Archive

Posts Tagged ‘rtos’

Texas Instruments Announces AMIC110 Sitara Industrial Communication Processor & Development Board

June 9th, 2017 8 comments

Texas Instruments Sitara AM335x SoCs integrate an ARM Cortex A8 processor @ up to 1GHz with a PRU-ICSS for industrial communication, but also include a display controller, an optional PowerVR GPU, and a rich-set of peripherals making it useful for a wide range of applications. The company has now launched AMIC110 Sitara processor with a Cortex A8 core @ 300 MHz, and a PRU-ICSS specifically designed for industrial Ethernet, and fieldbus communication.

Texas Instruments AMIC110 Sitara processor key features and specifications:

  • CPU – ARM Cortex-A8 processor @ up to 300 MHz with NEON, 32+32KB I/D cache, 256KB L2 cache, 176KB boot ROM, 64KB RAM
  • External Memory Interfaces (EMIF) – mDDR(LPDDR), DDR2, DDR3, DDR3L Controller up to 1GB
  • General-Purpose Memory Controller (GPMC) – 8-bit & 16-bit Asynchronous Memory Interface with up to Seven Chip Selects (NAND, NOR, Muxed-NOR, SRAM)
  • 2x programmable Real-Time Unit Subsystem and Industrial Communication Subsystem (PRU-ICSS) supporting  EtherCAT, PROFIBUS, PROFINET, EtherNet/IP, and more (10 communication standards in total)
  • Misc – Power, Reset, and Clock Management (PRCM) Module; Real-Time Clock (RTC)
  • Peripherals
    • Up to 2x USB 2.0 OTG Ports
    • Up to 2x Controller-Area Network (CAN) Ports v 2 Part A & B
    • Up to 2x Multichannel Audio Serial Ports (McASPs)
    • Up to 6x UARTs, up to x3 I2C Master and Slave Interfaces
    • Up to 2x Master and Slave McSPI Serial Interfaces
    • Up to 3x MMC, SD, SDIO Ports
    • Up to 4x  Banks of General-Purpose I/O (GPIO) Pins with 32 GPIO pins per bank
      Up to 3x External DMA Event Inputs that can Also be Used as Interrupt Inputs
    • 8x 32-Bit General-Purpose Timers
    • Watchdog Timer
    • 12-Bit Successive Approximation Register (SAR) ADC
    • DMA controller
  • Device Identification with Electrical Fuse Farm (FuseFarm)
  • Debug Interface Support – JTAG and cJTAG for ARM, PRU-ICSS Debug, supports Device Boundary Scan; supports IEEE 1500
  • Security – Secure Boot
  • Package – 324-Pin S-PBGA-N324 Package (ZCZ Suffix), 0.80-mm Ball Pitch

AMIC110 supports high-level operating systems (HLOS) with  Linux and TI-RTOS available free of charge from TI, but other RTOS are supported by partners. While AMIC110 microprocessor  can work in standalone mode, it may be used in conjunction with TI C2000 MCUs over SPI for “connected drives” (e.g. motors) as shown in the diagram below.

Click to Enlarge

In order to get started and/or evaluate the new processor, Texas Instruments can also provide AMIC110 ICE (Industrial Communication Engine) evaluation board with the following features:

  • SoC – AMIC110 SoC featuring Sitara ARM Cortex-A8 and PRU-ICSS
  • System Memory – 512 MByte DDR3
  • Storage – 8 MByte SPI flash
  • Connectivity – 2x 10/100M industrial Ethernet connectors with external magnetics
  • Communication with optional host processor – 3.3V SPI interface to any host processor such as TI C2000
  • Debugging – 20-pin JTAG header to support all types of external emulator
  • Power Supply – 5-V input supply, single chip power management IC TPS650250 to power entire board and dual DP83822 PHYs
  • Certifications – RoHS and REACH compliant design;  EMC-compliant, industrial temp dual port EtherCAT slave with SPI interface

AMIC110 ICE EVM

Fully documentation with user guides, hardware design files (schematics, PCB layout, Gerber files..), development tools. and software can be downloaded from Technical Documents section of the board’s page.

