Archive

Posts Tagged ‘wifi’

Orange Pi 2G-IoT ARM Linux Development Board with 2G/GSM Support is Up for Sale for $9.90

March 30th, 2017 15 comments

Orange Pi 2G-IoT was unveiled at the start of the year as an ultra cheap ($10) Linux development board with 2G cellular connectivity. The board has just launched for $9.90 + shipping on Aliexpress.

Orange Pi 2G-IoT specifications have changed a little since the initial announced as WiFi is confirmed to be supported:

  • SoC – RDA Micro 8810PL ARM Cortex A5 processor @ up to 1.0 GHz with 2Gbit (256 MB) on-chip LPDDR2 RAM, 4Gbit (512 MB) on-chip SLC NAND flash , 256KB L2 cache, Vivante GC860 3D GPU, and GSM/GPRS/EDGE Modem (Download datasheet)
  • External Storage – micro SD slot
  • Display I/F – LCD connector up to qHD resolution
  • Video – Decoding up to 1080p30, encoding up to 1080p30 H.264
  • Audio I/F – 3.5mm audio +FM jack, built-in microphone?
  • Connectivity – WiFi 802.11 b/g/n + Bluetooth 2.1/EDR module (RDA5991), and 2G GSM/GPRS/EDGE module with SIM card slot
  • Camera – MIPI CSI-2 connector for camera sensor up to 2MP
  • USB – 1x USB host port, 1x micro USB OTG port
  • Expansion – 40-pin GPIO header with SPI, I2C, ADC, GPIOs, PWM, etc…
  • Debugging – 3x pin UART for serial console
  • Misc – 8 selection jumpers, power button, boot selection header
  • Power Supply – 5V via micro USB port; optional battery
  • Dimensions – 68 x 42 mm
  • Certifications – CE and FCC (if we can believe the markings on the PCB silkscreen)

Linaro showcased Ubuntu on the similar Orange Pi i96 board at Linaro Connect Budapest 2017 last month, but I have not been able to find an image, nor source code yet. Needless to say, beginners better wait before buying this board, as everything is new, and software support is unclear at this stage. You’ll also have to check 2G sunset status in your countries, as some have stopped supporting 2G already, while others plan on keeping 2G networks for many more years.

Thanks to OvCa77 for the tip.

Xiaomi 6-in-1 WiFi & Zigbee Smart Home Kit Works with Domoticz Home Automation Software

March 24th, 2017 11 comments

Xiaomi “Mijia” 6-in-1 smart home (security) kit is an home automation set with a WiFi & Zigbee multi-functional gateway with RGB light and speaker, a wireless switch, a window/door sensor, a  human body sensor, temperature & humidity sensor, and a smart socket.

The key features of each item are as follows:

  • Multifunctional Gateway Remote Control
    • WiFI and Bluetooth connectivity
    • Built-in speaker
    • Light sensor and 18x RGB LED for notifications potentially trigerred by connected sensors: body sensor, door sensor, IP camera…
    • Online radio support
  • Window / Door Sensor Set
    • Light and rings the gateway when opened or closed
    • Away from home mode: can trigger IP camera recording
    • Power – CR2032 cell battery that should last for 2 years
  • Smart Wireless Switch
    • Programmable one key switch to turn off all lights/applicance, turn on one light at night, etc…
  • Human Body Sensor
    • Motion sensor allowing you to control other devices through the gateway
    • Power – CR1632 battery
  • Smart Socket
    • Zigbee connectivity to gateway
    • Reports actual power consumption
    • Overload protection
    • Set timing turn on and turn off
  • Temperature Humidity Sensor
    • Triggers alarm if the temperature and/or humidity are out of normal range
    • Log data over time via Gateway
    • Power – CR2032 battery

You’d normally use this kit using MiHome app from the Apple Store or Google Play, but if the rather mixed user reviews scare you off, the good news is that the Xiaomi gateway (Aqara) is now supported by Domoticz (Beta). Note that there appears to be multiple hardware versions of the gateway, and Domoticz will only work with version 2.0 or greater.

