/lib/arm-linux-gnueabihf
    cp -rf local/bin <path_to_rootfs>/usr/local
    sync
  4. Insert the SD card into Cubieboard4 board, boot, and complete the steps as follows:
    mkdir -pv /usr/local/pvr/lib/dri/
     cd /usr/local/pvr/lib/dri/
    ln -s /usr/lib/arm-linux-gnueabihf/dri/pvr_dri.so
    ln -s /usr/lib/arm-linux-gnueabihcdf/dri/swrast_dri.so
    rm /usr/lib/arm-linux-gnueabihf/mesa-egl -rf
    cd /usr/lib/arm-linux-gnueabihf
    ln -s libGLESv2.so.1.4.3064661 libGLESv2.so.2
    

    Edit  /etc/modules to add the two lines:

    dc_drmfbdev
    pvrsrvkm

    Insert the modules, run depmod, and reboot to complete the installation:

    insmod /lib/modules/3.4.39/extra/dc_drmfbdev.ko
    insmod /lib/modules/3.4.39/extra/
    depmod
    reboot

    Done!

Now you can test 3D graphics acceleration works with glmark2-es2 or es2gears:

sudo apt-get install glmark2-es2
sudo glmark2-es2 

Thanks to Ovidiu for the info.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

TyGL OpenGL ES 2.0 Backend for WebKit Speeds Up Web Rendering by Up to 11 Times

December 23rd, 2014 3 comments

ARM, Szeged University in Hungary, and Samsung Research UK have been working on TyGL, a new backend for WebKit accelerated with OpenGL ES2.0, and developed and tested on ARM Mali-T628 GPU found in Samsung ARM Chromebook. It will typically provide 1.5 to 4.5 times higher performance, but in the best cases, it can achieve up to eleven times the performance of a CPU-only rendered page.

TyGL_ScreenshotThe key features of TyGL include:

  • Web rendering accelerated by GPU - Batching of draw calls delivers better results on GPUs. TyGL groups commands together to avoid frequent state changes while calling the Graphics Context API.
  • Automatic shader generationTyGL generates complex shaders from multiple shader fragments, and ensures the batches fit into the shader cache of the GPU.
  • Trapezoid based path rendering – Work in progress. It will leverage GPU capabilities such as the Pixel Local Storage extension for OpenGL ES.
  • No software fallback – Complete GPU-based hardware accelerated solution with no dependency on legacy software.

You can get more technical details about the implementation on TyGL: Hardware Accelerated Web Rendering blog post on ARM community.

They have now officially published benchmark results, but I found some benchmark results on Webkit mailing list:

Since EFL supports cairo, we compared EFL-TyGL and EFL-Cairo

The other good news is that TyGL is now open source, with the code available on github, and you can build it and give it a try on ARM Mali-T62X development boards such as Arndale Octa or ODROID-XU3 (Lite) running Ubuntu Linaro 14.04, or other Linux based distributions. The complete build is said to last about 10 hours, but this will obviously depend on your machine. TyGL should also work on other mobile GPU supporting OpenGL ES 2.0, but I understand this has not been tested yet.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

ODROID-XU3 Lite Board Ubuntu Review – Setup, Usability, and Performance

December 14th, 2014 15 comments

After testing ODROID-XU3 Lite with Android 4.4, and finding a workaround to some HDMI issues, I could finally try out Ubuntu, or rather Lubuntu with LXDE instead of Unity, in Hardkernel low cost octa-core development board. I’ll start this review by explaining how to install and setup Lubuntu on the board, followed by running various program to test the system usability as a desktop computer with LibreOffice, Chromium, XBMC, and 3D graphics, and finally run some performance tests with Phoronix Test Suit, build the Linux kernel natively, and transcode a video with avconf.

Setting Up Ubuntu on ODROID-XU3 Lite

All firmware images for ODROID development boards, can be found on odroid.in website, and if you want Ubuntu 14.04 image, go to ubuntu_14.04lts folder, to select the latest firmware file for your board. The latest image for ODROID-XU3 (Lite) is currently ubuntu-14.04.1lts-lubuntu-odroid-xu3-20141105.img.xz, it’s the same for micro SD card or eMMC boot. You should have gotten a eMMC to micro SD adapter if you’ve purchased an eMMC module from Hardkernel.

You can download, extract, and flash the image with dd (Linux) or Win32DiskImager (Windows). For example. in a terminal in a Linux computer:

wget http://odroid.in/ubuntu_14.04lts/ubuntu-14.04.1lts-lubuntu-odroid-xu3-20141105.img.xz
sudo apt-get install xz pv
xz -d ubuntu-14.04.1lts-lubuntu-odroid-xu3-20141105.img.xz
dd if=ubuntu-14.04.1lts-lubuntu-odroid-xu3-20141105.img | pv | sudo dd of=/dev/sdX

Where X is the letter of your micro SD or eMMC module inserted into your computer. Check the value carefully with lsblk before running the dd command, or you may lose your data stored on other drives connected to your computer,. For extra safety, you could also consider doing this procedure in a virtual machine, for example by running Ubuntu in VirtualBox.

Now insert the micro SD card or connect the eMMC module to the board, and you configure the boot switch between the Ethernet and USB ports as shown below using a pen or tweezers. For eMMC both must be in high position, whereas for SD card boot one must be down.

ODROID-XU3_Lite_Boot_Switch

Left: eMMC Boot; Right: Micro SD Card Boot

Now connect a keyboard, mouse, the HDMI cable, Ethernet, and/or other peripherals you may want to connect and power up the board by connecting the provided 5V/4A power supply. A typical boot should complete in around 22 seconds, although the first boot might take a little longer.

Lubuntu Desktop in ODROID-XU3 Lite

Lubuntu Desktop in ODROID-XU3 Lite

A this stage, the installation is nearly complete, and you should already have a usable system, however, if you’ll see that the rootfs partition is only 4.9GB with 310 MB available (that’s after installing LibreOffice):

df -h
Filesystem      Size  Used Avail Use% Mounted on
/dev/mmcblk0p2  4.9G  4.4G  310M  94% /

Since my eMMC module has a capacity of 16GB, it would be nice to use all of it. Normally, you’d use fdisk/parted, and resize2fs  to get the full size, but Hardkernel provides ODROID Utility that can do just that among others. So click on the icon on the top right to launch the program, input the password (odroid), and after running apt-get update automatically, the following interface should appear.

ODROID_UtilityClick on Resize your root partition, and after making sure the root partition is in /dev/mmcblkp2, click <Yes> to continue and resize the root partition on your micro SD card or eMMC module. After a reboot, you can check all the available storage in a terminal:

df -h
Filesystem      Size  Used Avail Use% Mounted on
/dev/mmcblk0p2   15G  4.4G  9.4G  32% /

9.4GB available out of a 15GB partition. Perfect! The setup is now complete.

Using ODROID-XU3 Lite as a Desktop Computer / Media Player

The Ubuntu image comes pre-loaded with Firefox, Chromium, Transmission, Arduino IDE, Abiword, PacmanFM, XBMC and a few others programs. Since they probably wanted to keep the image reasonably small, they did not install large program, but I install LibreOffice for a better office suite, and Nautilus for a file manager with Network Shares access:

sudo apt-get install libreoffice nautilus

The system is extremely responsive, and if you’re using a computer with a mechanical drive, ODROID-XU3 Lite will boot and load programs much faster than your full-blown Intel/AMD computer.

The best way to showcase ODROID-XU3 (Lite) capabilities is to shoot a video, so I’ve just done that showing:

  1. 20 seconds boot
  2. ODROID Utility options
  3. List of installed applications
  4. LibreOffice (Writer)
  5. Chromium – Multi-tabs, YouTube (embedded / full screen; VP9 / H.264/AVC1), and Candy Crush Saga (Flash game) in Facebook
  6. 3D hardware acceleration with es2gears
  7. XBMC Media Player with 2D/3D OpenGL ES and hardware video decoding.
  8. Power off

I’ve also opened a terminal running htop to show the eight cores CPU usage during these tests.

Side note: Since my camera (Canon Powershot A2300 HD) is pretty poor at shooting videos of screens, I’ve used SJ1000 action camera instead as the image is much sharper, but there’s a fisheye effect due to the wider angle of such camera. There are some tools in Linux including Python scripts and KDEnlive that can remove the fishing effect, but they introduce some aliasing, which does not look nice in this type of video, although it’s probably acceptable for content without text or thin lines.

Based on these tests, ODROID-XU3 Lite can be used as a desktop replacement or an XBMC media center, but you have to be aware of some limitations:

  • YouTube embedded videos play usually well, and 360p/480p full screen video play quite well, but the user experience is not very good with 1080p full screen videos, either with VP9 or H.264 codec.
  • Adobe Flash is not pre-installed, but in Chromium, it should be quite easy to install libpepperflash.so to enable Flash support. I have not tried, but normally, flash performance on ARM is rather subpar compared to x86.
  • The window manager may not be hardware accelerated with the GPU.

For all other uses, ODROID-XU3 Lite is clearly the best ARM Linux platform, I’ve tried so far, with a fast eMMC, 2D/3D hardware accelerated graphics (for apps that support OpenGL ES only), and hardware video decoding.

Other Use Cases and Performance

Before starting some benchmarks, I’ll check what type of Exynos 5422 I have in my system:

root@odroid:~# dmesg | grep BIN                                                 
[    0.355271] [c6] CPU Info : Samsung Exynos5422 Soc is BIN2

BIN1 is for the Exynos 5422 processor clocked up to 2.2 GHz found in ODROID-XU3 board, and BIN2 is limited to 1.8 GHz, and normally found in the Lite version of the board which I’m reviewing right now.

Phoronix Suite Benchmarks

Antutu is the most famous benchmark in Android, but in Linux, Phoronix Test Suite is the reference. It’s a bit more complicated to use than Antutu, but more flexible, and throrough.

sudo apt-get install php5-cli php5-gd php5-gd
wget http://phoronix-test-suite.com/releases/repo/pts.debian/files/phoronix-test-suite_5.4.0_all.deb
sudo dpkg -i phoronix-test-suite_5.4.0_all.deb

After apt-get install,. I had to run “sudo apt-get install -f” to complete the installation.

Than I’ve followed the instructions here, and selected four tests from the suite to test audio encoding, multi-core file compression, server, and disk I/Os:

phoronix-test-suite batch-benchmark pts/encode-mp3 pts/compress-7zip pts/apache pts/iozone

It turns out the iozone test for disk I/O takes nearly five hours, and recently my computer tends to turn off randomly, and since I started the test from an ssh console, the test got interrupted, so I only ran encode-mp3, compress-7zip, and apache benchmarks which last only about 15 minutes in total.

Out of the three test, compress-7zip failed because of a lack of memory:

[c4] Out of memory: Kill process 9593 d
[16693.088181] [c4] Killed process 9593 (7za) total-vm:1844536kB, anon-rss:1509B

So the whole Phoronix benchmarks did not exactly work out as expected, but you can find the result for MP3 encoding and Apache tests @ http://openbenchmarking.org/result/1412146-LI-20141214131

ODROID-XU3-Lite_Phoronix_Intel_Core_i3_radxa_proI’ve compared the ODROID-XU3 Lite results to some recent results on Openbenchmarking website including an Intel Core i3-4150 quad core system (cpu-ubuntu), an older Intel Atom N570 system (2G), and Radxa Pro board powered by Rockchip RK3188 processor. So Exynos 5422 can’t match a recent Core i3 processor yet (which by itself costs more than ODROID-XU3 Lite board), but does well against N570 netbook processor, and is about twice as fast as Radxa Rock Pro board in these two tests.

Mainline kernel compilation

People may want to use this powerful low cost Octa core board in build farm, so I though it would be fun to try building Linux mainline kernel natively. Let’s installing dependencies, and get the source latest Linux release (3.18) first.

sudo apt-get install libncurses5-dev gcc make git exuberant-ctags
git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
cd linux-stable
git checkout -b stable v3.18

Ubuntu 14.04 comes with gcc 4.8.2 only, but this compiler will break Linux mainline build, so I had to install gcc 4.9 instead:

sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update
sudo apt-get install gcc-4.9

You’ll also note some ODROID boards are already part of mainline, probably with partial support, but unfortunately ODROID-XU3 (Lite) kernel has not been upstreamed yet.

root@odroid:~/linux-stable# ls -l  arch/arm/boot/dts | grep odr                 
-rw-r--r-- 1 root root   8334 Dec 14 14:11 exynos4412-odroid-common.dtsi        
-rw-r--r-- 1 root root   1310 Dec 14 14:11 exynos4412-odroidu3.dts              
-rw-r--r-- 1 root root    829 Dec 14 14:11 exynos4412-odroidx2.dts              
-rw-r--r-- 1 root root   1691 Dec 14 14:11 exynos4412-odroidx.dts

Anyway, let’s build the kernel for Exynos processor, and see how fast the board can compile a Linux kernel:

make exynos_defconfig
time make -j8 CC=gcc-4.9
...
real    5m43.746s
user    31m25.235s
sys     4m11.130s

So it takes less than 6 minutes to build the kernel on ODROID-XU3 Lite, about 4 times longer than on a powerful, but much more power hungry (300W) AMD FX8350 based computer. In other words, it should be possible to achieve the same performance as my computer using 4 or 5 ODROID-XU3 Lite boards in a mini build farm using distcc compilation for about the same price, but only a fraction of the power consumption, and of course native compilation has advantages over cross-compilation, since some tests may have to be skipped for the latter.

Video Transcoding with avconv

Finally, one follower on G+ asked me to test MPEG2 to H.264 video transcoding with ffmpeg. The latter does not seem to be available, and as been replaced by avconc, so I installed libav-tools instead, and ran the transcoding.

sudo apt-get install libav-tools
time avconv -i big_buck_bunny_1080p_MPEG2_MP2_25fps_6600K.MPG \
-vcodec libx264 -minrate 300k -maxrate 300k -bufsize 1835k bbb-h.264.avi
avconv version 9.16-6:9.16-0ubuntu0.14.04.1, Copyright (c) 2000-2014 the Libav s
built on Aug 10 2014 18:32:09 with gcc 4.8 (Ubuntu/Linaro 4.8.2-19ubuntu1)
Guessed Channel Layout for  Input Stream #0.1 : stereo
Input #0, mpeg, from 'big_buck_bunny_1080p_MPEG2_MP2_25fps_6600K.MPG':
Duration: 00:00:44.74, start: 0.240000, bitrate: 7159 kb/s
Stream #0.0[0x1e0]: Video: mpeg2video (Main), yuv420p, 1920x1080 [PAR 1:1 Dc
Stream #0.1[0x1c0]: Audio: mp2, 44100 Hz, stereo, s16p, 160 kb/s
[libx264 @ 0x6c9c0] using SAR=1/1
[libx264 @ 0x6c9c0] MB rate (734400000) > level limit (2073600)
[libx264 @ 0x6c9c0] using cpu capabilities: ARMv6 NEON
[libx264 @ 0x6c9c0] profile High, level 5.2
Output #0, avi, to 'bbb-h.264.avi':
Metadata:
ISFT            : Lavf54.20.4
Stream #0.0: Video: libx264, yuv420p, 1920x1080 [PAR 1:1 DAR 16:9], q=-1--1c
Stream #0.1: Audio: libmp3lame, 44100 Hz, stereo, s16p
Stream mapping:
Stream #0:0 -> #0:0 (mpeg2video -> libx264)
Stream #0:1 -> #0:1 (mp2 -> libmp3lame)
Press ctrl-c to stop encoding
frame= 1035 fps= 8 q=55.0 size= 30701kB time=40.52 bitrate=6206.7kbits/s

It took 2 minutes 31 seconds to encode a 44 seconds video, so real-time 1080p video transcoding is currently not feasible with avconv / ffmpeg.

Have said that, Exynos 5422 supports video decoding and encoding, so it should be possible to write a program using the MFC (Multi-Format Codec) driver for Exynos. I could not find any sample code, but having a look a XBMC source code for ODROID boards might be a start, since it’s using the MFC drivers for decoding.

ODROID-XU3 Lite can be purchased directly from Hardkernel for $99 + shipping, or through distributors like Ameridroid (USA) or Pollin Electronics (Germany). Adding an eMMC module, an HDMI cable, and the serial debug board to your order is recommended, although you could replace the eMMC with a fast micro SD card (class 10 or greater) for a still decent performance.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Linux 3.18 Released

December 10th, 2014 2 comments

Linus Torvalds released Linux Kernel 3.18 last Sunday:

It’s been a quiet week, and the patch from rc7 is tiny, so 3.18 is out.

I’d love to say that we’ve figured out the problem that plagues 3.17 for a couple of people, but we haven’t. At the same time, there’s absolutely no point in having everybody else twiddling their thumbs when a couple of people are actively trying to bisect an older issue, so holding up the release just didn’t make sense. Especially since that would just have then held things up entirely over the holiday break.

So the merge window for 3.19 is open, and DaveJ will hopefully get his bisection done (or at least narrow things down sufficiently that we have that “Ahaa” moment) over the next week. But in solidarity with Dave (and to make my life easier too ;) let’s try to avoid introducing any _new_ nasty issues, ok?

Linus

Linux 3.17 added support for Xbox One controllers, USB device sharing over IP, more secure random numbers, several modifications for perf and more.

Some of the changes made to Linux 3.18 include:

  • Performance improvements for the networking stack thanks to bulk network packet transmission, which “allows a relatively small system to drive a high-speed interface at full wire speed, even when small packets are being transmitted.”
  • Faster suspend and resume by replacing a 100ms polling loop with proper completion notification. This will mostly be noticeable on systems with a large number of cores. Git pull.
  • Berkeley Packet Filter bpf() system call. “The hooks to use this code (in tracing and packet filtering, for example) will take a little longer, but the core support for a “universal virtual machine” in the kernel is now present.”
  • Nouveau drivers for Nvidia GPUs now supports basic DisplayPort audio
  • Several filesystems improvements, notably for BTRFS and F2FS
  • Audio hardware. Codecs: Cirrus Logic CS35L32, Everest ES8328 and Freescale ES8328; others: Generic Freescale sound cards, Analog Devices SSM4567 audio amplifier

New features and improvements specific to the ARM architecture include:

  • Allwinner
    • Allwinner A31/A23 –  RTC  & Watchdog
    • Allwinner A23 – MMC, pinctrl, DMA and I2C
    • New boards: Olimex A20-OLinuXino-Lime, Merrii Hummingbird A20, and HSG H702 tablet board.
  • Rockchip
    • Added new clock-type for the cpuclk
    • Ethernet: Added support for Rockchip SoC layer device tree bindings for arc-emac driver, and emac nodes to the rk3188 device tree.
    • Added driver for Rockchip Successive Approximation Register (SAR) ADC.
    • RK808 PMIC: Added regulator driver, clkout driver, and mfd driver.
  • Amlogic – Added MesonX support, only Meson6 for now (Amlogic AML8726-MX). DTS for Geniatech ATV1200 media player
  • Added basic support for BCM63138 DSL SoC, Texas Instruments AM57xx family, Atmel SAMA5D4, Qualcomm IPQ8064, Renesas r8a7794 SoC,
  • New Device tree files for various board and products: Gateworks GW5520, SAMA5D4ek board,  i.MX1 Armadeus APF9828, i.MX1 ADS board, Technexion Thunder support (TAO3530 SOM based, Sony Xperia Z1, IFC6540 board, CM-QS600 SoM,  etc…

I could find a few changes for MIPS architecture in Linux 3.18 too:

  • SEAD3: Nuke PIC32 I2C driver.
  • Loongson: Make platform serial setup always built-in
  • Netlogic: handle modular USB case & AHCI builds
  • tlbex: Fix potential HTW race on TLBL/M/S handlers
  • cpu-probe: Set the FTLB probability bit on supported cores
  • fix EVA & non-SMP non-FPU FP context signal handling
  • Etc.. You can find a few more changes @ http://lwn.net/Articles/623825/

A more thorough changelog for Linux 3.18 will soon be published on Kernelnewbies.org. Remember to also check ARM architecture and drivers sections, for more details about changes related to ARM platforms.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Hardkernel ODROID-C1 is a $35 Development Board Powered by Amlogic S805 Quad Core Processor

December 10th, 2014 69 comments

Amlogic S805 is a quad core Cortex A5 processor which has found it way into low cost devices such as MK808B Plus TV Stick which can be purchased for as low as $30, or full-sized TV box such as MXQ S85 or MINIX NEO X6. All this low cost devices are nice, but the full source code is not available in your want to adapt them to your need. Luckily, Amlogic releases both an Android SDK, and a buildroot for Linux with GPU and Video Processing Unit (VPU) support, so Hardkernel decided to go ahead, designed a board, and has just launched ODROID-C1 quad core development board for just $35, or the exact price of a Raspberry Pi Model B+, but with much greater specs.

ODROID-C1 Board Description (Click to Enlarge)

ODROID-C1 Board Description (Click to Enlarge)

ODROID-C1 specifications:

  • SoC- Amlogic S805 quad core Cortex-A5 processor with a Mali-450MP2 GPU (2x fragment cores + 2x vertex shader cores)
  • System Memory – 1GBe DDR3 (2x Samsung K4B4G1646D)
  • Storage – eMMC module socket for  8GB/64GB Toshiba eMMC, or 16GB/32GB Sandisk iNAND Extreme, and micro SD slot (UHS-1 SD models supported)
  • Video & Audio Output – micro HDMI port
  • Connectivity – Gigabit Ethernet (Realtek RTL8211F)
  • USB – 4x USB 2.0 host ports (via GENESYS LOGIC GL852G), 1x micro USB OTG port (Cannot be used for power input)
  • Expansion Headers – 40-pin Raspberry Pi (mostly) compatible header with GPIO, I2C, SPI, UART, and ADC.
  • Debugging – Serial console header (3.3V)
  • Misc – 4x Status / Power LEDS, IR receiver, RTC + RTC battery header, solder pads for power switch, boot media selector
  • Power Supply – 5V/2A DC input (2.5/0.8mm barrel). Typical power consumption:  0.5A @ 5V, up to 2A @ 5V with several USB peripherals.
  • Dimensions – 85 x 56mm (Same dimensions as Raspberry Pi Model B+)
  • Weight – 40 gram

It’s the first S805 device I see that actually uses a Gigabit Ethernet port, so that’s good news. You can boot the system from eMMC or micro SD card, using the boot media selector (Open: eMMC, Closed: SD card).

ODROID-C_Board_Bottom

The company will provide images for Ubuntu 14.04 or Android 4.4 KitKat with Linux 3.10. The source code for U-Boot/Linux will be released on December 15, but the Android source code will take a little longer due to license issues, and is expected for February. WiringPi v2 library used to control I/O in the Raspberry Pi with Python or C/C++, has been ported to ODROID-C1. Further information such an expansion header pinout, and instructions to build u-boot can be found on ODROID-C1 Wiki, which is still under construction. The schematics (PDF) and mechanical drawings have also been released.

What makes this platform existing, beside its attractive pricing and source code availability, is Ubuntu support with proper OpenGL ES and video hardware decoding support, which is showcased in the video below in Kodi 14 Helix running in Ubuntu 14.04.

ODROID-C1 is available for pre-order for $35 on Hardkernel website with shipping scheduled for December 16, but if you are based in North America or Europe, you should be better off purchasing from respectively Ameridroid or Pollin Electonic. I also wish they find a distributor for the rest of the world, as shipping is probably $25 (I can’t access the site from Thailand without proxy), which makes the board $60 [Update: Based on comments shipping is only $9 for some, for $25 for most]. You’ll also need to purchase storage for booting either from Hardkernel or its distributors which sells 8, 16, 32 and 64GB eMMC modules, or 8 to 16GB UHS-1 micro SD cards preloaded with Android 4.4 or Ubuntu 14.04, or buy it one locally, just make sure you don’t buy the cheapest micro SD card, get at least a Class 10 or UHS-1 micro SD, or your ODROID-C1 will feel as slow, or even slower, than a Raspberry Pi. Further details can also be found in ODROID magazine December 2014 (PDF) including a performance and specs comparison between ODROID-C1 and Raspberry Pi Model B+.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter