Archive

Posts Tagged ‘wifi’

802.11ax WiFi Aims to Deliver Higher Throughput (Up to 10 Gbps), Better Handle High Density Scenarios

May 27th, 2016 1 comment

802.11ax WiFi, also known as High-Efficiency Wireless (HEW), aims to improve the average throughput per user by a factor of at least 4 times in dense user environments, with a total bandwidth of 10 Gbps over 2.4 and 5.0 GHz . The new standard is still work in progress and is expected to be published in 2019.

802.11ac_vs_802.11ax

802.11ax WiFi key features include:

  • Backwards compatible with 802.11a/b/g/n/ac
  • Increase 4x the average throughput per user in high-density scenarios, such as train stations, airports and stadiums.
  • Data rates and channel widths similar to 802.11ac, with the exception of new Modulation and Coding Sets (MCS 10 and 11) with 1024-QAM.
  • Specified for downlink and uplink multi-user operation by means of MU-MIMO and Orthogonal Frequency Division Multiple Access (OFDMA) technology.
  • Larger OFDM FFT sizes (4x larger), narrower subcarrier spacing (4x closer), and longer symbol time (4x) for improved robustness and performance in multipath fading environments and outdoors.
  • Improved traffic flow and channel access
  • Better power management for longer battery life

802.11ax_vs_802.11ac_subcarrier_spacing

So 802.11ax looks particularly suited to public space and WiFi in buildings, but if you live in the countryside or other low population density areas, it may not bring that much benefit over 802.11ac. You can read more about 802.11ax in National Instruments’ white paper, where they also mention software and equipment that can be used to work with the upcoming 802.11ax such as WLAN Measurement Suite and PXI RF Vector Signal Transmitter (VST). You can also visit IEEE 802.11ax page.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Updating Star Cloud PCG02U to Ubuntu 16.04 with WiFi and HDMI Audio Support

May 26th, 2016 12 comments

I completed my review of PCG02U Ubuntu TV stick a few days ago, and I was quite satisfied with the device, but since Ubuntu 16.04 was released last month, I thought it might be fun to upgrade to the latest version of Ubuntu. I’m go through the complete steps including building a new kernel for HDMI audio, and the drivers for WiFi, but you should be able to install Ubuntu 16.04 for Bay Trail and Cherry Trail processor with the image made by Linuxium and a USB stick.

Star Cloud PCG02U OS Support and Warranty

Before I go through the instructions, you may want to read the conditions on MeLE’s Aliexpress PCG02U page.

PCG02U_Linux_OS_WarningThey meant Ubuntu 14.04 instead of 14.0.4, but the important part is that if something goes wrong trying alternative OS, you may lose your warranty.

Upgrade Ubuntu 14.04 to Ubuntu 16.04

Upgrading from one LTS version to the next should be easy using the update manager…

… or doing it through the terminal entirely:

However, it did not work for me, as it quickly ended with the message:

I noticed that PCG02U was still stuck on Ubuntu 14.04.3 LTS, despite running dist-upgrade:

After trying several solutions, I eventually changed the Ubuntu mirror, and the steps above completed successfully with Ubuntu 16.04 running.

Click to Enlarge

Click to Enlarge

At least two little problems though: I lost HDMI audio with only Dummy Output available, and while Ethernet was still working after the update, WiFi support was gone… But if you don’t need either you’re good to go.

Enabling HDMI audio in PCG02U

Luckily we already have the instructions to enable HDMI audio for Bay Trail and Cherry Trail processors, all we need is a Linux 4.5 kernel and patch it. I’ll do everything inside PCG02U, and I have not used a separate build machine, which would likely be faster. Tip: you’ll need gcc 4.9 or greater. I used the instruction here and there.

First let’s build the dependencies required to build the kernel in Ubuntu.

Now let’s get the patches in a working directory

as well as the Linux 4.5.1 kernel patched for Ubuntu and the Intel Atom HDMI audio support:

Now we can configure the build:

This will ask which config files to configure for AMD64, i386, ARM and so on. We only need to edit the first one (AMD64). Once you are in the config menu, use menuconfig search function to locate SUPPORT_HDMI option and enable it. Exit and save.
CONFIG_SUPPORT_HDMI

Before starting the build add something like “+some_string” to the end of the first version number in the debian.master/changelog> file. I added +hdmi_audio string:

You can now start the build with:

However, the build did not complete for me, with the error:

I followed the instructions on askubuntu, and disabled set do_zfs = false in debian.master/rules.d/amd64.mk, and completed the build with the same command line. It took around 2 to 3 to complete the build on PCG02U, and I had a bunch of deb packages…

.. and I installed the headers and image:

Rebooted the system, which booted successfully, and I could confirm HDMI audio was back. Yes!

Click to Enlarge

Click to Enlarge

But still no WiFi… and space was running now, so I did some cleaning which gave me a few gigabytes to play with:

Building Realtek RTL8723BS WiFi Driver in Ubuntu/Linux

Star Cloud PCG02U uses  a WiFi and Bluetooth module with the common Realtek RTL8723BS chip, but the driver is not currently in mainline, so it needs to be compiled separately. That part is straightforward, and only take 2 minutes or less:

That’s all and now the Wireless network is enabled:

Click to Enlarge

Click to Enlarge

I had no problems connecting to my wireless router, and the module is automatically loaded at boot time. So now we have the same level of support as in Ubuntu 14.04 with HDMI audio and WiFi.

Realtek RTL8732BS Bluetooth in Linux

However, the hardware also supports Bluetooth, so it would be nice to have this enabled too, and again RTL8723BS Linux Bluetooth driver is available thanks to one independent developer (lwfinger).

In theory, it’s pretty easy:

But this did not work for me, despite Bluetooth apparently being located on /dev/ttyS4:

But the log would show a connection timeout:

Sadly, I haven’t been able to find a solution in a reasonable amount of time, and changing the baudrate from 115200 in the script to 2764800 (as shown in dmesg) does not help.

Of course everything would be so much easier if HDMI audio Cherry Trial and Bay Trial and RTL8723BS drivers would be in mainline linux, as all you would have to do would be to install Mainline linux in Ubuntu, and everything would just work. This does require some work however, but if you are motivated, lwfinger is ready to submit the RTL8723BS WiFi code to mainline if somebody takes care of all the errors and warnings generated by checkpatch.pl.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Getting Started with Beaglebone Green Wireless Development Board

May 21st, 2016 5 comments

SeeedStudio introduced BeagleBone Green Wireless based on BeagleBone Green, but replacing the Ethernet port by a Wilink8 WiFi and Bluetooth module, and providing 4 USB ports in total. I’ve also ready taken some picture of the board, and Grove Base Cape to addition the company’s add-on boards via I2C, UART, analog, or digital interfaces. So today, I’ll report about my experience getting started with the board.

First Boot of BeagleBone Green Wireless

Since the board comes with a Debian image installed on the internal 4GB eMMC flash, checking out the board should be really easy. The Wiki may help, but for a first try to check the board is indeed working, you can simply connect it to a 5V power supply, or the USB port of your computer to port it up.

I’m using a development machine running Ubuntu 14.04 with both Ethernet connected to my router, and a WiFi USB dongle which I used to find and connect to BeagleBoneXXXXXX access point. You’ll get assigned an IP address (e.g. 192.168.8.138), and can access the board using 192.168.8.1.

BeagleBone_Green_Wireless_Access_PointAlternatively, you could use the micro USB to USB cable to connect the board over IP. In Linux, it just works, but in Windows or Mac OS X, you may need to following the instructions to install the drivers.
BeagleBone_Green_Wireless_USB_Ethernet

You should see a new ethX device in your computer in 192.168.7.x subnet

Now you can start your favorite web browser, and access the board using http://192.168.8.1 (WiFi), or http://192.168.7.2 (USB Ethernet gadget) to get access to some documentation in the board, and links to tools like Node-RED,  Cloud9 IDE, and BoneScript.

Click to Enlarge

Click to Enlarge

Updating Firmware Image

Now that we’ve made sure we’ve received a working board, it might be a good idea to update the firmware. Bear in mind that the board will officially start shipping on May 30, 2016, and I got an early board, so the final image may differ.

I’ve open a terminal to download, extract, and flash the image to a 16GB micro SD card (4GB or greater required):

Replace sdX in the command line above, your own SD card device which you can check with lsblk.

This is an installer image designed to install Debian in the internal storage of the board. While the board is turned off, insert the micro SD card, hold the USER button (on board or Cape), connect the power supply, release the button, and the installation should start. The instructions mention that all 4 USRx LEDs will be lit solid when the update is complete and that it may take up to 45 minutes. So I went for dinner, and when I came back over one hour later, I did not see the LEDs were on, so I waited a little longer. But eventually, I decided to turn off the board, remove the micro SD card, and boot the board again.