Domoticz integration still requires you to install MiHome app, as you need to enable developer options, specifically “LAN functions” to set a fixed IP address. Once this is done you’ll be able to select “Xiaomi Gateway” in Domoticz web interface, and input the IP address. After getting back to the Android / iOS app again to setup the sensors, Domoticz should automatically detect them.

Click to Enlarge

Once this is done, you should not need to access Xiaomi’s mobile app anymore, and can manage and control your devices with Domoticz web interface or/and Android app.

Support for Xiaomi Smart Home gateway was merged on Github last December, and if you want to find others experiences, there’s a long thread about it on Domoticz forums. The kit described above can be purchased from GearBest for $74.5 shipped. You’ll also find the kit on other shops such as DealExtreme with various options  (4-in-1, 6-in-1, gateway only, etc…), as well as Aliexpress.

Thanks to Harley for the tip.

Kudrone Nano Drone Shoots “4K” Videos, Follows You With GPS (Crowdfunding)

March 24th, 2017 5 comments

Kudrone is a palm-sized drone equipped with a 4K camera that can follow you around for up to 8 minutes thanks to its 650 mAh battery by tracking your smartphone location via GPS. You can also take matters on your own hands by piloting the drone with your smartphone.

The drone also includes various sensors such as an accelerometer, a gyroscope, a magnetic compass, a sonar, and a vision positioning sensor enabling features such as auto hovering. Some of the specifications include:

  • Storage – Up to 64GB (micro SD card)
  • Connectivity – 802.11 b/g/n WiFi up to 80 meters
  • GNSS – GPS / GLONASS
  • Camera
    • Sony CMOS 1/3.2 image sensor (13MP)
    • F2.8 / H100 V78.5 / D:120 lens
    • Image resolution up to 3280 x 2464
    • Video resolution 4K, 2.7K, 1080p, 720p
  • Flight Parameters – Max altitude – 30 meters; hovering accuracy: +/- 0.1 meter
  • Battery – 650 mAh LiPo1S battery good for up to 8 minutes (but lower when the camera and GPS are on)
  • Dimensions – 174 x 174 x 43 mm

It’s a little odd that it records 4K videos, but image resolution is limited to 3280×2464, so there may be some extrapolation here and the video quality is unlikely to match what most people would consider “4K”. You can see a video shot with drone – but apparently not while flying – here, and it is limited to 1080p60 on YouTube.

Kudrone Team  provided a comparison pitting their drone against some other cheap nano drones, and some higher end drones by DJI and Parrot.

iPhone or Android mobile apps will allow you to control the drone, enable/disable features, and sync your photos and videos with your  smartphone. The preview is shown at 720p with a 160 ms delay.

The drone launched on Indiegogo several days ago, and has been pretty popular having raised close to $700,000 with 21 days to go. All very early bird rewards at $99 are gone, but you could still get the drone for $109 with two propeller sets, a charger, a 16GB micro SD card, two batteries, and a pair of propeller protector. Shipping adds $9 to the US or China, and $25 to the other countries I checked. Delivery is scheduled for July 2017. The drone is made by a company called Fujian Ruiven Technology, and Kudrone is not their first drone. However, you may want to check out the update section on Indiegogo to see pictures and video samples, as well as videos of the drone in action to get a better idea of the drone current capabilities.

