Posts Tagged ‘m2m’

ARM TechCon 2015 Schedule – IoT, Servers, 64-bit ARM, Power Usage Optimization, and More

October 1st, 2015 No comments

ARM_TechCon_2015The ARM Technology Conference (ARM TechCon) will take place on November 10 – 12, 2015, in Santa Clara Convention Center, and just like every year, there will be a free exposition for companies to showcase their latest innovation and/or products, as well as a technical conference with sessions and workshops sorted into various tracks:

  • Automotive/Embedded Vision
  • Embedded
  • IoT
  • Mobile/Connectivity
  • Networking Infrastructure/Servers
  • Tools & Implementation
  • Wearables/Sensors
  • ARM Training Day
  • Sponsored Vendor Training
  • Special Event
  • General Event
  • Software Developers Workshop

You can find the complete schedule on ARM TechCon website. Although I won’t attend, I’ve created my own virtual schedule with some of the sessions I found interesting.

Tuesday – November 10

  • 8:30 – 9:20 – ARM Vision for Thermal Management and Energy Aware Scheduling on Linux by Ian Rickards (ARM), Charles Garcia-Tobin (ARM), Bobby Batacharia (ARM)

This talk will cover the history and where are we going, for ARM’s Power Software (IPA, EAS, and some concepts for the future).

ARM will detail the latest update on our thermal control software Intelligent Power Allocation (IPA) which has just been released in mainline Linux 4.2. The tuning and implementation flow allow IPA to be easily deployed in Linux-based devices including Android.

We will also introduce ‘Energy Aware Scheduling’ (EAS) which is a new development by ARM/Linaro to allow the Linux scheduler to make the most energy efficient decisions using a generic energy model based approach. EAS includes improved upstream Linux support for ARM “big.LITTLE” systems and other advanced multi-cpu topologies.

  • 9:30 – 10:30 – Innovation is Thriving in Semiconductors by Mike Muller (ARM)

The human capacity to find a path past difficult challenges is astonishing. Though traditional silicon scaling is more complex at advanced geometries, electronics design innovation is more robust than ever as engineers devise new ways to improve the latest chips. ARM CTO Mike Muller will describe advances in design innovation spanning low power, trust, and architectural innovation all the way from sensors to server and beyond. And he’ll unveil the latest technology achievements from ARM in his signature lively, humorous and engaging style.

  • 10:30 – 11:20 – IoT Prototyping 101: The All-in-One Platform by Steven Si (MediaTek)

Power efficiency, connectivity and size are top priorities for any developer looking to prototype innovative IoT devices. Best utilizing these key features with ARM’s technology will be the spotlight of this session a live demonstration of how a developer at any level can create the next big thing in IoT. Skills to be shown: connecting sensors; using a cloud interface to build a virtual device; sending data from the device to the cloud and communicating with other smart devices. (cnxsoft: possibly using LinkIt ONE platform)

  • 11:30 – 12:20 – Khronos APIs for Fast and Cool Graphics, Compute and Vision by Neil Trevett (Khronos)

Discover how 100 companies cooperate at the Khronos Group to create open, royalty free standards that enable developers to access the power of hardware to accelerate the demanding tasks in cutting-edge mobile applications including heterogeneous parallel computation, 3D graphics and vision processing. This session includes the latest updates to API standards including OpenGL, OpenCL, OpenVX, and the recent Vulkan new generation graphics and compute API. The session will explore how modern APIs will accelerate the availability of compelling experiences such as neural-net based driver assistance, virtual and augmented reality, and advanced environmental tracking and 3D reconstruction on ARM-based devices

  • 13:00 – 15:00 – Boosting Performance from ‘C’ to Sky with Custom Accelerators on ARM-based FPGAs by Shaun Purvis (Hardent)

Offloading tasks to specialized hardware, such as a GPU or FPU, is a common approach to boosting software performance. However, the fixed nature (i.e. hard-silicon) of such hardware places an upper limit on just how much performance can be boosted. In order to break down this barrier, some modern SoCs have combined ARM processing power with programmable logic allowing software to be offloaded to custom, scalable, accelerators. With accelerators that can be tailored to specific needs, suddenly the sky’s the limit! But that’s not all. Combining these SoCs with modern tools allows designers to migrate high-level functions directly to hardware, skipping all the hardware design in between. This presentation will introduce one such tool and discuss the design methodology that takes a software-defined system and turns it into a custom hardware accelerated one.

  • 15:30 – 16:20 – Bringing Mali, the Android GPU of Choice, to Wearables by Dan Wilson (ARM Ltd.)

In this talk we will look at the trends for the use of graphics processors in Wearable devices and how the technical requirements of this space differ from that of smartphones and other segments. We look specifically at the ARM Mali GPU Utgard architecture which provides the perfect fit for Wearable designs and describe how this architecture has been implemented to create ARM’s latest ultra-low-power Mali GPU.

  • 16:30 – 18:00 – Efficient Interrupts on ARM Cortex-M Microcontrollers by Chris Shore (ARM)

Most real-time embedded systems make extensive use of interrupts to provide real-time response to external events. The design of the interrupt architecture is crucial to achieve maximum system efficiency. When designing software for devices based on ARM’s Cortex-M microcontroller cores, it is important to understand the interaction between interrupt priority, sub-priority, tail-chaining and pre-emption to achieve the most efficient design. This session will examine various use cases and give practical advice to software developers.

Wednesday – November 11

  • 8:30 – 9:20 – How (Not) to Generate Misleading Performance Results for ARM Servers by Markus Levy (EEMBC) & Bryan Chin (Cavium)

Cloud workloads are putting unique demands on SoCs and other system-level hardware being integrated into scale-out servers. Traditional benchmarks address the suitability of processors for different tasks. However, many factors contribute to the whole system performance memory, disks, OS, network interfaces, and network stack. In addition, the manner of generating workloads can affect the results. This session uses a case study from Cavium’s ARM-based Thunder X system and the EEMBC cloud and server benchmark, to present results that demonstrate how subtle test environment variations can obfuscate benchmark results and how a properly designed benchmark can overcome these obstacles.

  • 9:30 – 10:30 – Keynote by Simon Segars (ARM’s CEO)
  • 10:30 – 11:20 – Pentralux Flexible Digital Displays on Paper, Plastic, Cloth & Synthetics by Mathew Gilliat-Smith (DST Innovations), Anthony Miles (DST Innovations)

DST Innovations has created a flexible digital display proof of concept produced on plastic, paper, cloth or synthetic substrates. It’s integrated with the ARM mbed OS and will be suitable for developers and designers to integrate into third party products. Initially the digital screens will be for informational or promotional data and video. Being bright, safe, robust and requiring little power, the design parameters will be significant and far reaching for the wearable sector in thousands of clothing, fashion, promotional and other commercial concepts. The screens will offer inter-connectivity through the mbed ecosystem to receive transmitted IoT cloud generated data.

  • 11:30 – 12:20 – Are you ready for USB Type-C? by Ravi Shah (NXP Semiconductors) & Andy Lin (NXP Semiconductors)

USB Type-C offers new features and benefits like reversible plug orientation, improved data rates up to 10 Gbps as well as an unprecedented, scalable, 100 W power-delivery capability that can power higher wattage devices and support faster charging. This session will review the features, benefits and applications it is being designed into today. In addition, design considerations and lessons learned from the field will be reviewed.

  • 12:30 – 13:20 – From Concept to Reality: Advancing ARM-based Enterprise SoCs – Presented by Applied Micro Circuits Corporation by Dr. Paramesh Gopi (Allied Micro Circuits Corporation)

No abstract…

  • 14:30 – 17:20 – STM32L7 Hands-On Workshop by James Lombard & Steve Miller (STMicroelectronics)

Thursday – November 12

  • 8:30 – 9:20 – All Things Data: Healthcare by Pierre Roux (Atmel)

Examples of IoT are everywhere, including digital home, remote resourcing monitoring and automation, but what gets less attention is how the IoT will impact healthcare with the combination of technologies that leverages big data and analytics that go along with it.

This talk will look at opportunities, hurdles and the skills required to make the most of this intersection of Internet-connected physical objects and the deluge of data. It will examine new generation of data analytics for use cases associated with our changing world and, examine the role big data analytics will play in the future of the healthcare industry.

  • 10:30 – 11:20 – The ARM Cortex-A72 processor: Delivering high efficiency for Server Networking and HPC by Ian Forsyth,  Director of Marketing, ARM

New content-rich features, services and evolving business models are transforming network architectures, giving rise to the Intelligent Flexible Cloud (IFC). Architects are decentralizing intelligence to deliver required flexibility and to cope with increased traffic demands. This, in turn, is driving new classes of SoCs, enabled by technology standards including software-defined networking (SDN) and network functional virtualization (NFV). These require significant throughput-per-watt efficiencies within networking and servers. This talk will explore how the latest Cortex-A72 CPU offers compelling performance and throughput to meet the requirements of these future workloads.

  • 11:30 – 12:20 – Porting to 64-bit on ARM by Chris Shore (ARM)

With the introduction of the A64 instruction set in ARMv8-A, many developers need to port existing code to work in a 64-bit environment. At the coding level, this presentation will cover porting C code, assembly code and NEON code. Issues covered will include data typing and type conversion, pointers, bitwise operations, differences in the SIMD register bank layout, mapping of assembly instructions. At a system level, we will cover maintenance operations and extensions to the security architecture.

  • 13:30 – 14:20 – Keynote- The Hard Things About the Internet of Things by Colt McAnlis (Google)
  • 14:30 – 15:20 – Wearable System Power Analysis and Optimization by Greg Steiert (Maxim Integrated), Jesse Marroquin (Maxim Integrated)

This session will demonstrate how to extend battery life by showing the real world impact of system level architecture decisions. The session will introduce a technique for measuring battery current and then use that technique to compare the power efficiency of different system implementations. Tradeoffs analyzed will include: power architecture, operating voltage, sensor data interfaces, DMA, SIMD.

Takeaway: a method for measuring real time power consumption,  advantage of operating at the lowest voltage possible with efficient regulators, tradeoffs of different sensor interfaces and of different micro-controller architectures (peripherals/M0+/M3/M4)

  • 15:30 – 16:20 – Improving Software Security through Standards Compliance and Structural Coverage Analysis by Shan Bhattacharya (LDRA)

This presentation will focus on secure software best practices. Ensuring the security of embedded devices involves more than simply using vulnerability preventive programming. However, paying attention to and leveraging security standards such as CWE/CVE, CERT C and even CERT Java, will certainly improve the probability of delivering a secure and effective system.

  • 16:30 – 17:20 – Top Android Performance Problems of 2015 by Colt McAnlis (Google)

When you look at performance problems all day, you’re bound to lose your hair. So rather than balding early yourself, Colt McAnlis will walk you through the top performance problems that dominated 2015. This talk will cover the range of issues from Memory, to Rendering, to Networking, listing specific topics that have shown up in many of the top apps in Google Play. We’ll even take some time to look at the differences in some form factors, and how you should plan around that.

  • 17:30 – 18:30 – Happy Hour :)

If you are going to attend, you can register online. While as usual, going to the expo and attending vendor’s sponsored sessions is free, there are different passes to join the conference sessions, ARM training day, and software developers workshops. The earlier you register, the cheaper.

Conference Pass ARM Training Day Software Developers
Expo Pass
Super Early Bird
(Ends July 24)
$599 $199 $99 Free
Early Bird
(Ends Sept. 4)
$799 $249 $149 Free
(Ends Oct. 30)
$999 $299 $199 Free
Regular/Onsite $1249 $349 $249 Free

There are also discounts for groups, students, press & media, and government employees. You can check details on ARm TechCon 2015’s Passes & Prices page.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Comparison Table of Low Power WAN Standards for Industrial Applications

September 21st, 2015 No comments

WiFi, Bluetooth and Zigbee are commonly found in consumer devices part of the “IoT ecosystem”, but the range, cost, power consumption, and/or scalability of these wireless standards are not suitable. For example, agricultural and forestry applications normally require long distance, and smart parking or city lighting may requires scalability to a great number of nodes, so alternatives are needed. EDN wrote a thorough article comparing 10 alternative wireless standards: Weightless-W, Weightless-N, Weightless-P, SigFox, LoRaWAN, LTE-Cat M, IEEE P802.11ah, Dash7, Ingenu RPMA, and nWave.

LP-WAn Comparison Table - Click to Enlarge - Source: EDN PDF

LP-WAN Comparison Table (Source: EDN PDF)

The table includes the frequency band, channel width, range, transmit power, packet size (minimal or maximal), downlink and uplink data rates, maximum number of connected devices, topology, roaming capability, and status. If you had to implement something today, four to five solutions are “in deployment”: SigFox, Ingenu RPMA, nWave, LoRa, and possibly Dash7, while the other are only starting to get deployed, or will be finalized in 2016. All standards have a Line of Sight range of at least 1km, with RPMA claiming up to 500km… Many standards are quite scalable as they support up to 1 millions node or more, but RPMA, and especially LTE Cat-M and P802.11ah are much less suited to projects with a large number of sensor nodes. Typical power consumption and an estimate of costs would have been two nice extra rows to have in that table, but number for these two are probably hard to come by, especially since each project is different.

If you are interested in these long range low power wide area network wireless standards, I recommend you read the complete article on EDN for much more details.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Weightless-P Standard is Designed for High Performance, Low Power, 2-Way Communication for IoT

August 10th, 2015 No comments

Weightless was unveiled over two years ago, as a new standards for IoT leveraging “white space” spectrum, previously used by analog TV broadcasts, for free M2M / IoT communication using low power (10 years battery life) and cost-efficient hardware ($2 hardware) offering a range of 5 to 10 km. Development kits and base stations were scheduled for Q2 2014, but there’s either been some delays or they are only available to Weightless members, as you need to register to get notified once hardware becomes available.

WeightlessThe Weightless SIG (Special Interest Group) has not stopped working on the standard as there are now three Weightless standards: Weightless-W (using White band spectrum), Weightless-N (sub-GHz spectrum), and and newly announced Weightless-P offering similar features as 3GPP carrier grade solutions, but at lower costs and lower power consumption.

The key features of Weightless-P are shown below:

  • Excellent capacity and scalability for IoT deployment
    • FDMA+TDMA in 12.5kHz narrow band channels offer optimal capacity for uplink-dominated traffic from a very large number of devices with moderate payload sizes
    • Operates over the whole range of license-exempt sub-GHz ISM/SRD bands for global deployment: 169/433/470/780/868/915/923MHz
    • Flexible channel assignment for frequency re-use in large-scale deployments
    • Adaptive data rate from 200bps to 100kbps to optimise radio resource usage depending on device link quality
    • Transmit power control for both downlink and uplink to reduce interference and maximize network capacity
    • Time-synchronised base stations for efficient radio resource scheduling and utilisation
  • Bidirectional
    • Supports both network-originated and device-originated traffic
    • Paging capability
    • Low latency in both uplink and downlink
    • Fast network acquisition
    • Forward Error Correction (FEC)
    • Automatic Retransmission Request (ARQ)
    • Adaptive Channel Coding (ACC)
    • Handover, Roaming, Cell re-selection
  • Long range
    • Lower data rates with channel coding provide similar link budget to other LPWAN technologies
    • 2km in urban environment
  • Industrial-grade reliability
    • Fully acknowledged communications
    • Auto-retransmission upon failure
    • Frequency and time synchronisation
    • Supports narrowband channels (12.5KHz) with frequency hopping for robustness to multi-path and narrowband interference
    • Channel coding
    • Supports licensed spectrum operation
  • Ultra-low energy consumption
    • GMSK and offset-QPSK modulation for optimal power amplifier efficiency
    • Interference-immune offset-QPSK modulation using Spread Spectrum for improved link quality in busy radio environments
    • Transmit power up to 17dBm to allow operation from coin cell batteries
    • Adaptive transmit power and data rate to maximize battery-life
    • Power consumption in idle state when stationary below 100uW (vs 3mW for the best cellular technologies)
  • Secure and efficient networking
    • Authentication to the network
    • AES-128/256 encryption
    • Radio resource management and scheduling across the overall network to ensure quality-of-service to all devices
    • Support for over-the-air firmware upgrade and security key negotiation or replacement
    • Fast network acquisition and frequency/time synchronization
  • Low cost and complexity
    • Using standard GMSK and offset-QPSK modulation channels ensures broad availability of hardware and no dependency on a single vendor
    • Compared to UNB, narrowband operation is less sensitive to frequency offset and drift, allowing the use of lower cost, lower power XOs or DCXOs instead of TCXOs
    • Maximal transmit power of 17dBm allows for integrated power amplifier
  • Open standard
    • Brings the reliability and performance of cellular technologies at a fraction of the cost by avoiding any legacy or backward-compatibility concerns
    • Ensures interoperability between the manufacturers
    • Provides for multi-vendor support to stimulate ongoing innovation and minimize end user costs
    • Royalty free IP minimizes production costs

Hardware for the new Weightless-P standard will be available in Q1 2016.

You may wonder about the differences between Weightless-W/-N/-P and which one you should use for your IoT project. The Interest group published a table comparing the three standards.

Weightless-N Weightless-P Weightless-W
Directionality 1-way 2-way 2-way
Feature set Simple Full Extensive
Range 5km+ 2km+ 5km+
Battery life 10 years 3-8 years 3-5 years
Terminal cost Very low Low Low-medium
Network cost Very low Medium Medium

So if one way communication is suitable, go with Weightless-N, if the “white-space” spectrum is available in your country go with Weightless-W, and otherwise you may want to select Weightless-P for high performance 2-way communications.

You can find some information on all three royalty-free  standards on Weightless technical information page. But if you want access to the full specifications for your project(s), you’ll need to become a Weightless members with membership starting at 900 GBP (~$1400) per year for “associate” members.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

WiPy Wi-Fi Board for IoT Runs MicroPython on Texas Instruments CC3200 (Crowdfunding)

April 24th, 2015 29 comments

If you’ve interested in connecting devices via Wi-Fi, you’re being spoiled as “Internet of things” boards keeps getting designed and produced. The latest board with WiPy, a small board powered by Texas Instruments CC3200, running MicroPython, and consuming less than 1mA in suspended mode with Wi-Fi connected.

WiPyWiPy specifications:

  • MCU – TI CC3200 ARM Cortex-M4 @ 80 MHz with 256KB RAM, Wi-Fi and TCP/IP stack
  • Storage – 2MB flash
  • Connectivity – WiFi 802.11b/g/n 16Mbps (AP, Station and WiFi-Direct), on-board antenna and u.FL connector
  • Expansion – 2x 14-pin headers (2.54mm pitch) with
    • Up to 25 GPIOs
    • 2x UART, SPI, I2C, I2S, and SD card
    • 3×12 bit ADCs
  • Others
    • 4×16 bit timers with PWM and input capture
    • RTC
    • Hash and encryption engines: SHA, MD5, DES, AES
    • Reset switch, heartbeat LED
  • Power Supply – 3.6 – 5.5V DC input; 3.3V output up to 250mA
  • Power Consumption – Active: 14 mA; Suspended (Wi-Fi connected): 850 uA; Hibernating (No Wi-Fi): 5 uA
  • Dimensions – 25mm x 45mm (1.0″ x 1.77″)

WiPy_MicroPythonBeside low power consumption, the board can switch from suspended to active mode in less than 5 ms, send some data, and go back to sleep, with the developers claiming several years on a single battery charge with this type of activity.

The board run MicroPython and so it can be programmed using Python 3.4, minus some functions like “with” or “yield from”. You’ll notice no USB port on the board that can be used for programming, that’s because you’d normally connect via Telnet to access the console, and program the board from there, and alternatively you can also connect via FTP to upload Python scripts or other files. WiPy supports BSD sockets, and MicroPython compatible librairies are being worked on to handle HTTP, SMTP, XMPP, FTP, and MQTT, and since the TI MCU also support hardware hash and encryption, secure HTTPS and SSL connection will also be available.


Sample code to toggle a GPIO in Python

There aren’t any shields for WiPy, as it’s breadboard compatible so you can easily connect it to your existing modules for your project, but they’re still in the process of developing an expansion board with a micro USB and battery connectors, FT234XD USB to  serial converter, a LiPo charger, a micro SD socket, two prototyping areas, and more.


MicroPython source code for CC3200 is already available on WiPy github account, and the hardware files are being promised once the project is about to ship.

WiPy has just reached its 30,000 Euros target on Kickstarter, where you can pledge 27 Euros to get WiPy with the headers of your choice (male, female, double stackable, or none), or 37 Euros to also include the expansion board above. Shipping is included, and delivery scheduled for August 2015. You can find more details, ask question on their forums, and soon access tutorials on

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

NodeMCU is both a Breadboard-Friendly ESP8266 Wi-Fi Board and a LUA based Firmware

April 18th, 2015 9 comments

NodeMCU is a LUA based interactive firmware for Expressif ESP8622 Wi-Fi SoC, as well as an open source hardware board that contrary to the $3 ESP8266 Wi-Fi modules includes a CP2102 TTL to USB chip for programming and debugging, is breadboard-friendly, and can simply be powered via its micro USB port.

NodeMCU_Development_BoardLet’s checkout the hardware first. The latest version of the board (V1.0) has the following specifications and features:

  • Wi-Fi Module – ESP-12E module similar to ESP-12 module but with 6 extra GPIOs.
  • USB – micro USB port for power, programming and debugging
  • Headers – 2x 2.54mm 15-pin header with access to GPIOs, SPI, UART, ADC, and power pins
  • Misc – Reset and Flash buttons
  • Power – 5V via micro USB port
  • Dimensions – 49 x 24.5 x 13mm
NodeMCU Headers' Pinout

NodeMCU Headers’ Pinout

The hardware documentation for the board can be found on nodemcu-devkit repo, including schematics and PCB layout designed with Altium Designer, but they should also be compatible with the cheaper Altium CircuitStudio. Sadly, the files have not been updated for 3 to 4 months, so they don’t completely match the latest hardware shown above, and some pins were not connected in the earlier version.

NodeMCU can be purchased for $10 and up on Aliexpress or Seeed Studio. However, it’s not entirely clear which version of the board is sold… The Aliexpress shop shows hardware v0.9, but says they will send the latest version, while Seeed Studio mentions NodeMCU “v2”,  and shows picture of v1.0 hardware, which should be the one you want. The new board will also be up for sale in Europe on for 15 to 18 Euros including VAT.

NodeMCU firmware is build with ESP8266 SDK v.0.9.5, based on Lua 51.4 without debug and os modules, lua-cjson, and relies on spiffs (SPI Flash File System) file system. The quick start guide is written on the bottom of the board:

  1. Install CP2102 driver (not needed in Linux)
  2. Use 9600 baud rate
  3. Connect Wi-Fi and enjoy!

Once you are connected, you can just type the command in the terminal. For example to connecting to your Wi-Fi router:

You can also toggle or/and read GPIO status in a similar way to what you’d with Arduino:

To get the board automatically run a script right after boot is complete, you can edit init.lua as follows:

You can find the firmware source code and documentation on Github, as well as nodemcu-flasher, a Windows only tools to flash the firmware to a module. There’s also a separate tool called esptool that will let you flash nodemcu from Linux. In case you find the documentation is all over the place, you might want to checkout NodeMCU video tutorial below. is the official website for the project, but you’ll find more information on Github. You can also get answers to your questions on their BBS or ESP8622 community forums.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Baseball Nano-ITX i.MX6 Board Targets Secure Industrial M2M and IoT Products

March 31st, 2015 No comments

Calao Systems has introduced a new Freescale i.MX6 single board computer with Baseball embedded platform, targetting network-connected industrial M2M and Internet of Things (IoT) applications requiring a high-level of security achieved with an FIPS 140-2 trusted platform module, and Crypto Authentication chip.

Calao_Systems_BaseballThe board is comprised of a Nano-ITX based board and a Freescale.iMX6 (Solo, Dual or Quad) SMARC 1.1 module with the following combined specifications:

  • SoC – Freescale iMX6 Solo, Dual or Quad Cortex A9 processor @ up to 1GHz with Vivante GPU
  • System Memory – 2 GB DDR3L,
  • Storage
    • On Module: 8 GB e-MMC, 8 MB SPI Flash, 1x EEPROM with unique S/N and MAC address
    • On Baseboard: 1x Micro-SD socket, 1x Industrial Grade eMMC NANDrive (optional), 1x Industrial Grade SATA Nandrive (optional),
  • Video Output – HDMI
  • Audio Output – HDMI and optical S/PDIF
  • Connectivity – 2x Gigabit Ethernet, 1x SIM card slot
  • USB – 3x USB 2.0 Host, 1x USB OTG
  • Expansion
    • 3x Expansion connectors with AFB, GPIO,. LVDS, SPI, etc…
    • 2x Full Size Mini PCI Express / mSATA socket
    • 1x RS232 serial port
    •  3x TTL serial port
    • 2x CAN bus
    • 1x Camera port, 1x CSI port
  • Security –  1x Trusted Platform Module (TPM), 1x Crypto Authentication chip
  • Sensors – 1x Temperature, Humidity & Pressure Sensor, 1x Accelerometer on SoM, 1x Temperature and Humidity sensor on Carrier board.
  • Misc – RTC with BR1632A Lithium Battery, Power On/Off, Reset & User LED & PB
  • Power – Dual power supply mode (PowerPath controller):
    • Main power supply 9-36 VAC/VDC (12V / 3A),
    • Auxiliary power supply 9-36VDC
  • Dimensions
    • Baseboard – 120×120 mm (Nano-ITX)
    • Module – 80×50 mm (SMARC)
  • Temperature Range – -40°C to +85°C
Baseball Board Block Diagram (Click to Enlarge)

Baseball Board Block Diagram (Click to Enlarge)

The company solution will be delivered in an anodized aluminum enclosure, and come pre-loaded with a “qualified Linux open source package maintained in mainline”.  The mini PCIe slots are said to support LoRa, 3G, LTE, and Sigfox wireless modules, as well as other compliant PCIe modules for GPS, Wi-Fi, Bluetooth, etc… functions. Few technical details about the software are available publicly right now, but these might eventually show up on

Baseball boards will sample in May, with volume production scheduled for this summer.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Spark Electron Cellular Module for M2M Projects Comes with a $3 Monthly Data Plan (Crowdfunding)

February 26th, 2015 1 comment

Spark IO started with Spark Core, a tiny Wi-Fi module, followed with Spark Photon is a cheaper, faster, and tinier Wi-Fi module, and now the company is launching Spark Electron to bring cellular connectivity to hobbyist projects at an affordable cost and small form factor.


Spark Electron specifications:

  • MCU – ST Micro STM32F205 ARM Cortex M3 microcontroller @ 120 MHz with  1MB Flash, 128K RAM
  • Cellular Connectivity – U-Blox SARA U-series (3G) or G-series (2G) modem + NanoSIM card slot + u.FL connector for Antenna
  • Headers – 36 pins with 28 GPIOs (D0-D13, A0-A13), plus TX/RX, 2 GNDs, VIN, VBAT, WKP, 3V3, RST
  • USB – micro USB port for power and programming
  • Misc – Setup and reset buttons, LED
  • Dimensions – 5.08 cm x 2.03 cm x 0.76 cm (1.27 cm including headers)

The board can be programmed with Wiring (Arduino’s programming language), C/C++, or ARM assembly. It’s longer than Spark Core/Photon, but still compatible with existing shields.

M2M_Number_SMS_Typical_UseOne problem individuals may have for M2M cellular projects is to find a low SIM card, so the company is also providing a SIM card with a no contract $2.99 monthly plan that currently works in the US, Canada and Europe. The carrier? Themselves, as they have become a Mobile Virtual Network Operator (MVNO) and manage towers and carrier relationship. The plan is good for 1MB data, or about 20,000 SMS with a 50 bytes size, and each additional megabyte cost $0.99.

Spark WebIDE

Spark Dev / Web IDE

Development can be done via the company Web IDE running in your browser, or Spark Dev IDE based on Atom project currently available for Windows and Mac, and Linux coming soon. So if you are using Linux, you’ll probably want to go with the Web IDE initially. As previously mentioning, if you’re used to developed on Arduino, Wiring is supported, and development will feel very similar. A REST API is also available, and you can control the module with SparkJS (JavaScript), webhooks, IFTTT, etc.. The core firmware use standards like HTTP, AES, RSA, and CoAP based on open source software.

If you’d like to add cellular connectivity to your objects (maybe your bicycle), but are not into programming, you can use Tinker mobile app for iOS and Android. Spark Electron firmware can be upgraded over the air (FOTA) without any cable.

The project is up on Kickstarter, and has already largely surpassed its $30,000 with $120,000 pledged so far. All early bird reward are gone, but you can still get  Spark Electron 2G with a SIM card for $39, and Spark Electron 3G with a SIM card for $59. They also have other kits adding GPS, battery, sensors and various quantities of Electron module. Shipping is free to the US and between $10 to $25 to the countries part of the campaign, and delivery is planned for October 2015. The company notes that 2G networks will be phased out in 2017 in the US, and recommends the 3G module to US residents.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Atmel Introduces Wi-Fi / Bluetooth Combo SoCs for the Internet of Things

January 22nd, 2015 3 comments

Atmel has recently announced two SoCs supporting Wi-Fi and Bluetooth 4.0 that target M2M and IoT applications, namely WILC3000 wireless link controller and WINC3400 network controller which both integrate a power amplifier, LNA, switch and power management unit.

WILC3000 Block Diagram (Click to Enlarge)

WILC3000 Block Diagram (Click to Enlarge)

WILC3000 and WINC3400 should share the following specifications:

  • MCU – Cortus APS3 32-bit processor
  • ROM/Flash – 256KB instruction/boot ROM (160KB for 802.11 and 96KB for Bluetooth) along with a 768 bits of non-volatile eFuse memory
  • RAM – 420KB instruction RAM (128KB for 802.11 and 292KB for Bluetooth), and a 128KB data RAM (64KB for 802.11 and 64KB for Bluetooth), as well as 160KB shared/exchange RAM (128KB for 802.11 and 32 KB for Bluetooth)
  • Wi-Fi

    • IEEE 802.11 b/g/n RF/PHY/MAC SOC (2.4 GHz)
    • IEEE 802.11 b/g/n (1×1) for up to 72 Mbps
    • Wi-Fi Direct and Soft-AP support
    • Supports IEEE 802.11 WEP, WPA, WPA2 Security, China WAPI security
  • Bluetooth
    • Version 4.0 Low Energy
    • Class 1 & 2 transmission
    • HCI (Host Control Interface) via high speed UART
    • PCM audio interface
  • On-chip memory management engine to reduce host load
  • 1x SPI, 1x SDIO, 1x I2C, and 1x UART host interfaces
  • Operating Voltage – 2.7 – 3.3 V
  • Operating temperature range – -30°C to +85°C
  • Package – 6x6mm QFN;  48 pins. WLCSP (Wafer Level Chip Scale Package) is also available.

According to the information available on Atmel website WILC3400 adds the following:

  • Fast boot options:
    • On-Chip Boot ROM (firmware instant boot)
    • SPI flash boot (firmware patches and state variables)
    • Low-leakage on-chip memory for state variables
    • Fast AP re-association (150ms)
  • On-Chip Network Stack to offload MCU:
    • Integrated Network IP stack to minimize host CPU requirements
    • Network features: TCP, UDP, DHCP, ARP, HTTP, SSL, and DNS

So as I understand it the main difference between WILC3000 and WINC3400 is that the former provides low level Bluetooth / Wi-Fi connectivity, but the IP stack must be handled on a separate MCU / processor, while the latter also embeds the IP stack and Bluetooth Smart profiles.

WILC3000 chip is available now, and a fully certified module of this chip will be available in April 2015, and WINC3400 SiP and its module will be also be available at the same time. Pricing information has not be disclosed. A WINC3400 integrated module on an Xplained Starter Kit platform is also planned for Q2 2015. A few more details can be found on WILC3000 and WINC3400 product pages, including WILC3000 datasheet.


Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Categories: Hardware, Processors Tags: atmel, bluetooth, IoT, m2m, wifi