After connecting to the BeagleBone SSID, I access the board with SSH successfully:

The date was 2016/05/16, so the update was successful.

BeagleBone Green Wireless Network Configuration

So far, everything went rather smoothly, but setting up networking was more of a challenge.

Since I now had two network interfaces on my computer with Ethernet to my router and WiFi to BeagleBone Green Wireless (BBGW), Internet traffic was routed to both, and since BBGW had no network connection I often had problems accessing the net to browse the web or send emails. So I had two options: change the routing table or connect the board to my router. I tried the routing table method first, which looked as follows initially:

After my attempt at changing metric to a high value did not work as expected, I changed the route from “link” to “host” for WiFi so that only the local traffic is routed there.

This did not work that well either, so I went with plan B to connect the board to my router. Network connections in BBGW:

So we wan t to configure wlan0 to connect to my router. Remember that only 2.4 GHz can work,  as the board does not support 5 GHz.

So I edited /etc/network/interfaces with vi, and added the following four line at the end of the file:

I save the done, and brought down and up the interface:

Awesome! Only problem is that after reboot, wlan0 would not acquire an IP address, and I had to run ifdown and ifup manually again.

I switched to static IP address configuration:

But the same problem occurred, so I asked on the beta group mailing list, and was informed that I could configure that using my smartphone. Simply connect BBGW AP, go to the sign-in page (http://192.168.8.1/login), click the select SSID, and enter password. That method is also mention in the system reference manual.

Click to Enlarge

Click to Enlarge

That’s supposed to be so easy, but sadly it did not work at all for me the first time as none of the ESSID were detected, but I tried the day after, and it eventually worked… I just don’t know why…

Click to Enlarge

Click to Enlarge

I could connect to 192.168.0.111 on my local network, even after a reboot. Good.

Node-RED in BeagleBone Green Wireless

Node-RED is a tool for wiring together hardware devices, APIs and online services in new and interesting ways, and it’s one of the tools available in BBGW web interface. The link is actually hardcoded to http:192.168.7.2:1880, which is a bug, but you can easily access the page using your own IP and 1880 port. I found one example for BeagleBone Black to turn on and off user LEDs, which I imported into Node-RED, and Deployed to the board.

BeagleBone_Green_Wireless_Node-REDClick on the square on the left of the “on” / “off” injector with turn on or off LED 2 or 3. You can change settings of one block by double-clicking  on it, and I’ve done so for bbb-discrete-out: USR2. You can see it will let you select whatever output pin supported by the board, change the name, invert values and so on.

BeagleBone_Green_Wireless_Node-RED_GPIO_Selection
The Blue gray “injectors” will either “0” or “1” string to the bbb-discrete-out nodes to change the GPIO status.

One interesting part of the BeagleBone Green boards are Grove connectors for add-on modules with the same name.

Click to Enlarge

Click to Enlarge

I’ve connected Grove LED strip (Digital I/O), Grove Button (Digital I/O), and a digital light sensor (I2C), but Node-RED does not list the LED strip , and only shows the analog Grove light sensor, so I was left with the Grove Button connected to GPIO 51 as marked on the silkscreen of the Grove connector on the cape. So I dragged and dropped Grove Button in Node-RED, and configured it to poll for GPIO_51 every 500 ms.

BeagleBone_Green_Node-RED_Button_ConfigurationI planned to turn on and off some user LEDs, but connecting directly to bbb-discrete-out node for USR2 LED did not work. The problem is that I could not find documentation for this, except something about GrovePi, which explains that the Grove Button sends a JSON object containing a ‘state’ key:

So I probably would have to use another block to convert that JSON objects into “0” or “1” strings to controlled the LED/GPIOs. I’m not quite familiar enough with Node-RED, so I switched to testing Cloud9 IDE. [Update: There’s a tutorial using Node-RED, WioLink and BBGW, but it currently lacks in details]

Cloud9 IDE on BeagleBone Green Wireless

Cloud9 is a cloud based development environment that you can access using http://<IP_address>:3000.

Click to Enlarge

Click to Enlarge

The first neat thing I noticed is that you have access to the console as root from within the web browser, so SSH is not even needed with the board. I quickly checked the OS version (Debian GNU Linux 8) and kernel version (Linux 4.4.9-ti-r25) to test it out. We’ll also find several Python examples for BBG and Grove modules in the left panel.

Click to Enlarge

Click to Enlarge

I’ve open grove_i2x_digital_light_sensor.py demo program.

Access the terminal in the board to install the missing module

Another error:

So I’ve checked the I2C interfaces in the board:

There’s no i2c-1, so I changed the code to try with I2C-2 used with the Grove connector on BBGW:

And it went a little further:

I stopped there as it’s clear the sample have not been ported to the board, and to compound the issue Seeed Studio Wiki is currently down.

So I’ve had my share of issues with BeagleBone Green Wireless, but remember that the board is not shipping yet, so they still have time to improve the firmware and especially documentation. Yet I was expecting an easier experience considering the board leverages code and documentation from BeagleBone Black (software compatible), and there’s only about 10 days left before the retail boards ship.

If you are interested in the board, you can purchase BeagleBone Green Wireless for $44.50, the Grove Base Cape for $9.90, and various Grove modules on Seeed Studio website.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Arduino Primo Board Supports WiFi, Bluetooth LE, and NFC

May 19th, 2016 7 comments

A couple of weeks after unveiling Arduino UNO WiFi with ESP8266 and Atmel AVR, Arduino Srl has introduced Arduino PRIMO board with Nordic Semi nRF52 MCU with Bluetooth Smart and NFC, ESP8266 for WiFi, and STM32 to handle GPIOs and USB UART during May Faire Bay Area 2016.

Arduino_Primo

Arduino Primo board (A000135) specifications:

    • Service Micro-controller
      • STMicro STM32F103R8T6 ARM Cortex-M3 MCU @ 72 MHz with 64KB flash, 20KB SRAM
      • USB/Uart converter & CMSIS-DAP
      • GPIO expander, IrDA
      • Board power management
      • Operating Voltage – 2.0 to 3.6 V
    • Arduino Micro-controller
      • Nordic nRF52832 ARM Cortex-M4F MCU @ 64 MHz with 512 KB flash, 64KB SRAM
      • Analog I/O Pins – 6 + 1 DAC
      • DC Current per I/O Pins – 7 mA
      • Bluetooth Smart – Up to +4 dBm output power, -96 dBm sensitivity
      • Other features – PDM interface, AES HW enc, NFC tag
    • WiFi Micro-controller
      • Espressif ESP8266 Tensilica Xtensa LX106 WiSoC @ 80 MHz with 8MB RAM for instructions, 12MB for data
      • Storage – 4MB SPI flash
      • WiFi 802.11 b/g/n 2.4 GHz
      • Wake up time – < 2 ms
      • Operating Voltage – 3.3 V
    • Common Specs
      • Digital I/O – 20 pins
      • PWM Output – 3
      • Misc – On-board button, LED
      • Input Voltage – 5V
      • Power Consumption – 87 mA @ 5V typ.
      • Dimensions – 68.5 x 53 mm
      • Weight – 34 grams

Arduino_Primo_Open_Source

The board is not yet available, and documentation is limited to what’s on the product page. But we can safely assume that the board will be programmable via the Arduino IDE, and Nordic also mentioned that professional developers and Makers will also be able to use any Nordic nRF52 Series-compatible Software Development Kit (SDK) or programming tools, for example to develop IPv6 over Bluetooth low energy applications.

Arduino_Primo_Core

Arduino Srl and Nordic Semi are also working on a coin-cell powered Arduino Primo Core module with nRF58232 chip and motion and environmental sensors.

Considering the recent legal history between Arduino Srl and Arduino LLC, I’m a little surprised they went with Arduino Primo, as Arduino LLC is also selling a toy designed to teach programming logic to young children, also called Primo.

AFAIK, no information about the launch date and pricing have been released so far.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

$44.90 BeagleBone Green Wireless Board Adds 802.11n WiFi & Bluetooth 4.1 LE and More USB Ports

May 16th, 2016 2 comments

After BeagleBone Air, there’s now another BeagleBone Black derived board with WiFi and Bluetooth, as BeagleBone Green gets a wireless version with WiFi 802.11n, Bluetooth 4.1 LE, and four USB ports.

BeagleBone Green Wireless Specifications

Click to Enlarge

Click to Enlarge

The Ethernet port is also gone, but most of the other specifications remain the same as seen from the comparison table below.

BeagleBone Black BeagleBone Green BeagleBone Green Wireless
SoC Texas Instruments Sitara AM3358 ARM Cortex-A8 processor @ 1GHz with NEON, PowerVR SGX530 GPU, PRU…
System Memory 512MB DDR3 RAM
Storage 4GB eMMC flash + micro SD slot
USB 1x USB client, 1x USB 2.0 host 1 USB client, 4x USB 2.0 host ports
Network Connectivity 10/100M Ethernet Wi-Fi 802.11 b/g/n & Bluetooth 4.1 LE
Video Output HDMI N/A
Expansion Headers 2×46 pin headers 2×46-pin headers and 2x Grove connectors
Debugging 6-pin serial header and unpopulated 20-pin JTAG header
Dimensions 86.3 x 53.4 cm
Price $55.00 $39.00 $44.90

BeagleBone Green Wireless (BBGW) and Grove Base Cape for Beaglebone v2.0

The board is designed and manufactured by Seeed Studio, and the company send me an early sample for evaluation together with Grove Base Cape for Beaglebone v2.0 that supports up to 12 extra Grove modules. I’ve not had time to review both yet, so I’ll show what I’ve received first.

BeagleBone_Green_Wireless_PackageI got two unbranded packages for each board, but I understand BBGW board will be send in a retail package with two WiFi antennas, and a micro USB to USB cable for power.

BeagleBone Green Wireless with Antennas (Click to Enlarge)

BeagleBone Green Wireless with Antennas (Click to Enlarge)

I got the two antennas, but not the USB cable. There are two u.FL connectors where you can insert the antennas. The wireless module is Texas Instruments WiLink8 (model WG78V0) that supports WiFI 802.11 b/g/n @ 2.4 GHz 2×2 MIMO and Bluetooth 4.1 LE. The four USB ports are on the left, and two Grove connectors (I2C & UART) on the right.

Click to Enlarge

Click to Enlarge

The bottom of the board has the micro SD slot, micro USB port for power, and unpopulated 20-pin JTAG solder pads. The board can run Debian, Android, Ubuntu, Cloud9 IDE on Node, and all other operating systems supported by BeagleBone Black. The wireless module support AP+STA mode, as well as A2DP & MRAA Libraries. The board is shipped with a Debian based firmware, and you can easily access it by accessing http://192.168.8.1 from your computer web browser to get some documentation. Resources for the board can be found on the BeagleBone Green Wireless Wiki.

Click to Enlarge

Click to Enlarge

Grove Base Cape for Beaglebone v2.0 has 4x digital I/O headers, 2x analog input headers, 4x I2C headers, and 2x UART headers, as well as a I/O voltage selector (3.3V or 5V), a Cape address switch, and a user button. More details about the grove base cape can be found in the Wiki.

Click to Enlarge

Click to Enlarge

I plan to write test the board, and the cape with some of the Grove module I got in Wio Link Starter Kit in the next few days.

BeagleBone Green Wireless pre-sells for $44.90 on Seeed Studio with shipping scheduled for May 21, 2016, while Grove Base Cape for Beaglebone v2.0 goes for $9.90.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Arduino Industrial 101 Board Powered by Atmel AVR and Atheros AR9331 WiSoC Targets Industrial IoT Applications

May 13th, 2016 No comments

 

Arduino boards were first used by hobbyists, educators and their students, but in recent year more and more professional engineers have started to build prototypes with Arduino boards before moving to the design of the final product. Arduino Srl went further by designing an industrial grade board,  namely Arduino Industrial 101, combining an Atmel AVR for real-time I/O control, and a Qualcomm Atheros AR9331 for WiFi connectivity.

Arduino_Industrial_101Arduino Industrial 101 (A000126) specifications:

  • Arduino part
    • MCU – Atmel ATmega32u4 AVR MCU @ 16 MHz with 32KB flash, 2.5 KB SRAM, 1KB EEPROM
    • Digital I/O Pin – 20, with 7 PWM and UART
    • Analog Input Pins – 12
    • DC Current per I/0 – 40 mA
    • Operating Voltage – 5V
  • Linux (LininoOS) part (101 Industrial LGA “Chiwawa” module)Arduino_Industrial_101_doghunter
    • Processor – Atheros AR9331 MIPS processor @ 400 MHz
    • System Memory – 64 MB DDR2
    • Storege – 16 MB flash
    • WiFi – 802.11 b/g/n 2.4 GHz
    • 10/100M Ethernet & USB 2.0 via through holes
    • Operating Voltage – 3.3 V
  • Common / General specs
    • Input Voltage – 5 V
    • Power Consumption – 130 mA
    • Dimensions – 51 x 42 mm
    • Weight – 12 grams

 

The board is completely unrelated to the Intel Curie based Arduino 101 produced by Arduino LLC, which may lead to confusion.