Categories: Hardware Tags: Android, drone, indiegogo, ios, wifi

$18.9 Orange Pi Zero Plus 2 Board: Allwinner H3, WiFi + Bluetooth LE, HDMI and 8GB eMMC Flash

March 17th, 2017 23 comments

When will they ever stop? Shenzhen Xunlong has launched yet another Allwinner H3 board called Orange Pi Zero Plus 2, that has not that much in common with Orange Pi Zero, since it uses a different processor (H3 vs H2+), adds HDMI, and implements WiFi and BLE via an Ampak AP6212 module.Orange Pi Zero Plus 2:

  • SoC – Allwinner H3 quad core Cortex A7 processor @ 1.2 GHz with Mali-400MP2 GPU @ 600 MHz
  • System Memory – 512 MB DDR3 SDRAM
  • Storage – 8GB eMMC flash + micro SD card slot
  • Video Output – HDMI port with CEC support
  • Connectivity – 802.11 b/g/n WiFi + Bluetooth 4.0 LE (Ampak AP6212) with u.FL antenna connector and external antenna
  • USB – 1x micro USB OTG port
  • Camera – MIPI CSI port
  • Expansion headers – Unpopulated 26-pin “Raspberry Pi B+” header + 13-pin header with headphone, 2x USB 2.0, TV out, microphone and IR receiver signals
  • Debugging – 3-pin serial console header
  • Misc – 2x LEDs for power and status
  • Power Supply – 5V via micro USB port
  • Dimensions – 48 x 46 mm
  • Weight – 20 grams

So the board is slightly smaller than Orange Pi Zero, and won’t have some of the WiFi issues with Orange Pi Zero with many re-transmit packets leading to a lower throughput. It still works through contrary to what some people claim. Software support for Orange Pi Zero Plus 2 should be the same as with other H3 boards including Android, Ubuntu, and Armbian builds.

Orange Pi Zero Plus 2 has started selling for $18.90 + shipping on Aliexpress.

Thanks to Aleksey for the tip.

Texas Instruments CC3200 WiFi SensorTag is Now Available for $40

March 15th, 2017 No comments

Texas Instruments launched SensorTag in 2013, and at the time there was just a Bluetooth 4.0 LE version with 6 different sensors. I bought one for $25 at the time, and tried it with a Raspberry Pi board and a BLE USB dongle. Since then, the company has launched a new multi standard model (CC2650STK) supporting Buetooth low energy, 6LoWPAN, and ZigBee, and has just started to take orders for CC3200 WiFi SensorTag for $39.99, which seems expensive in a world of $2 ESP8266 modules.

But let’s see what the kit has to offer:

  • Wireless MCU – Texas Instruments CC3200 SimpleLink ARM Cortex-M4 MCU @ up to 80 MHz, with up to 256KB RAM, Hardware Crypto Engine, DMA engine
  • Storage – 1 MB serial flash memory
  • Connectivity – 802.11 b/g/n WiFi with on-board inverted-F antenna with RF connector for conducted testing
  • Sensors – Gyroscope, accelerometer, compass, light sensor (OPT3001), humidity sensor (HDC1000), IR temperature sensor (TMP007), and pressure sensor (BMP280)
  • Expansion – 20-pin DevPack SKIN connector
  • Debugging – Debug and JTAG interface for flash programing
  • Misc – 2x buttons, 2x LEDs, reed relay MK24, digital microphone, and a buzzer for user interaction
  • Power – 2x AAA batteries good for up to 3 months (with 1 minute update interval)

So it has plenty of sensors to play with, and rather long battery life for a WiFi evaluation platform. The kit ships with one CC3200 WiFi SensorTag, two AAA batteries, and a getting started guide.

WiFi SensorTag Mobile App – Click to Enlarge

Resources includes hardware design files (schematics, PCB layout, BoM, etc..), iOS and Android apps and source code, IoT Device Monitor for Windows, Code Composer Studio, and cloud-based development tools. Note that there’s no embedded software for the Wi-Fi SensorTag, it is only a a demo platform, while you can modify cloud-based applications, you can’t modify the firmware. If you want an embedded development platform, you’d have to go with CC3200 LaunchPad board. You can still have some fun SensorTag using Android or iOS app, or connecting it to IBM Watson IoT Platform.

Visit SensorTag page for further information.

Macchina M2 is an Open Source Hardware OBD-II Development Platform for Your Car (Crowdfunding)

March 10th, 2017 10 comments

ODB-II Bluetooth adapter and head-up displays to monitor and diagnose your car have been around for a while. I actually got two models to use with a Toyota Avanza and Torque Lite app, but never managed to make it work with my phone. Macchina M2 board is doing much of the same thing and more, as it is open source hardware, and supports more communications protocols including GPS, WiFi, 3G/LTE,  BLE, and Ethernet using XBEE boards.

M2 with Xbee Cellular Board

Macchina M2 specifications:

  • MCU – Atmel SAM3X8E ARM Cortex M3 processor @ 84 MHz (also used on Arduino DUE) with 96 KB SRAM, 512KB flash
  • Storage – micro SD card socket, 32KB EEPROM via I2C
  • USB – 1x micro USB port (USB device or host mode)
  • Wireless XBee Socket – For Bluetooth LE, WiFi, GSM, 3G, LTE,
  • I/Os
    • 6x automotive level I/O pins to control 12V devices (Examples: relays, fans, lights, etc) OR act as analog input (like temp sensor)
    • 2x channels of CAN, 2x channels of LIN/ K-line, J1850 VPW/PWM, single-wire CAN interfaces for maximum car compatibility.
  • Misc – 5x user LEDs, 1x RGB LED
  • Power Supply – 5V@ 3A, [email protected] amps for connecting add ons
  • Dimensions – 56.4mm x 40.6mm x 15.7mm

Once you’ve done the hardware setup – very easy with the ODB-II connector, and a little bit more difficult under the hood -, you can hack your car away, programming it with the Arduino IDE to gather RPM, speed, diagnostics data, etc…. This will also allow you it to tune it, or even control it remotely, for example starting it with a mobile control app. If you don’t want to program the board, ELM327 emulation will allow support for popular apps such as Torque for Android, or Dashcommand for iPhone, Android, and Windows App. The developers also uploaded some video tutorials on YouTube, some guides can be found on M2 Wiki, and one of the member of the team wrote a book called “The Car Hacker’s Handbook“.

Macchina M2 launched on Kickstarter a few weeks ago, and the project has already raised over $90,000, surpassing its $25,000 goal. Rewards start at $45 with M2 interface board only, which requires you to add your own MCU/CPU board, but most people will be interested in the $79 pledge to get a complete Macchina M2 board including the Atmel SAM3X board. Shipping is free to the US, but adds $15 to the rest of the world. Deliver is scheduled for July 2017.

Thanks to Thomas for the tip.

New 96Boards IoT Edition Boards Showcased at Linaro Connect 2017: BlueSky IE and WRTNode IE

March 9th, 2017 10 comments

Linaro Connect Budapest 2017 is taking place this week in Hungary, and during George Grey – Linaro CEO – keynote, he provided a status updates for the Linaro group, addressed some of Linaro’s criticisms from members and the community, and unveiled two upcoming boards compliant with 96Boards IoT edition both running Zephyr OS, and adding to BLE Carbon board announced last year.

Click to Enlarge

The first board is BlueSky IE board with the following key specifications:

  • SoC – RDA Micro RDA5981A ARM Cortex-M4 Wireless MCU with 64KB ROM, and 32KB cache
  • System Memory – 485KB SRAM. It’s unclear if that’s only the on-chip SRAM, and there’s also some external PSRAM added.
  • Storage – 8Mb NOR flash 802.11 b / g / n HT20 / 40 mode
  • Connectivity – 802.11 b/g/n WiFi with support for  HT20 / 40 modes
  • Crypto security hardware

The second board is WRTnode IE:

  • SoC – Mediatek MT7697 ARM Cortex-M4 wireless MCU @ up to 192MHz with 64KB ROM, 353 KB SRAM
  • Storage – 4Mb NOR flash
  • Connectivity – 802.11 b/g/n WiFi and Bluetooth 4.2 LE
  • Crypto security hardware

Neither boards are available now, and Linaro and their members must still be working on them before the launch. There’s currently very little information about RDA5981(A) MCU except on some Chinese websites, but you’ll find many more resources for Mediatek MT7697. Mr Grey also demo’ed Orange Pi i96 board announced last year with an Ubuntu distribution developed by Shenzhen Xunlong Software.

Linaro also announced four new members with Acer joining the Linaro IoT and Embedded (LITE) Group, Guizhou Huaxintong Semiconductor Technology Co., Ltd (HXT Semiconductor) & Fujitsu Limited coming to the Linaro Enterprise Group (LEG), with the latter also joining as founding member of the LEG High Performance Computing Special Interest Group (HPC SIG), and Google joined as a Club member.

You might be interested in watching the keynote with all those announcements, and to be more up-to-date with Linaro’s progress.


If you are in a rush, you may prefer flicking through the keynote presentation slides instead.

$12 AI Light ESP8266 based WiFi RGB Light Bulb Supports MQTT via ESPurna Open Source Firmware

March 3rd, 2017 20 comments

AI-Thinker is famous in the maker world for their ESP8266 modules, but they’ve also recently launched a WiFi RGB light bulb that sells for about $12.5 and up on Ebay and Aliexpress (here and there). Some people noticed, and bought samples online, including Xose Pérez (aka Tinkerman), ESPurna open source firmware developer, who could confirm ESP8266 was used in the light bulb, did some investigations, and eventually added the light bulb into ESPurna, which means it can be managed using MQTT or a web interface.

AI Light looks very similar to Philips Hue, but comes with WiFi instead of Zigbee. AI Light “M1636” key features:

  • RGBW LED E27 bulb with 16.7M colors
  • Connectivity – 802.11 b/g/n WiFi
  • Encryption – AES
  • Voltage Range – 110-240V
  • LED Power – 5 watts
  • WiFi Power Consumption – ≤0.3W
  • Temperature Range – -5~45degree
  • Humidity – ≤80%
  • Certifications – FCC, CE, ROHS

If you’re going to use the stock firmware, you can control the LED with Tuyasmart Android app. You’ll find the user’s manual and more photos on the FCC page for the light bulb. But there are already plenty of Wifi light bulbs on the market,  and what makes this light bulb interesting is that it’s based on ESP8266, and you can have full control over it using open source firmware.

The bulb cap is allegedly very easy to pop out, as it’s not glued to the board.A close up on the board itself reveals it’s indeed powered by Espressif ESP8266EX WiSoC connected to a 1MB Winbond 25Q80BVSIG flash, and MY-Semi MY9291QD LED driver.

Click to Enlarge

If you look from the bottom left to middle left of the inner circle, you’ll see 3V3, GND, RX, TX and IOO pads, which we can use after soldering some wires, and connect a USB to TTL board in order to flash the firmware. Note that IOO must be connected the GND to enter flash mode, you can remove the wire after flashing, in order to check the serial output during a normal boot.

After further investigation, Xose found out that there’s already some software implementation for MY9291 driver in Noduino OpenLight project, made by the developers who designed Noduino ESP8266/ ESP32 boards, and are likely the developers of AI Light. All needed source code can be found in Noduino-SDK released under a GPLv3 license, and includes a driver written in C language for MY9291 LED driver chip. Xose wrote a wrapper to make the driver work with Arduino ESP8266, and released the code on Github.

The code sample below shows how to set the LEDs to RED color at 100% duty cycle:

Ai-Thinker Ai Light / Noduino OpenLight have now been added to ESPurna 1.6.8 firmware, and you can turn the light on and off, select the color from the web interface, and/or control it via MQTT.

ESPurna installed on AI Thinker Light Bulb – Click to Enlarge