TI AMIC110 Sitara processor SoC sellers for $6.75 per unit for 1K order, and the development board can be purchase for $195. Visit Texas Instruments AMIC110 product page for further details.

Via LinuxGizmos

Samsung Unveils Tizen 4.0 with .NET Framework, Low End IoT Devices Support

May 17th, 2017 No comments

We’ve already seen the announcement of Samsung ARTIK 053 WiFi module with Tizen RT this morning, but it appears that Tizen RT (Real Time) is part of a Tizen 4.0 that will add support to IoT devices, as well as introduce changes from the developers’ perspective.

Samsung Electronics talked a bit more about Tizen Next (Tizen 4.0) at the Tizen Developer Conference (TDC) 2017 taking in place on May 16-17 in San Francisco. Few details are provided in the press released, but we could learn that “the Tizen 4.0 platform has been extended to Tizen RT (Real-Time) to involve high-end products such as TVs and mobile devices as well as low-end products such as thermostats, scales, bulbs, and more”. Tizen RT page explains that the real-time operating system is designed to run on Cortex M/R MCU with less than 2 MB RAM, less than 16 MB flash, and consists of a lightweight RTOS called TinyAra (based on NuttX), IoT protocols (IoTivity and LWM2M), and JerryScript/IoT.js.

Tizen 4.0 will also make it easy for developers used to Microsoft Visual studio and C# language, since the Microsoft .NET framework and Xamarin UI framework has been introduced into Tizen. The video animation below explains some of the benefits of Tizen 4.0 for developers and manufacturers.

Samsung also demonstrated the latest Samsung Z4 smartphone (still based on Tizen 3.0), and launched the Tizen Mobile Incentive Program for global application developers to offer a one million dollar prize every month when the app is sold and placed in the Top 100 on the Tizen Store from February to October 2017.

According to Tizen Roadmap, Tizen 4.0 M1 (Milestone 1) will be released next month with support for .NET framework 2.0 and Xamarin 2.5 with x86 emulation, but you’ll need to wait for Tizen M2 release in October to get support for ARM32 native .NET support, and other features getting out of preview such as the package manager, CLI, and the profiler. However, there have been three preview releases before that, you can play with Tizen .NET developer preview 3.

Categories: Linux, Tizen, Video Tags: dotnet, IoT, rtos, tizen, xamarin

Whitecat ESP32 N1 Board Combines ESP32 WiFi + Bluetooth SoC with a LoRa Transceiver, Runs Lua RTOS

May 2nd, 2017 4 comments

Espressif ESP32 SoC is gaining traction right now as prices have come down, and there’s still an on-going fight among LPWAN standards with LoRaWAN being fairly popular in Europe. Whitecat, a group of engineers from several companies based in Citilab, Barcelona, Spain, has designed a board that combines both ESP32 and a LoRA transceiver, bringing an alternative to Pycom LoPy board, but instead of running MicroPython, they have developed Lua-RTOS.

Whitecat ESP32 N1 hardware specifications:

  • SoC – Espressif ESP32 dual-core Tensilica LX6 microprocessor @ up to 240MHz with 520kB internal SRAM
  • Storage – 4MB flash memory
  • Connectivity
    • LoRa WAN transceiver working in the 868 (EU) MHz / 915 (USA) MHz with on-board antenna, and u.FL connector for external antenna
    • Integrated 802.11b/g/n WiFi transceiver with on-board antenna, and u.FL connector for external antenna
    • Integrated dual-mode Bluetooth (classic and BLE)
  • I/O Headers – 2x 16-pin with SPI, I2C, I2S, SDIO, UART, CAN, ETHERNET, IR, PWM, DAC, ADC.
  • Power Supply
    • 3.3 to 5.5V operating range through input voltage regulator
    • Second voltage regulator for power on / power off sensors through a dedicated GPIO
  • Dimensions – 78 x 26 mm

By default, the board runs Lua RTOS real-time operating system designed to run on embedded systems, and currently supporting ESP32, ESP8266 and PIC32MZ platforms. The OS has a  3-layer design:

  1. Top layer – Lua 5.3.4 interpreter with special modules to access the hardware (PIO, ADC, I2C, RTC, etc …), and middleware services provided by Lua RTOS (Lua Threads, LoRa WAN, MQTT, …).
  2. Middle layer – Real-Time micro-kernel powered by FreeRTOS.
  3. Bottom layer – Hardware abstraction layer, which talk directly with the platform hardware.

Lua RTOS boards can be programmed with Lua programming language directly, or using a block-based programming language that translates blocks to Lua.

ESP8622 and PIC32 targets have some limitations so features like SSL are not implemented, but ESP32 supports all features listed below:

  • Lua Thread, Pthread API
  • SSL
  • On-board editor, Shell
  • FAT and SPIFFS file systems
  • WiFi, Ethernet
  • LoRaWAN class A & B node, LoRa WAN gateway
  • ADC, SPI, UART, PIO, PWN, I2C, CAN,
  • Sensor, Servo

Bluetooth is missing from the list. You’ll find Lua RTOS source code and instructions to get started on Github. The Wiki is also also a good place to get started with ESP32 N1 Board and Lua-RTOS.

Board pricing is currently a little on the high side, as ESP32 N1 board is sold for 30 Euros without Lora, and 40 Euros with LoRa. Worldwide shipping adds 5 Euros to the total. You’ll find more details, including the purchase links, on Whitecat ESP32 N1 page.

MYD-C437x-PRU Development Board Leverages TI Sitara AM437x Programmable Real-time Unit

February 16th, 2017 No comments

MYIR Technologies launched MYC-C437x system-on-module based on TI Sitara AM437X processor, and the corresponding MYD-C437x development board at the end of 2015, but the latter did not make use of the processor’s PRU-ICSS (Programmable Real-Time Unit Subsystem and Industrial Communication SubSystem) block. The company has now released a new version of the baseboard called MYC-C437x-PRU which exposes I/Os pins to leverage the PRU-ICSS and enable implementation of protocols like EtherCAT and Profibus.MYD-C437x-PRU industrial development board specifications:

  • System-on-Module – MYC-C437x module with
    • SoC – Texas Instruments AM437x ARM Cortex A9 processor @ up to 1GHz with PowerVR  SGX530 GPU (AM4378/AM4379 only)
    • System Memory – 256 or 512MB (default) DDR3 SDRAM
    • Storage – 4GB eMMC Flash (reserved 256/512MB Nand Flash design), 16MB QSPI Flash (unpopulated by default), 32KB EEPROM
    • Connectivity – Gigabit Ethernet PHY
  • Storage – 1x micro SD slot
  • Serial ports – 1x 3-wire RS232 debug serial port, 2x  5-wire RS232 serial port, 1x RS485 with isolation
  • USB – 1x USB 2.0 host port, 1x mini USB 2.0 device port
  • Connectivity – 1x Gigabit Ethernet interface, 2x 10/100 Mbps PRU-ICSS Ethernet interfaces
  • Display – 1x 16-bit LCD interface, 1x 24-bit LCD interface, 1x 4-wire resistive touch screen interface
  • Camera – 1x Camera interface (0.5mm pitch 30-pin FPC connectors)
  • Debugging – 20-pin JTAG interface
  • Other Expansion Ports
    • 1x CAN interface with isolation
    • 3x 20-pin expansion connectors (2.0mm pitch) with:
      • 8x ADC
      • 2x SPI, 1x I2C, 2x UART
      • PRU-UART with support for PROFIBUS
      • 2x EnDat, 2x eQEP
      • eHRPWM
  • Misc – 4x Buttons (1x reset, 1x PMIC, 2x user), 1x power LED (red), 3x user LEDs (blue)
  • Power supply – +12V/1.5A (base board)
  • Dimensions – 150mm x 105mm (4-layer PCB)
  • Temperature Range – -40 to 85 Celsius (industrial grade)

The company provides a Linux 4.1.18 BSP for the modules and board, as well as Texas Instruments’ SYS/BIOS v6.45 Real-time Operating System. Note that you can only used one LCD interface at a time, and some of EtherCAT and LCD signals are multiplexed so only one can be used.

You can find some limited hardware & software documentation on the product page, as well as purchase MYD-C4377-PRU development board with TI Sitara AM4377 SoC, 512MB DDR3, and a 4GB eMMC flash for $189. Several modules are also offered with LCD displays, WiFi, and cameras.

Embedded Linux Conference & IoT Summit Europe 2016 Schedule

August 2nd, 2016 4 comments

Embedded Linux Conference & IoT summit 2016 first took place in the US in April, but the events are now also scheduled in Europe on October 11 – 13 in Berlin, Germany, and the schedule has now been published. Even if you are no going to attend, it’s always interesting to find out more about the topic covered in that type of events, so I had a look, and created my own virtual schedule with some of the sessions.

Embedded_Linux_Conference_Europe_2016Tuesday, October 11

  • 10:40 – 11:30 – JerryScript: An Ultra-lightweight JavaScript Engine for the Internet of Things – Tilmann Scheller, Samsung Electronics

JerryScript is a lightweight JavaScript engine designed to bring the success of JavaScript to small IoT devices like lamps, thermometers, switches and sensors. This class of devices tends to use resource-constrained microcontrollers which are too small to fit a large JavaScript engine like V8 or JavaScriptCore.

JerryScript is heavily optimized for low memory consumption and runs on platforms with less than 64KB of RAM and less than 200KB of flash memory. Despite the low footprint, JerryScript is a full-featured JavaScript engine implementing the entire ECMAScript 5.1 standard. It is actively used in production and runs already on hundreds of thousands of smartwatches!

JerryScript is an open source project and has been released under the Apache License 2.0. The talk will include a demo showing JavaScript code executing on top of JerryScript on a resource-constrained microcontroller.

  • 11:40 – 12:30 – Read-only rootfs: Theory and Practice – Chris Simmonds, 2net

Configuring the rootfs to be read-only makes embedded systems more robust and reduces the wear on flash storage. In addition, by removing all state from the rootfs it becomes easier to implement system image updates and factory reset.

In this presentation, Chris shows how to identify components that need to store some state, and to split it into volatile state that is needed only until the device shuts down and non-volatile state that is required permanently. He gives examples and shows various techniques of mapping writes onto volatile or non-volatile storage. To show how this works in practice, he uses a standard Yocto Project build and shows what changes you have to make to achieve a real-world embedded system with read-only rootfs. In the last section, Chris considers the implications for software image update. Expect a live demonstration.

  • 14:00 – 14:50 – Comparison of Linux Software Update Technologies – Matt Porter, Konsulko

The update of software in an embedded Linux system has always been an important part of any product. In the past, however, planning and design for software update was often an afterthought in system design. Further, software update mechanisms for embedded Linux products were typically implemented as ad hoc one-off projects within each product company. As the requirements for products have matured to include security updates at a frequent intervals, software update strategy has become a focal point of product development. This session will explore a number of different Linux software update technologies that are FOSS projects, comparing each for their strengths and weaknesses. In order to better understand the applicability of these technologies, we will also deep dive into both common and uncommon use cases that drive requirements for these software update mechanisms.

  • 15:00 – 15:50 – Building a Micro HTTP Server for Embedded System – Jian-Hong Pan

Apache HTTP Server, NGINX .. are famous web servers in the world. More and more web server frameworks come and follow up, like Node.js, Bottle of Python .., etc. All of them make us have the abilities to get or connect to the resources behind the web server. However, considering the limitations and portability, they may not be ported directly to the embedded system which has restricted resources. Therefore, we need to re-implement an HTTP server to fulfill that requirement.

Jian-Hong will introduce how he used the convenience of Python to implement a Micro HTTP Server prototype according to RFC 2616/HTTP 1.1. Then, re-write the codes in C to build the Micro HTTP Server and do the automated testing with Python Unit Testing Framework. Finally, he’ll explain how he combined the Micro HTTP Server with an RTOS, and lit the LEDs on an STM32F4-Discovery board.

  • 16:10 – 17:00 – Stuck in 2009 – How I Survived – Will Sheppard, Embedded Bits Limited

When developing Linux based products it’s desirable to use the latest version of the Linux kernel – however this is not always possible. In this presentation Will Sheppard will enlighten you with his experiences in developing a product based on a 2.6.28 kernel. Throughout the presentation he will share with you the reasons why you can be stuck with an old kernel, the issues this causes and the surprising and unexpected benefits that also arise. The presentation will also give you an indication as to how far the kernel has developed since 2009 and perhaps some hope if you too are also stuck working in the past.

  • 17:10 – 18:00 – Power Management Challenges in IoT and How Zephyr RTOS Meets Them – Ramesh Thomas, Intel

An OS that runs on tiny IoT devices is already meeting several challenges. These challenges are due to the limited resources in these devices and the diverse nature of the applications and the ecosystem. These same reasons make adding an effective power management infrastructure extremely complex. These devices that run on tiny batteries for extensive periods, mostly unattended, have a very critical need to conserve power.

Zephyr is a RTOS from Intel, designed for IoT and wearable devices. It is open source and supports x86, ARM and ARC SoC platforms. It has a small footprint and can run with very less memory. Power management is built in the core of its scheduling and idling design. It exports infrastructure for PM services to implement custom power policies.

This presentation will give an insight into the Zephyr power management design and the philosophies behind it.

  • 18:10 – 19:00 – BoF: Linux Device Performance Framework – Michael Turquette, BayLibre

Complex system-on-chip processors provide performance levels for their devices and peripherals. The same chips also provide interconnects with performance knobs connecting these devices. For years, Linux has not provided a way to express the relationship between a device and its performance states, nor a uniform method for drivers to change these states. There are many solutions to this in downstream vendor trees. Let’s fix that.

The purpose of this BoF is to start a discussion around the topic with a wide audience, solicit feedback on the currently proposed approach and move forward with consensus. This BoF will discuss the types of performance states that need to be modeled, existing Linux driver frameworks that can be re-used, new code that needs to be written and how Device Tree plays a role. Will we write a new DVFS or Interconnect Framework? Attend and find out!

Wednesday, October 12

  • 09:00 – 09:50 – Supporting the Camera Interface on the C.H.I.P – Maxime Ripard, Free Electrons

Every modern multimedia-oriented ARM SoC usually has some kind of camera interface to be able to capture a video (or photo) stream from an external camera. The framework of choice to support these controllers in Linux is the Video4Linux subsystem, also called v4l2.

This talk will walk through the v4l2 stack, the architecture of a v4l2 driver and the interaction between the SoC driver and its camera’s. The presentation is based on the work Free Electrons has done to develop such a driver for the Allwinner SoCs, as part of enabling the C.H.I.P platform with the upstream Linux kernel.

  • 10:00 – 10:50 – How to Develop the ARM 64bit Board, Samsung TM2 with Exynos5433 – Chanwoo Choi, Samsung Electronics

In the last period of twenty years ARM has been undisputed leader for processor’s architecture in the embedded and mobile industry. With its 64 bit platform, ARM widens up its field of applicability. The ARMv8 introduces a new register set, it is compatible with its 32 bit predecessor ARMv7 and suits best those system that try to be amongst the high end performance devices. Tizen OS is an open multi profile platform that can run on TV, mobile, cars and wearables. Samsung TM2 board based on Exynos5433, which patches has been recently posted to mainline, is an ARM 64-bit board supported by Tizen 64-bit. However, during the bring-up, the kernel developers have faced many challenges that will be presented in this session. The presentation will go through a number of issues and the way they have been solved in order to make Tizen run on a 64 bit platform.

  • 10:45 – 11:35 – Devicetree Hardware Autoconfiguration – Hans de Goede, Red Hat

One can buy 7″ android tablets for around $35 now, assuming one gets the standard Q8 Allwinner based model, these are actually supported by the mainline linux kernel now. These tablets use a standard case + SoC + display, which get paired with a different touchscreen-controller, accelerometer and wifi chip for every other batch.

This talk will outline my experience in making a single devicetree file covering all variants using an in kernel hardware auto-detection module which creates and applies devicetree changesets depending on the detected hardware. This talk will give the audience an idea what is and is not possible wrt dynamic devicetree usage as well as give does and don’ts for people who want to use dynamic devicetree themselves.

  • 11:45 – 12:35 – Wyliodrin STUDIO: An Open Source Tool for IoT Development – Alexandru Radovici, Wyliodrin

Have you been using your development board (like the Raspberry pi for example) as a glorified computer? Are you tired of needing to hookup your boards to a display and keyboard any time you want to program them?

Wyliodrin STUDIO is a software development tool especially created for the design of IoT projects. It comes as an open source Chrome extension so that programmers can use it independently of their specific OS platform and with little setup overhead.

Wyliodrin STUDIO abstract away many of the issues regarding setting up your development boards and allows programmers to directly focus on their projects. It offers a friendly programming environment with many of the features of advanced IDEs, like Eclipse. For beginners, Wyliodrin STUDIO offers a large range of tutorials to help people take their first steps in IoT development. MagPi gave Wylidorin STUDIO a 5/5 rating.

  • 14:00 – 14:50 – ASoC: Supporting Audio on an Embedded Board – Alexandre Belloni, Free Electrons

ASoC, which stands for ALSA System on Chip, is a Linux kernel subsystem created to provide better ALSA support for system-on-chip and portable audio codecs. It allows to reuse codec drivers across multiple architectures and provides an API to integrate them with the SoC audio interface.

This talk will present the typical hardware architecture of audio devices on embedded platforms, present the ASoC API and how to use it for machine drivers, which are used to glue audio codecs with the processor audio interface. Examples, common issues and debugging tips will also be discussed.

  • 15:00 – 15:50 – Cameras in Embedded Systems: Device Tree and ACPI View – Sakari Ailus, Intel

Cameras in embedded systems are often collections of different components rather than monolithic devices such as USB webcams. They consist of sensors, lenses, LED or xenon flashes and ISPs, each of which are individual devices with their specific drivers.

Once the prevalent solution for supporting hardware variation between different ARM based systems was platform data. Since around 2011 new platform data files have had hard time getting to mainline, the preferred solution being the Device tree. However, Device tree support in the V4L2 framework was not around until over a years after that, additionally help from the V4L2 async framework is also required in order to achieve the same functionality as with platform data.

This talk shows how the frameworks are used in drivers and Device tree source, reviews the status of ACPI and discuss potential future developments.

  • 16:30 – 17:20 – Swapping and Embedded: Compression is the Key – Vitaly Wool

Ever since Linux started running on embedded devices, having a swap for such had been considered a misconfiguration rather than a method for overcoming RAM shortage or performance booster. This attitude started to change with the spread of Android devices which usually don’t have a problem utilizing virtually any amount of memory. An with the introduction of ZRAM the usage of a compressed swap in RAM became more useful and more popular. This talk will give a comprehensive description of ZRAM and its counterpart, zswap, a summary of pros and cons of both. This talk will also cover a brand new z3fold compressed memory allocator which can be used for both zswap and ZRAM, of course presenting measurement results for these, obtained on various devices, ranging from set top boxes to laptops, not to forget Android phones.

Thursday, October 14

  • 09:00 – 09:50 – Time is Ready for the Civil Infrastructure Platform – Yoshitake Kobayashi, Corporate Software Engineering Center & Urs Gleim, Seimens

The Civil Infrastructure Platform (CIP) – launched in April – CIP defined and started to realize a super long-term supported open source “base layer” for industrial grade software. This base layer aims to be used for current and future industrial systems which supports machine-to-machine connectivity for digital future. This kind of systems, being the field for decades, should have long-term support for security and robustness reasons. In this talk, we will show the first steps on CIP development. This includes initial set of components for the base layer and its maintainers. Are you ready? It’s time to start your development with and for the CIP.

  • 10:00 – 10:50 – Introduction to Memory Management in Linux – Alan Ott, Signal 11 Software

All modern non-microcontroller CPUs contain a memory management unit and utilize the concept of virtual memory. This presentation will describe the different types of virtual memory spaces and mappings used in the Linux kernel, the cases in which they are useful, how they are implemented in the kernel, and how they differ from user space memory. Concepts such as the hardware memory-management unit (MMU) and translation lookaside buffer (TLB) will be discussed, as well as software concepts like kernel page tables. User space concepts such as growable stacks, memory paging, memory mapping, page faults, exceptions, and other memory-related conditions will be covered as well.

  • 11:15 – 12:15 – MinnowBoard Delta: Fishing for Easy IoT Hardware – David Anders, Intel

With the introduction of the Zephyr Project, a small scalable real-time operating system for use on resource-constrained systems, the need for an easy to use platforms to enable Internet of Things development has grown. With the idea of enabling both hardware and software developers to quickly prototype and develop proof-of-concept, as well as transitioning directly to product, the MinnowBoard Delta was designed as an open source hardware platform to highlight the Zephyr Project. This presentation will cover design considerations as well as implementation methods for creating open source hardware specifically for open source software.

  • 12:15 – 13:05 – Cloud Platforms for the Internet of Things: How Do They Stack Up? – Koustabh Dolui, Politecnico di Milano

With the advent of the Internet of Things (IoT), there has been a recent surge in the number of cloud platforms offering their services for data collection and processing from IoT devices. These platforms, open-source and closed, are diverse in terms of ease of use, architecture, data storage, privacy, security and communication protocols. However, how these cloud platforms measure up against each other, given the set of tradeoffs that they present, remains quite unexplored in existing literature. In this presentation, Koustabh will present a detailed study on the architecture that these platforms are based on and how the open source platforms compare against closed platforms. Koustabh will compare the platforms based on a real data-set generated from a sensor network deployed at the heritage site of Circo Massimo, Rome, as a part of an ongoing project at Politecnico di Milano, Italy.

  • 14:30 – 15:20 – GPIO for Engineers and Makers – Linus Walleij
We will go over the changes to the GPIO subsystem in the recent years, including GPIO descriptor refactoring, new support for things like open drain, some words on device tree and ACPI hardware descriptions, and we will discuss the new userspace character device ABI for GPIO chips and how use cases such as those presented by the maker community or industrial control clients can benefit from it. We will also talk a bit about the future direction of the subsystem.
  • 15:30 – 16:20 – FDO: Magic ‘Make My Program Faster’ Compilation Option? – Pawel Moll, ARM

Feedback Driven Optimisation (FDO), also known as Profile Guided Optimisation (PGO) is a well known code optimisation technique, employed by compilers since mid XX century, yet not widely used in the wild these days. It relies on providing runtime-captured information about code execution (eg. “branch taken or not?”) during next code compilation, improving quality of decisions made by compiler heuristics.

To be fair, there were good reasons for its demise which I hope to discuss, mainly time and complexity overhead and deployment difficulties, but there is some hope on the horizon, coming with new approach, called AutoFDO and originating at Google, based on statistical profiling (namely Linux perf + extra tools) and source code level attribution. I’ll discuss existing support for it available in mainline GCC and LLVM and give examples of real-life, successful deployments.

If you’d like to attend the event, you can do so by registering online, and paying the entry fee:

  • Early Registration Fee: US$550 (through August 1, 2016)
  • Standard Registration Fee: US$650 (August 2, 2016 – September 3, 2016)
  • Late Registration Fee: US$850 (September 4, 2016 – Event)
  • Student Registration Fee: US$175 (valid student ID required)
  • Hobbyist Registration Fee: US$175

Micrium µC/OS RTOS Is Now Free for Makers and Startups

June 24th, 2016 1 comment

According to UBM embedded market study for 2015, Micrium µC/OS real-time operating system only came second after FreeRTOS when the company asked close to 1,000 engineers and managers around the world which operating systems they were currently using in their embedded products. The OS appears to be particularly popular in Asia, and the results are all the more impressive considering it’s a commercial operating systems.

Operating Systems used in Embedded Systems (UBM Survey)

Operating Systems used in Embedded Systems (UBM Survey)

But Micrium decided to bring more people on board by announcing a free version called µC/OS for Makers targeting hobbyists and startups (<$100k revenues) in February earlier this year. The real-time operating system includes a preemptive multitasking real-time kernel with optional round robin scheduling, has a low footprint (6K to 24K bytes code space, 1K+ bytes data space), support various types of targets including ARM Cortex-M and Cortex-A based MCU and processors such as STMicro STM32,  NXP Kinetis, Cypress PSoC5, etc.., as well as Atmel AVR, TI MSP430 and many others.

The Maker version of the OS excludes the CAN module, Building Blocks and the Graphical UI library, but comes with USB, TCP/IP, Modbus, and file system stacks. A summary of the different licenses for µC/OS-III is shown in the table below.

Click to Enlarge

Click to Enlarge

You can find more information on Micrium Maker page, or directly download it  (free email registration required) to try it out on your own platform or board.

Via 43oh.com

Apache Mynewt RTOS for IoT Includes an Open Source Bluetooth 4.2 LE Stack for MCUs

June 15th, 2016 7 comments

The Apache Software Foundation has recently released version 0.9 Apache Mynewt open source real-time operating systems for micro-controllers under… an Apache 2.0 license. The RTOS works on STMicro STM32 Cortex-M4, and Arduino Zero / M0 Cortex-M0 boards, but they’ve also implemented the  first open source Bluetooth Low Energy stack for MCUs, starting with support for Nordic Semi nRF52 Cortex-M4 and nRF51 Cortex-M1 evaluation boards, and acting as a replacement for Nordic SoftDevice Bluetooth Smart / LE solution.

Apache_Mynewt_System_Block_DiagramThe operating system competes with ARM mbed, the Zephyr Project, and RIoT, but the foundation claims it is the only one that’s both community driven and permissively licensed (Apache 2.0) project in the embedded space.

The OS is modular and can be configured with a Go-like build and package management tool with components such as secure boot loader, flash file system and TLV storage mechanism, rich logging infrastructure, circular buffering schemes, and Bluetooth 4.2 Low Energy. WiFi, Thread, and Bluetooth 5 are also part of the roadmap, and support for Javascript and Python is currently being worked on.

You can find more information and/or get started with the project on Apache Mynewt microsite.

$20 MediaTek LinkIt 7687 Arduino Compatible WiFi IoT Board Runs FreeRTOS

April 22nd, 2016 1 comment

MediaTek Labs has already launched several WiFi boards for IoT applications starting with LinkIt ONE, and later LinkIt Smart 7688 running OpenWrt, and the company is now about to launch LinkIt 7687 HDK (Hardware Development Kit) powered by Mediatek MT7687F Cortex-M4 SoC,  running FreeRTOS, and developed & produced by Silicon Application Corp (SAC).

LinkIt_7687LinkIt 7687 (WS3489) board specifications:

  • SoC – MediaTek MT7687F ARM Cortex-M4F MCU @ 192MHz with 352 KB SRAM, 64KB ROM, and 2 MB serial flash in package, integrated security engine, and built-in 802.11n WiFi. 8×8 mm 68-pin QFN package
  • Connectivity – 1×1 802.11 b/g/n WiFi with on-module PCB antenna and U.FL connector.
  • USB – 1x micro USB for power, debugging (Coresight Debug Access Port + Virtual COM)
  • Expansion
    • Arduino Uno Rev. 3 headers + an extra 8-pin extension connector.
    • Mass Storage Device (MSD) flash programming interface.
    • Reserved headers for power consumption (current) measurement.
  • Misc – LEDs for UART communication, power, and 6x user customizable; 3x push buttons for reset, RTC interrupt, and external interrupt; configuration jumpers for power source and boot mode (embedded flash or UART)
  • Power supply – 5V via micro USB port, or 1.8 to 3.2V using VIN pin
  • Dimensions – 108.5 x 60.5 mm
  • Weight – 25 grams
  • Temperature Range – Operating: -40 to 85°C
Mediatek MT7687F Block Diagram

Mediatek MT7687F Block Diagram

This is the first board for MediaTek LinkIt Development Platform for RTOS, which is said to provide “the convenience of a single toolset and common APIs implemented over a popular RTOS”, in this case, FreeRTOS with additional components such as TCP/IP, SSL/TLS, HTTP (client and server), SNTP, DHCP daemon, MQTT, XML and JSON. You can download MediaTek LinkIt SDK v3.0, compatible with Windows and Linux operating systems, to work on it.

LinkIt_for_RTOS

Documentation for the board, including datasheets, a user’s guide, and the hardware reference files, can be found on Hardware Development Kits for the MediaTek LinkIt Development Platform for RTOS page.

Mediatek MT7687 HDK and MT7687 WiFi module are shown to be “coming so” for respectively $19.99 and $4.99.

Via HackerBoards (previously LinuxGizmos)