Block Diagram - Click to Enlarge

Block Diagram – Click to Enlarge

The Atheros processor run LininoOS based on OpenWrt. The board can be setup like another OpenWrt router, and the Atmel processor programmed using the Arduino IDE. Documentation can be found on Arduino Labs.

Arduino Industrial 101 is available now for $38 to $55 from distributors such as RS Components, or SwitchScience.

Via Electronics Weekly and Nanik

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

VoCore2 WiFi IoT Module Features Mediatek MT7628AN Processor

May 11th, 2016 7 comments

When Vocore WiFi module launched in 2014 on Indiegogo, it quickly became popular as at the time it was hard to find cost effective and small WiFi modules with GPIOs, and its compact Ethernet dock solution was also a hit. The developer has now been working on VoCore2 for several months, and recently announced a beta testing program.

VoCore2Vocore2 preliminary specifications:

  • SoC – Mediatek MT7628AN MIPS processor @ 580 MHz
  • System Memory –  64 or 128 MB DDR2
  • Storage – 16MB NOR FLASH, 1x SDXC via I/O pins
  • Connectivity – WiFi 802.11n 2T2R up to 300 Mbps with either 2 u.FL connector or 1 u.FL connector + on-board chip antenna (Max signal output >19.5dbm peak); 2x 10/100M Ethernet interfaces via I/O pins
  • I/Os – About 30 GPIOs multiplexed with 3x UARTs, 1x I2C, 1x I2S, 1x reference clock, 1x USB 2.0, 1x PCIe 1.1, 1x high speed SPI (40Mbps max), 1x SPI slave, 2x hardware PWM
  • Power Supply – Input: 3.6~6.0V; output: 1.8V, 3.3V.
  • Power Consumption – 74mA @ 5V (wifi on, no data transfer); 233mA @ 5V (max speed cpu and wireless)
  • Dimensions –  25×25 mm

Compare to the first version of VoCore, VoCore2 has a faster processor, more memory, a lower power consumption, a better WiFi signal, and more I/Os. While the software (OpenWrt) will be open source, the hardware won’t be.

VoCore2 is eventually expected to sell for $20 + shipping, For the beta program however, the board is sold for $50 including $20 for DHL shipping, and developers who commit patchsets for VoCore2 to openwrt.org will get a $30 refund. While the hardware is now complete, and OpenWrt runs on the board, there are still many bugs to fix, and the final release is expected in two months time. If you have questions, you can head over VoCore2 forums.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Arduino Yún Shield Adds Ethernet and WiFi to Arduino Boards for $50

May 11th, 2016 1 comment

You can now add WiFi to Arduino for about $3 thanks to ESP8266, and it’s been long possible to add Ethernet with ENC28J60 module now selling for the same $3. Alternatively, if you want some a little more powerful, you could also use IoT modules running OpenWrt such as a $30 WrtNode or $13 LinkIt Smart 7688 both capable of supporting Ethernet with some hacks. But if you’ve been used to Arduino Yun, have a few spare Arduino boards, or simply think the other solutions are just too cheap, Arduino LLC has just launched Arduino/Genuino Yún Shield for $49.90 / 43.90 Euros.Arduino_Yun_Shield Arduino Yún Shield specifications:

  • SoC – Qualcomm Atheros AR9331 MIPS WiSoC @ 400 MHz
  • System Memory – 64 MB DDR2
  • Storage – 16 MB flash
  • Connectivity – 10/100 M and 802.11 b/g/n WiFi
  • USB – 1x USB 2.0 host port
  • Board interfacing – SPI and HW Serial
  • Misc – 5 LEDs (WiFi, Power, Ethernet, Activity and User); Reset shield and config reset buttons
  • Operating Voltage – 3.3V

The shield is compatible with Arduino Uno, Zero, 101, Diecimila, Due, Duemilanove, Leonardo, and Mega2560 boards.

Genuino_Yun_ShieldThe Yún Shield run OpenWrt-Yun and uses the Bridge library just like Arduino Yún board. You can find all details including documentation, hardware design files, and Arduino IDE on Arduino Yún Shield wiki.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter