Archive

Posts Tagged ‘linaro’

Linaro 14.10 Release with Kernel 3.17 and Android 4.4.4, Debian ARM64 Port Almost Complete

October 31st, 2014 No comments

Linaro 14.10 has just been released with Linux kernel 3.17 (baseline), Linux 3.10.54 & 3.14.19 (LSK, same versions as last month), and Android 4.4.2 & 4.4.4.

Most of the work is a continuation of previous months working member hardware, and ARM64, but one particularly interesting point is that 90% of Debian packages have been built for ARM64, and the next version of Debian should have an official ARM64 port.

Here are the highlights of this release:

  • Linux Linaro 3.17-2014.10
    • updated linaro-android topic. In particular, CONFIG_IPV6=y is no longer the requirement for linux-linaro tree builds
    • GATOR version 5.19 (same version as in 2014.08 release). gatord is fixed to build for ARMv8.
    • dropped multi_pmu_v2 topic by ARM LT (no longer used)
    • updated topic from Qualcomm LT (include IFC6410 board support)
    • replaced integration-linaro-vexpress topic by integration-linaro-vexpress64. Starting from 2014.10 release, linux-linaro kernel tree will use the mainline support for 32-bit vexpress boards. integration-linaro-vexpress64 carried over FVP Base and Foundation models, and Juno support from the integration-linaro-vexpress.
    • updated LLVM topic (uses llvmlinux-2014.10.01 branch – the most recent v3.17-based version of llvmlinux-latest)
    • dropped ARMv7 big endian topic(obsoleted; most of the patches are upstream)
    • added ILP32 patch set v3 with one minor build fix. (ILP32 vs LP64 data models)
    • config fragments changes – distribution.conf: CONFIG_IPV6=y replaced with CONFIG_IPV6=m
  • Linux Linaro LSK 2014.10:
    • The v3.14 based LSK based on kernel.org 3.14.19 stable tree
    • Updates to:
      • kernel.org 3.10.55 stable tree
      • Android support (from Google and Linaro)
      • ARMv8 fixes and performance enhancements
      • UEFI support
      • Mailbox framework
  • Linaro Toolchain Binaries 2014.10
    • based on GCC 4.9 and updated to latest Linaro TCWG releases (Linaro GCC 4.9-2014.10)
    • first release built with cbuild2, adding more maintainable code base and automatic testing
    • binary tarballs have been splitted into 3 parts. As a result, you can install only the parts needed:
      • gcc-linaro-*.tar.xz – the compiler and tools
      • runtime-linaro-*.tar.xz – runtime libraries needed on the target
      • sysroot-linaro-*.tar.xz – sysroot (a set of libraries and headers to develop against)
  • Linaro builds of AOSP 14.10
    • built with Linaro GCC 4.9-2014.10
    • AOSP master build for Juno is cleaned up. It now builds without any patches on AOSP projects. It builds by adding 9 projects to AOSP manifest related to device, kernel, toolchain and helper tools.
    • LSK Android testing issues are fixed for ARMv8 Fast Models
    • bc tool is added to ARMv8 Android Juno build
  • Linaro OpenEmbedded 2014.10
    • integrated Linaro GCC 4.9-2014.10
    • fixed shadow securetty for SBSA compatible UART
    • switched OpenJDK to upstream aarch64 hg repos
    • dropped mongodb from LAMP images
    • upstreaming:
      • updated acpica 20140828 release
      • updated acpitests 20140828 release
      • updated pm-qa to 0.4.14 release
      • added aarch64 support to libunwind
      • fixed PHP build warnings
  • Linaro Ubuntu 14.10 – Updated packages: Juno firmware 0.8.2, LSK 3.10.58/3.14.22 and linux-linaro 3.17 kernels, xf86-video-freedreno 1.3.0
  • Debian arm64 support is going very well. More than 90% of the packages are built. The effort is on track to get next Debian release with an officially supported arm64 architecture.
  • KVM CI loop on Juno is completed. The remaining work is happening on Xen CI loop.

You can visit https://wiki.linaro.org/Cycles/1410/Release for a list of known issues, and further release details about the LEB, LMB (Linaro Member Builds), and community builds, as well as Android, Kernel, Graphics, Multimedia, Landing Team, Platform, Power management and Toolchain components.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Linaro 14.09 Release with Kernel 3.17 and Android 4.4.4

September 27th, 2014 No comments

Linaro 14.09 has just been released with Linux kernel 3.17-rc4 (baseline), Linux 3.10.54 & 3.14.19 (LSK), and Android 4.4.2 & 4.4.4.

Linaro has kept working on their member boards such as IFC6410 (Qualcomm), D01 (Huawei/Hisilicon), Ardnale (Samsung), and Juno (ARM). They’ve also announced they’ll change the tools to build GCC by using cbuild2 instead of cbuild1 for next release, and they’ve enabled a build with gcov (for code coverage analysis) which may mean they’ll work on reducing the kernel size by getting rid off unused code. I’ve also noticed the Arndale and Arndale Octa Ubuntu images are now based on Linux LSK with Mali GPU support since last month.

Here are the highlights of this release:

  • Linux Linaro 3.17-rc4-2014.09
    • GATOR version 5.19
    • updated topic from Qualcomm LT (ifc6410 board support) and HiSilicon LT
    • updated Versatile Express ARM64 support (FVP Base and Foundation models, Juno) from ARM LT.
    • updated Versatile Express patches from ARM LT
    • updated LLVM topic (follows the community llvmlinux-latest branch)
    • Big endian support (the 2014.05 topic version rebased to 3.17 kernel)
    • config fragments changes – added gcov config fragment, disabled DRM_EXYNOS_IOMMU to work around boot failure on Arndale
  • Linaro Toolchain Binaries 2014.09
    • based on GCC 4.9 and updated to latest Linaro TCWG releases: Linaro GCC 4.9-2014.09, Linaro binutils 2.24-2014.09, and Linaro GDB 7.8-2014.09.
    • This will be the last release done with cbuild1 and crosstool-ng. Next releases will be done with cbuild2. Official support for very old host environments will be dropped.
  • Linaro builds of AOSP 14.09 built with Linaro GCC 4.9-2014.09.
  • Linaro OpenEmbedded 2014.09
    • integrated Linaro GCC 4.9-2014.09, Linaro binutils 2.24-2014.09, integrated Linaro GDB 7.8-2014.09.
    • imported Linaro eglibc 2.19 into meta-linaro after OE-core switched to glibc 2.20
    • fixed shadow securetty for Qualcomm and STMicroelectronics SoCs
    • upstreaming – fixed libpng on aarch64 (neon symbol), updated PM QA to 0.4.14, updated libunwind to include aarch64 support
  • Linaro Ubuntu 14.09
    • added linux-tools (perf standalone, splitted from kernel build)
    • updated packages: Juno firmware 0.8.1, LSK 3.10.55/3.14.19 and linux-linaro 3.17-rc4 kernels.
  • A gcov enabled build has been added
  • Linaro builds of the Android NDK have been updated to current upstream sources and current Linaro toolchain component releases.
  • Standalone Android toolchain binary builds now use Linaro binutils for improved armv8 support.

You can visit https://wiki.linaro.org/Cycles/1409/Release for a list of known issues, and further release details about the LEB, LMB (Linaro Member Builds), and community builds, as well as Android, Kernel, Graphics, Multimedia, Landing Team, Platform, Power management and Toolchain components.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Android TV Overview – Linaro Connect US 2014

September 17th, 2014 No comments

Google announced Android TV and ADT-1 devkit last June, as the company wants to bring user-friendly Android user-experience to TVs, set-top boxes and game consoles. Mark Gregotski, head of the Linaro Digital Home Group (LHG), has provided a technical overview of Android TV during the on-going Linaro Connect US 2014. You find a summary of yesterday sessions on Linaro’s blog, and the even will last until Friday, where several demos will be showcased.

Android_TV_Goals

SoC companies currently involved in Android TV include Nvidia, Marvell, Qualcomm, Mediatek, Intel, Broadcom, and ST micro, so none of usual Chinese Android TV Box players (Rockchip, Amlogic, AllWinner…) are represented. Android (for smartphone) currently support video playback but you may experience dropped frame from time to time, where in the STB market requirements are not stringent. For example, NTT is said to only allow one frame dropped per month! So Android TV aims to improve video playback. Some of the features related to Android TV includes: VP9/H.265 codecs, 4K support, NDK media APIs, TV input framework, improved AV sync, cast receiver (DIAL protocol, Chromecast functionality), 64-bit secure environment, OpenGL ES 3.1 support, Android Extension Pack, subtitle / closed captions enhancements, etc.

The TV input framework will gather several sources for example Cable, Satellite, IPTV, and Terrestrial video input into one single user interface, for example to display a unified EPG, where the user does not even need to be aware of the source. Android TV uses Exoplayer with support for MPEG DASH and Smooth Streaming, and you can find the source code on github. For PayTV, DRM will also be an important part of Android TV with support for Level 1 Widevine and Playready DRM.

The presentation slide are available here.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Linaro 14.08 Release with Kernel 3.16 and Android 4.4.4

September 2nd, 2014 No comments

I’m a little late for that one, as Linaro 14.08 was released last Thursday. Nevertheless, this release features Linux kernel 3.16 (baseline), Linux 3.10.52 (LSK), and Android 4.4.4.

As usual Linaro has worked on member hardware such as Qualcomm based IFC6410 and ARM Juno &Vexpress boards. They’ve also committed changes for LLVM, big Endian, and added a workload generator tool (rt-app) to the Ubuntu and Android image. This tool has been developed and used by the power management working group, presumably to measure and optimize power consumption under various loads.

Here are the highlights of this release:

  • Linux Linaro 3.16-2014.08
    • GATOR version 5.19 (new version)
    • updated topic from Qualcomm LT (ifc6410 board support)
    • updated Versatile Express ARM64 support (FVP Base and Foundation models, Juno) from ARM LT (Landing Team)
    • updated Versatile Express patches from ARM LT
    • updated LLVM topic (follows the community llvmlinux-latest branch)
    • Big endian support (the 2014.05 topic version rebased to 3.16 kernel)
    • config fragments changes: CONFIG_DEBUG_INFO=y added to linaro-base.conf. This is needed to get the debug package containing vmlinux to be built, and vmlinux is required to run perf.
  • Linaro Toolchain Binaries 2014.08 – Based on GCC 4.9, and updated to latest Linaro TCWG releases:
    • Linaro GCC 4.9-2014.08
    • Linaro EGLIBC 2.19-2014.08
    • Linaro binutils 2.24-2014.08
    • Linaro GDB 7.8-2014.08
  • Linaro Android 14.08 – Built with Linaro GCC 4.9-2014.08
  • Linaro OpenEmbedded 2014.08
    • integrated Linaro GCC 4.9-2014.08, Linaro EGLIBC 2.19-2014.08, Linaro binutils 2.24-2014.08, and Linaro GDB 7.8-2014.08
    • added rt-app (contributed from Power Management WG)
    • updated GATOR to 5.19,  LSK kernels, and QEMU to 2.1.0
    • fixed boot wrapper build
    • upstreaming:
      • fixed kexec-tools
      • fixed udev startup script to fix mysql launch failure
      • updated PM QA to 0.4.12
      • fixed PHP build
      • fixed hugetlbfs
  • Linaro Ubuntu 14.08
    • added rt-app
    • updated packages: GATOR 5.19, LSK 3.10.52/3.14.16 and linux-linaro 3.16 kernels.
  • KVM ARMv8 Continuous Integration and Testing is completed
  • Make debug symbols available for Versatile Express ALIP image

You can visit https://wiki.linaro.org/Cycles/1408/Release for a list of known issues, and further release details about the LEB, LMB (Linaro Member Builds), and community builds, as well as Android, Kernel, Graphics, Multimedia, Landing Team, Platform, Power management and Toolchain components.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

How to Build and Run Android L 64-bit ARM in QEMU

August 23rd, 2014 19 comments

Most people can’t afford Juno Cortex A57/A53 development board, and mobile processors based on the latest 64-bit ARM cores are only expected by early 2015. But thanks to a small team at Linaro, you can now build and run Android L 64-bit ARM in the latest version of QEMU that supports Aarch64. Alex Bennée, an engineer working for Linaro, wrote a blog post in Linaro’s Core Dump blog explaining the Android emulator is actually based on QEMU,  the differences compared to mainline QEMU, the work they’ve done on Android L at Linaro, and most importantly, provided the basic steps showing how to build and try Android L 64-bit ARM (ARMv8) in QEMU. I’ve just done that, but unfortunately, albeit the builds complete, I could not manage to start Android L in QEMU yet. [Update: working now]. If you want to give it a try, you’ll need a Linux PC, and patience, as it may take about one day to retrieve the source code, and build everything from source.

Android_L_64-bit_ARM_QEMU

I’ve done all this in a computer running Ubuntu 14.04 with an AMD FX8350 processor and 16 GB RAM.

First, you’ll need to install an ARM 64-bit toolchain, some dependencies, and tools:

sudo apt-get install gcc-aarch64-linux-gnu build-essentials git bison zlib1g-dev \
libglib2.0-dev libpixman-1-dev gperf android-tools-adb vncviewer

The next step is to cross-compile a Linux 3.10 kernel for Android:

mkdir -p ~/edev/linaro
git clone https://git.linaro.org/people/christoffer.dall/linux-android.git
cd linux-android
git checkout ranchu-linaro-beta1

There’s a bug include the current version of the toolchain in Ubuntu 14.04 (https://bugs.launchpad.net/linaro-linux-baseline/+bug/1258013) which prevents the build to complete. You can either remove CONFIG_DEBUG_INFO=Y in arch/arm64/configs/ranchu_defconfig (I did that), or update your toolchain. Let’s complete the build:

ARCH=arm64 make ranchu_defconfig
ARCH=arm64 make CROSS_COMPILE=aarch64-linux-gnu- -j8

Now you need to build the Android Open Source Project (AOSP). If you haven’t done so, you’ll have to install the repo tool:

mkdir ~/bin
PATH=~/bin:$PATH
curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
chmod a+x ~/bin/repo

Then get AOSP source code (master as below, or l-preview branch):

cd ..
mkdir AOSP
repo init -u https://android.googlesource.com/platform/manifest
repo sync

The last step can take a few hours depending on your internet connection to Google servers.
Now download and apply a patch made by Linaro:

wget http://people.linaro.org/~christoffer.dall/linaro-devices.tar.gz
tar -xvf linaro-devices.tar.gz

Possibly configure git:

git config --global user.email "[email protected]"
git config --global user.name "Your Name"

You need to apply a patch for qemu:

pushd system/core
wget http://people.linaro.org/~alex.bennee/android/android-init-tweaks.diff
patch -p1 < android-init-tweaks.diff 
popd

And build Android L for ARMv8:

source build/envsetup.sh
lunch ranchu-userdebug
m -j8

The last step will again take a while. It took my machine 2 or 3 hours, and the total time was actually a bit more than than as my PC suffered two thermal shutdowns during the build, and I had to restart the build twice. The last time, I decided to underclock my CPU to 3.4 GHz, and the build went through.

The last step before running Android L is to build QEMU:

cd ..
git clone https://git.linaro.org/people/peter.maydell/qemu-arm.git
cd qemu-arm
git checkout ranchu-linaro-beta1
./configure
make -j8

Builds should now all be successfully complete. We just need to create some symlinks helping to shorten qemu command line, start the ADB server, and run QEMU:

cd ..
ln -s linux-android/arch/arm64/boot/ ranchu-kernel
ln -s AOSP/out/target/product/ranchu/ ranchu-build
adb start-server
./qemu-arm/aarch64-softmmu/qemu-system-aarch64 -cpu cortex-a57 -machine type=ranchu -m 4096 \
-kernel ./ranchu-kernel/Image -append 'console=ttyAMA0,38400 keep_bootcon' -monitor stdio \
-initrd ranchu-build/ramdisk.img -drive index=2,id=userdata,file=ranchu-build/userdata.img \
-device virtio-blk-device,drive=userdata -device virtio-blk-device,drive=cache \
-drive index=1,id=cache,file=ranchu-build/cache.img -device virtio-blk-device,drive=system \
-drive index=0,id=system,file=ranchu-build/system.img -netdev user,id=mynet \
-device virtio-net-device,netdev=mynet -show-cursor

That’s the output I get:

QEMU 2.0.50 monitor - type 'help' for more information
console on port 5554, ADB on port 5555
VNC server running on `127.0.0.1:5900'

So it’s quite possible there’s a problem with adb, but Google did not help, and I failed to go further. More detailed instructions will soon be posted in Linaro Wiki, so I may be able to find out where I made a mistake once it’s posted.

Finally, start vncviewer to access Android user’s interface:

vncviewer 127.0.0.1:5900

Here’s a screenshot of the “About Device” menu in Android L 64-bit ARM running in QEMU.
Android_64-bit_ARM_Qemu

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Interview with Allwinner Regarding their Linaro Membership

August 21st, 2014 14 comments

Since Allwinner has joined the Linaro Digital Home Group earlier this year, many people, including myself, have wondered what it means in terms of Linux support, and the engagement with the open source community. Following up on an idea from a regular reader, I’ve decided to asked a few questions to Ben-El Baz, marketing manager at Allwinner, and Linaro contact for Allwinner, which he kindly answered, and accepted to be published on CNX Software.

AllWinner_Linaro

  • CNXSoft: Why did Allwinner decide to join Linaro, and especially the Digital Home Group?
    Allwinner: One of our company’s goals is to be a technology leader.  It’s ambitious but not too far-fetched given the background of our leadership and engineering team.  There’s an extremely talented group of guys behind the scenes here!

    Leading is difficult unless you’re involved in collaborative organizations like Linaro that work on new technology.  Joining Linaro is an opportunity for us to grow and develop new technology together with other leading companies.  We’ve actually been trying to find the right time to join Linaro for over a year.  The Home Group was a perfect entry point; since the end of last year we’ve invested more resources into our home entertainment (OTT) division.  Our roadmap has added many new home sector-specific SoCs as well.

    Joining Linaro is also a continuation of our open strategy.  We’ve tried to be as open as possible since joining the app processor space; we were one of the first low-cost vendors to fully support the open source hardware community through partners like CubieTech, OLinuXino, pcDuino, Merrii, and more.  I’m sure I’m forgetting someone, please don’t be mad!

  • CNXSoft: There are three levels of membership for companies at Linaro: Core member, Club member, and Group member. AllWinner joined Linaro as a Group member, which as I understand is a limited membership, and leads to several questions:
    1. Will Allwinner primarily have an observatory role in the Digital Home Group, or will the company be actively engaged?
      Allwinner: Joining an international, collaborative engineering organization is new to us.  We’ve mostly been observing up to this point, but we’re trying to get more involved.  Getting more involved means our engineers more closely following Linaro’s roadmap and thinking about new projects we could bring into the Home group.  We’ve already brought up some ideas within the group.
    2. Will the work done in the Digital Home Group focus mainly on higher level applications, or will some work be done on the kernel and drivers as well,  specifically to the parts relating to Allwinner, or in other words will there be engineers at Linaro working on code specific to Allwinner?
      Allwinner:
      Still doing work planning.  Happy to share more details after Connect.  Have already done some ground work to support upcoming projects though.  Welcome any ideas from the community as well.
  • CNXSoft: I understand there’s no Allwinner Landing Team at Linaro, so there won’t be engineering builds targeting Allwinner hardware released by Linaro. Does Allwinner plan to eventually put more resources into Linaro?
    Allwinner:
    We’re more resource-limited compared to other larger Linaro members but still able to make appropriate engineering commitments.  We’re thinking about increasing our contribution over time – this type of collaboration is still very new to us.
  • CNXSoft: Do you expect the Linaro membership to affect the way the company approaches open source development? For example,  like many silicon vendors, Allwinner develop their own SDK (Linux,U-boot, etc..) in house, and release a vendor tree to direct customers, but it appears many companies are seeing the benefit of committing code to mainline (kernel.org), and there’s a clear trend in that direction. Now Allwinner mainline support is mainly performed by linux-sunxi community, so I’m wondering if Allwinner has any interest in getting involved in this area?
    Allwinner:
    I think there will always be a split software support focus – one towards productization and one towards mainline Linux support. Recently we started a more formal engagement with the linux-sunxi community; hopefully this will enable us to better support developers. Mainlining is important to us but needs some focus. It’d help to hear what the community wants. Which Allwinner SoCs would you like to see with mainline support? With which modules supported? In which kernel version (realistically!)? Why?

They also told me more details should be available after Linaro Connect USA next month.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Linaro 14.07 Release with Linux Kernel 3.16 and Android 4.4

August 1st, 2014 No comments

Linaro 14.07 has just been released with Linux Kernel 3.16-rc6 (baseline), Linux Kernel 3.10.50 (LSK), and Android 4.4.4.

This month, Linaro has continued development on Juno 64-bit ARM development board, as well as other member boards from Broadcom (Capri), Qualcomm (IFC6410), Hisilicon D01, Samsung (Arndale / Arndale Octa), etc.. Android have been upgraded to version 4.4.4 with images released for Pandaboard, Arndale, Nexus 10, and Nexus 7, built with Linaro GCC 4.9.

Here are the highlights of this release:

  • Linux Linaro 3.16-rc6-2014.07 released
    • GATOR version 5.18 (same version as in 2014.04)
    • updated basic Capri board support from Broadcom LT. Good progress in upstreaming the code: now the topic has 21 patch on top of v3.16-rc4 vs 53 patches on top of v3.15 in 2014.06 cycle
    • removed cortex-strings-arm64 topic as the code is accepted into the mainline
    • new topic from Qualcomm LT to add IFC6410 board support
    • updated Versatile Express ARM64 support (FVP Base and Foundation models, Juno) from ARM LT. cpufreq support for Juno has been added.
    • updated Versatile Express patches from ARM LT
    • more HiP0x Cortex A15 family updates from HiSilicon LT
    • switched to mainline support for Arndale and Arndale-octa boards
    • updated llvm topic (follows the community llvmlinux-latest branch)
    • Big endian support (the 2014.05 topic version rebased to 3.16 kernel)
    • removed ftrace_audit topic as the code is accepted into the mainline
    • config fragments changes – added ifc6410.conf
  • Linaro Toolchain Binaries 2014.07 released – Based on GCC 4.9 and updated to latest Linaro TCWG releases:  Linaro GCC 4.9-2014.07 & Linaro binutils 2.24.0-2014.07
  • Linaro Android 14.07 released
    • built with Linaro GCC 4.9-2014.07
    • Pandaboard, Arndale, Nexus 10, Nexus 7 upgraded to Android 4.4.4.
    • LSK Engineering build moved back to 4.4.2.
    • Android LSK v3.14 CI loop added
  • Linaro OpenEmbedded 2014.07
    • Integrated Linaro GCC 4.9-2014.07
    • Integrated Linaro EGLIBC 2.19-2014.07
    • Integrated Linaro binutils 2.24.0-2014.07
    • Upstreaming:
      • fixes recipes related to oe-core autotools update
      • cleaned up overlayed recipes
      • updated PM QA to 0.4.12
  • Linaro Ubuntu 14.07 released
    • added gstreamer 1.0
    • updated packages: ARM trusted firmware (support latest FVP models), PM QA (0.4.12), LSK 3.10.49/3.14.13 and linux-linaro 3.16-rc6 kernels.
  • Integrate ARMv8 Big endian systems into LAVA and CI
  • Migrate Linaro Android builds to 4.9 Linaro toolchain
  • LSK: add ARMv8 kernel + arm32 rootfs CI loop
  • Package rt-app
  • LSK: enable member kernel configs for build testing

You can visit https://wiki.linaro.org/Cycles/1407/Release for a list of known issues, and further release details about the LEB, LMB (Linaro Member Builds), and community builds, as well as Android, Kernel, Graphics, Multimedia, Landing Team, Platform, Power management and Toolchain components.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter