Archive

Posts Tagged ‘3dmark’

Amlogic S905X vs Rockchip RK3328 vs Allwinner H6 Processors – Benchmarks & Features Comparison

November 27th, 2017 46 comments

Rockchip, Amlogic and Allwinner are all battling for the lower and mid range segment of the TV box market, so it may be interesting to compare their solutions. We won’t look into the ultra low-end market with 32-bit ARM Cortex A7 processor, but instead compare some of the recent quad core 64-bit ARM Cortex A53 processor for 4K HDR TV box from the company with respectively Amlogic S905X, Rockchip RK3328, and Allwinner H6 SoCs.

We’ll compare some of the benchmarks obtained with Android TV boxes, as well as other features like video support, USB and Ethernet interfaces.

Benchmarks

Let’s start with results for popular Android benchmarks: Antutu 6.x, Vellamo 3.x, and 3DMark Ice Storm Extreme v1.2 with results obtained from 3 TV boxes: Mini M8S II (Amlogic S905X), A95X R2 (Rockchip RK3328), and Zidoo H6 Pro (Allwinner H6). A score is highlighted in green is there’s a clear winner, and in red for a clear loser.

Amlogic S905X Rockchip RK3328 Allwinner H6
CPU (1) Quad core Cortex A53
@ 1.51 GHz
Quad core Cortex A53
@ 1.51 GHz
Quad core Cortex A53
@ 1.8 GHz
GPU (2) ARM Mali-450MP3 ARM Mali-450MP2 ARM Mali-720MP2
Antutu 6.x
Overall 33,553 33,117 40,467 / 36,957 (2)
3D (1920×1080) 3,099 1,475 6,292 / 2,782 (2)
UX 12,365 16,426 13,360
CPU 12,438 10,486 16,395
RAM 5,651 4,730 4,420
Vellamo 3.x
Metal 910 937 930
Multicore 1,491 1,464 836 (3)
Browser 1,855 (Browser) 1,943 (Chrome) 2,546 (Browser)
3DMark – Ice Storm Extreme v1.2
Total score 4,183 2,252 3,951
Graphics score 3,709 1,871 3,643
Physics score 7,561 7,814 5,608

(1) Those are the frequencies reported by CPU-Z, and the actual maximum frequency may be different. For example, it appears Allwinner H6 can only run at 1488 MHz in a sustained manner, and possibly only reach 1.8 GHz during short bursts (TBC).
(2) Allwinner H6 is the only SoC to include a GPU supporting OpenGL ES 3.1, which means it is the only one to complete Marooned 3D graphics test (Antutu 3D test has two 3D benchmarks), and the other boxes just got zero since it did not run. So I’ve included two scores for overall and 3D Antutu results: actual score / score minus Marooned benchmark.
(3) Vellamo multicore had a warning on Zidoo H6 Pro, so it may not represent the actual performance of the device.

Allwinner H6 has a slight advantage, but during use it will be really hard to notice the difference between TV boxes with one of those processors, and other factor like RAM capacity and storage performance will have more influence.One exception is 3D performance, as Rockchip RK3388 is clearly slower here, and I could notice it while playing games.

Features

But SoC performance is only one side of the equation, so let’s have a look at some of the features from the SoCs, which may or not be implemented in some TV boxes. For reference I also included USB 2.0 or 3.0 storage (HDD NTFS partition), and Ethernet performance numbers. Those numbers may vary a lot with further software optimization, configuration tweaks, so they should only be used for reference. I used the same TV boxes as for the benchmark section, except for Gigabit Ethernet relying instead on iperf results from ROCK64 development board (RK3328) and K1 Plus (Note S905, no X, for reference only, but in my experience all Fast Ethernet interfaces have about the same performance), and NEXBOX A95X for the USB storage performance.

Amlogic S905X Rockchip RK3328 Allwinner H6
Video
– 4K 10-bit HEVC Up to 60 fps
– 4K VP9 Up to 60 fps
– 4K H.264 Up to 30 fps (8-bit only) Up to 30 fps (8-bit and 10-bit) Up to 30 fps (8-bit only)
USB 2.0 / 3.0 USB 2.0 USB 3.0 USB 3.0
– A1SD Bench (R/W) 37/37 MB/s 94.52/90.73 MB/s 59.07/42.12MB/s
Ethernet 10/100M only Gigabit Ethernet MAC Gigabit Ethernet MAC
– iperf (full duplex) 91.6/91.8 Mbits/s 815/344 Mbits/s 758/350 Mbits/s
RAM Capacity (Max) 2GB 4GB 2GB
Misc  TS, Smartcard interface TS, Smartcard interface, PCIe

I did not include audio, as all those SoC are supposed to support Dolby TrueHD and DTS HD audio codec pass-through. but implementation varies a lot between devices.

Amlogic S905X is the weakest of the lot based on the two tables above, but it’s also the cheapest SoC among the three, and in my experience, one with the best support in Kodi, for example. Rockchip RK3328 is not much more expensive, and have many benefits, except when it comes to 3D graphics performance, but it usually only matter if you plan to play games on the platform, the GPU is usually good enough for user interfaces. Allwinner H6 has more interfaces, a Mali GPU with OpenGL ES 3.1 and OpenCL support, and lightly more interfaces. The few devices that are based on the Allwinner processor are currently quite more expensive with all other features being equal.

 

BBen MN10 TV Stick Review – Windows 10, Ubuntu 17.04, Benchmarks, and Kodi

The BBEN MN10 is the second Apollo Lake device to be released in the stick form-factor and on paper looks to have a lot to offer:

It features an Apollo Lake N3350 SoC, an unusual 3GB of RAM, 64GB of storage and is cooled by a ‘mute’ fan. The devices comes in a plain box with a power adapter, and a leaflet style manual.

Click to Enlarge

It also included a three-pin UK power adapter, as this was advertised as the ‘BBen MN10 Mini PC  –  UK PLUG  BLACK’.

Looking at the detail specifications:

Click to Enlarge

We can immediately see discrepancies as the device does not have a ‘RJ45 Port Speed: 1000M LAN’ port, and was not supplied with ‘1 x HDMI Cable’ nor ‘1 x Remote Control’.

Powering on the device and the ‘mute’ fan is also a miss-representation as it starts immediately and is noticeably noisy. It also runs at full speed regardless of workload so the noise is a constant reminder that the device is switched-on:

Starting Windows and the disappointment continues with a message informing that ‘We can’t activate Windows on this device because you don’t have a valid digital license or product key’:

Click to Enlarge

also ‘Intel Remote Keyboard Host App’ is pre-installed (see icon top left) and the computer name is already been set as ‘BBEN’.

As a result I tried installing Microsoft’s Windows 10 Home ISO but because of the confirmed lack of license, I then installed Microsoft’s Windows 10 Enterprise product evaluation ISO in order to review the device.

The basic hardware matched the specification:

with plenty of free-space available post installation:

I then ran some standard benchmarking tools to look at performance under Windows. These are a new set of benchmarks as I’ve updated the tools and releases specifically for devices running Windows version 1709 and later:

Click to Enlarge

Click to Enlarge

Click to Enlarge

Click to Enlarge

Click to Enlarge

Click to Enlarge

Click to Enlarge

Click to Enlarge

Octane 2.0 with Chrome – Click to Enlarge

As can be seen the performance is as expected for the N3350 SoC and is comparable with other devices such as ECDREAM A9 or Beelink AP34 Ultimate:

Click to Enlarge

Next I installed Ubuntu as dual-boot using my ‘isorespin.sh’ script, which includes installing the rEFInd bootloader to enable booting on Apollo Lake devices when the BIOS doesn’t support Linux:

Performance is again as expected:

Click to Enlarge

Click to Enlarge

And can be compared with other Intel Apollo Lake and earlier Intel Atom devices:

Click to Enlarge

Click to Enlarge

Revisiting the hardware using Linux commands additionally shows the micro SD card is running the slower HS200 interface:

and rather interestingly a S/PDIF audio interface shows up in the sound settings. However given there is only a 3.5mm audio jack and when an external speaker is connected through it, sound works when selecting the S/PDIF interface. This again is somewhat misleading.

Click to Enlarge

Click to Enlarge

Click to Enlarge

Looking at real-work Windows usage cases the first being watching a 4K video using Microsoft Edge which works flawlessly:

Click to Enlarge

The same video when watched using Google Chrome results in occasional dropped frames:

Click to Enlarge

but notice how much harder the CPU and GPU are working.

Watching the same video and changing the video quality to high definition (1080p resolution) results in a better experience.

Click to Enlarge

Unfortunately this can’t be said for watching the same video in Google Chrome on Ubuntu. At 4K the video is unwatchable with excessive dropped frames and a stalled network connection after a short while:

Click to Enlarge

Even at 1080p the video still stutters:

Click to Enlarge

Running Kodi on both Windows and Ubuntu show similar ‘differences’ in the results.

On Windows if the video is encoded using the VP9 codec then decoding is using software resulting in high CPU usage and high internal temperatures:

Click to Enlarge

However when the video is encoded with the H.264 codec then Windows uses hardware to decode:

Click to Enlarge

and similar for videos encoded with H.265 or HEVC:

Click to Enlarge

with no issues playing the videos.

On Ubuntu hardware is used to decode all three codecs:

Click to Enlarge

Click to Enlarge

Click to Enlarge

however some H.265 videos resulted in a blank (black) screen just with audio whereas others played without issue:

Click to Enlarge

As previously mentioned the internal fan is screaming away merrily although it’s effectiveness with internal cooling is somewhat questionable:

Click to Enlarge

It does assist in keeping the device at a safe external temperature:

with the highest observed reading being 41°C.

So looking at the physical characteristics of the device its size is only slightly larger than the second generation Intel Compute Stick:

Initially I used the device upside down as it seemed sensible to have the case vents exposed:

Click to Enlarge

However cracking open the case reveals the fan actually uses the side vent between the two USB ports:

Click to Enlarge

with the bottom vents for cooling the memory and storage chips:

Click to Enlarge

Remarkably the WiFi chip appeared to have been exposed to excessive heat at some stage:

yet had still passed inspection as evidenced by the green ‘Pass’ sticker.

The only identifiable marking on the board were on the bottom under the sticky black coverings:

The BIOS is minimalistic:

which is an issue when booting with a connected USB to Ethernet adapter, as it defaults to PXE booting which needs to timeout before booting occurs from internal storage. A workaround is to boot Windows from the boot menu after pressing F7:

Notice also that the BIOS is unbranded and simply displays the Intel logo.

Finally after using Windows then Ubuntu and returning to Windows I encountered that audio over HDMI had disappeared:

Click to Enlarge

and reinstalling the Intel HD Graphics driver didn’t fix it.

So to sum up this is a device with specific limitations which the buyer should be aware of prior to purchase. I’d like to thank Gearbest for providing the BBEN MN10 for review. They sell it for $197.42 shipped. You’ll also find it on Aliexpress from various sellers with not-activated or activated Windows 10 Home / Pro.

Zidoo H6 Pro (Allwinner H6) TV Box Review – Part 2: Android 7.0 Firmware

November 10th, 2017 5 comments

Zidoo H6 Pro is the very first Allwinner H6 based 4K TV box. The Android 7.0 device support H.265, H.264 and VP6 4K video decoding, comes with fast interfaces such as USB 3.0, and network connectivity with Gigabit Ethernet and 802.11ac WiFi.

I’ve already checkout the hardware in the first part of the review entitled “Zidoo H6 Pro (Allwinner H6) TV Box Review – Part 1: Unboxing & Teardown“, and since then, I’ve had time to play with the TV box, and report my experience with Android 7.0 in this second part of the review.

First Boot and OTA Firmware Update

I’ve connected a USB keyboard and a USB dongle with RF dongles for an air mouse and gamepad on the two USB ports, a USB 3.0 hard drive to the single USB 3.0 ports, as well as HDMI and Ethernet cables before powering up the TV box. I also added two AAA batteries to the IR/Bluetooth remote control.

Click to Enlarge

Boot to the background image takes around 20 seconds, but to reach the actual launched it normally takes around one minute and 25 seconds when I have the hard drive connected (with 4 partitions and many files). If I remove the hard drive, the full boot can complete within 23 seconds. Not that much of an issue, but it still may be something Zidoo wants to optimize.

On the very first boot, a few seconds after the launcher showed up, I also had a pop-up window informing me that Firmware v1.0.11 update was available, with a neat changelog listing the main changes including support for Netflix 1080p playback, and YouTube 2K/4K playback.

Click for Original Size

I clicked on the Update button to start downloading the new firmware…

… an cliked Update again after downloading, to complete the firmware update with MD5 check and installation to the eMMC flash.

The system will then reboot, and we can get access the Zidoo ZIUI launcher.

Click to Enlarge

The launcher is identical to the one in Zidoo X7 except for two extra icons on the bottom for BT remote, and “Box RC” app, but more on that later.


Beside those two new remote apps, we’ll also notice HappyCast app used by Airplay/Miracast, and the lack of ZDMC (Zidoo’s Kodi fork), as we are told to use Kodi from Google Play instead.

Settings & Google Play

The settings section looks the same as Zidoo X7 settings, so I will only go through it quickly.

Click to Enlarge

We have four main section with Network, Display, Sound and Other. I could connect to WiFI and Ethernet with no issues, and Bluetooth worked with my smartphone and a pair of headphones. Display can be set up to a resolution / framerate of 3840×2160 @ 60 Hz, and PCM 2.0 output, HDMI & S/PDIF audio pass-through options are available. Looking at the Other section, About tab, and Android Settings about TV box reveals ZIDOO_H6 Pro is running Android 7.0 on top of Linux 3.10.65, and the firmware I tested for the review is v1.0.11, as we’ve seen from the OTA firmware update part of this review.

Click to Enlarge

Android security patch level is dated November 5, 2016. Not the most recent, and you won’t get monthly to bi-monthly security updates like in Android One phones such as Xiaomi Mi A1. The firmware is rooted by default.

Looking into storage options, I had 418MB free out of 10.22GB internal storage partition at the very beginning of the review, and NTFS and exFAT partitions of my USB hard drive could be mounted, but not the EXT-4 and BTRFS partitions.

I could install all apps I needed for review using Google Play, and I also installed Riptide GP2 game with Amazon Appstore since I got it for free there.

Remote Control – IR/Bluetooth, and Box RC Android App

One way Zidoo H6 Pro differs from most competitors is that it comes with a Bluetooth remote control. By default it works with the IR transmitter, and Bluetooth is disable, but you can enable Bluetooth by launching Bluetooth Remote app, or selecting BT Remote icon on the launcher.

Click to Enlarge

Hold the back and menu keys for a few seconds until the LED on the remote start flashing. The app will then show the Bluetooth remote is connected, and the battery level. Bluetooth does not enable air mouse function, and you’d still need to use the arrow keys to move the cursor in mouse mode, so the main advantage of Bluetooth over infrared is that it does not require line of sight. You can hide the box being the TV, or inside a furniture, and the remote would work. You do not need to point the remote control towards the TV box either, it works in any directions. I successfully tested the remote control up to a distance of 10 meters. Once I lost control of the OK and Back keys, but they came back later on after a reboot, and could not reproduce the issue.

I also tested MINIX NEO A2 Lite air mouse / keyboard / remote control, and again no problem. It’s my favorite way to control an Android TV boxes, since it works with all sort of user interfaces and most apps, excluding some games that require touch support.

Another way to control the TV box is to install Box RC  Android app in your smartphone. Launch Box RC app in the TV box, and you should see the QR Code below.

It redirects to RC Box apk file. +  Screenshots of smartphone app.

Click to Enlarge

After installation, you’ll be presented with the “key mode” pad. Tap on “My Device” and select ZIDOO_H6 Pro to connect to the TV box. Clicking on the icon in the top left corner will give you a few more remote modes, including “Handle model” for gaming…… as well as mouse and gesture mode – both of which look like the left screenshot below -, and an Applications with a complete list of apps installed in the TV box. Simply select the app you want to launch in the TV box.

Click to Enlarge

Finally, you’ll have an About section showing the version number, and checking for app updates, and a Screenshot option to remotely take screenshots. Everything worked well. I’m just not quite sure how to use the gesture mode.

Power Consumption & Temperature

Power control is just like on Zidoo X7 with a short press on the remote control power button bringing a menu to select between Power off, Standby, or Reboot. A long press will allow you to configure the behavior of the power button: Off, Standby, or Ask (default).

I measured power consumption in various mode, and here it works better than X7:

  • Power off – 0.0 Watt
  • Standby – 3.2 Watts
  • Idle – 4.0 ~ 4.4 Watts
  • Power off + USB HDD – 0.0 Watt
  • Standby – 6.0 to 6.4 Watts
  • Idle + USB HDD – 6.0 to 6.4 Watts

With regards to temperature, the box itself stays fairly as after playing a 2-hour video in Kodi, I measured 45 and 43ºC max measured on the top and bottom with an IR thermometer, and 47ºC on both sides after playing Beach Buggy Racing & Riptide GP2 for about 30 minutes. However, right after playing, CPU-Z reported respectively 86°C and 80°C CPU & GPU temperatures, which should be close to limit of the SoC. The ambient temperature was around 28°C, and 3D performance was contant while playing.

Video & Audio Playback with Kodi, Media Center and YouTube, DRM Info

Some people reported that Kodi installed from Google Play is working well in the box, so I installed Kodi 17.5 from Google Play, enabled automatic frame rate switching, setup the connection to my SAMBA share over Ethernet, and started playing my 4K video samples:

  • HD.Club-4K-Chimei-inn-60mbps.mp4 (H.264, 30 fps) – Not smooth, and some parts of the picture are very red
  • sintel-2010-4k.mkv (H.264, 24 fps, 4096×1744) – Not perfectly smooth
  • Beauty_3840x2160_120fps_420_8bit_HEVC_MP4.mp4 (H.265) – Plays fine, but woman face is more red than usual
  • Bosphorus_3840x2160_120fps_420_8bit_HEVC_MP4.mp4 (H.265) – Not perfectly smooth
  • Jockey_3840x2160_120fps_420_8bit_HEVC_TS.ts (H.265) – Not perfectly smooth
  • MHD_2013_2160p_ShowReel_R_9000f_24fps_RMN_QP23_10b.mkv (10-bit HEVC) – Not perfectly smooth
  • phfx_4KHD_VP9TestFootage.webm (VP9) – 2 to 3 fps (software decode)
  • BT.2020.20140602.ts (Rec.2020 compliant video; 36 Mbps; 59.97 Hz) – OK
  • big_buck_bunny_4k_H264_30fps.mp4 – Not super smooth
  • big_buck_bunny_4k_H264_60fps.mp4 – Not very smooth, audio delay (OK, as not supported by Allwinner H6)
  • Fifa_WorldCup2014_Uruguay-Colombia_4K-x265.mp4 (4K, H.265, 60 fps) – OK
  • Samsung_UHD_Dubai_10-bit_HEVC_51.4Mbps.ts (10-bit HEVC / MPEG-4 AAC) – Plays OK, but red parts are over-saturated?
  • Astra-11479_V_22000-Canal+ UHD Demo 42.6 Mbps bitrate.ts (10-bit H.265 from DVB-S2 stream) – OK
  • 暗流涌动-4K.mp4 (10-bit H.264; 120 Mbps) – ~2 fps (software decode – OK, as not supported by hardware)
  • Ducks Take Off [2160p a 243 Mbps].mkv (4K H.264 @ 29.97 fps; 243 Mbps; no audio) – Not smooth
  • tara-no9-vp9.webm (4K VP9 YouTube video @ 60 fps, Vorbis audio) – 2 to 3 fps (software decode), lots of buffering
  • The.Curvature.of.Earth.4K.60FPS-YT-UceRgEyfSsc.VP9.3840×2160.OPUS.160K.webm (4K VP9 @ 60 fps + opus audio) – 2 to 3 fps (software decode), lots of buffering

Automatic frame rate switching is not working, but that’s only a small issue compared to the disastrous results above. As shown in the screenshot above, H.265 is hardware decoded, but for some videos the CPU usage is really high, close to 100% on all four cores, so something is clearly wrong. H.265 / H.264 1080p videos fare better, so maybe that’s why other people think Kodi works well. Maybe ZDMC, Zidoo’s fork of Kodi is coming soon.

In the meantime, I switched to Media Center, and it’s night and day compared to my experience with Kodi, also played from the same SAMBA share:

  • HD.Club-4K-Chimei-inn-60mbps.mp4 (H.264, 30 fps) – OK most of the time, but the end is a bit choppy
  • sintel-2010-4k.mkv (H.264, 24 fps, 4096×1744) – OK
  • Beauty_3840x2160_120fps_420_8bit_HEVC_MP4.mp4 (H.265) – OK
  • Bosphorus_3840x2160_120fps_420_8bit_HEVC_MP4.mp4 (H.265) – OK
  • Jockey_3840x2160_120fps_420_8bit_HEVC_TS.ts (H.265) – OK
  • MHD_2013_2160p_ShowReel_R_9000f_24fps_RMN_QP23_10b.mkv (10-bit HEVC) – OK
  • phfx_4KHD_VP9TestFootage.webm (VP9) – OK
  • BT.2020.20140602.ts (Rec.2020 compliant video; 36 Mbps; 59.97 Hz) – OK
  • big_buck_bunny_4k_H264_30fps.mp4 – OK
  • big_buck_bunny_4k_H264_60fps.mp4 – Plays but not smoothly, plus audio delay (OK, as not supported by Allwinner H6)
  • Fifa_WorldCup2014_Uruguay-Colombia_4K-x265.mp4 (4K, H.265, 60 fps) – OK
  • Samsung_UHD_Dubai_10-bit_HEVC_51.4Mbps.ts (10-bit HEVC / MPEG-4 AAC) – OK
  • Astra-11479_V_22000-Canal+ UHD Demo 42.6 Mbps bitrate.ts (10-bit H.265 from DVB-S2 stream) – OK
  • 暗流涌动-4K.mp4 (10-bit H.264; 120 Mbps) – Massive artifacts  (OK, as not supported by Allwinner H6)
  • Ducks Take Off [2160p a 243 Mbps].mkv (4K H.264 @ 29.97 fps; 243 Mbps; no audio) – OK
  • tara-no9-vp9.webm (4K VP9 YouTube video @ 60 fps, Vorbis audio) – OK
  • The.Curvature.of.Earth.4K.60FPS-YT-UceRgEyfSsc.VP9.3840×2160.OPUS.160K.webm (4K VP9 @ 60 fps + opus audio) – Not too bad, but not 100% smooth in all scenes. (Note: Most TV boxes struggle with this video).

I’m pretty happy with the results, and automatic frame rate switching works, it just need to be enabled in Advanced menu.
Switching audio tracks and subtitles are supported by the app, and work well. SmartColor engine is specific to Allwinner processors, and may help improve the video quality, or adjust the image to your taste.


Let’s carry on testing with PCM 2.0 (stereo) output to my TV, and HDMI audio pass-through to Onkyo TX-NR636 A/V receiver, with some advanced audio codec in Media Player.

Audio Codec in Video PCM 2.0 Output HDMI Pass-through
AC3 / Dolby Digital 5.1 OK OK
E-AC-3 / Dolby Digital+ 5.1 OK OK
Dolby Digital+ 7.1 OK OK
TrueHD 5.1 OK OK
TrueHD 7.1 OK OK
Dolby Atmos 7.1 OK TrueHD 7.1 (OK)
DTS HD Master OK DTS 5.1
DTS HD High Resolution OK DTS 5.1
DTS:X OK DTS 5.1

Audio works pretty well with the only downside being a lack of support for DTS HD MA/HR which all fallback to DTS 5.1. My receiver does not support Atmos, so the box outputs TrueHD 7.1 as it should.

I’ve also tested HD videos with various bitrates:

  • ED_HD.avi (MPEG-4/MSMPEG4v2 – 10 Mbps) – OK (except running scene that is not smooth)
  • big_buck_bunny_1080p_surround.avi (1080p H.264 – 12 Mbps) – OK
  • h264_1080p_hp_4.1_40mbps_birds.mkv (40 Mbps) – OK
  • hddvd_demo_17.5Mbps_1080p_VC1.mkv (17.5Mbps) – OK
  • Jellyfish-120-Mbps.mkv (120 Mbps video without audio) – HDD: OK

Most Linaro media and H.265 elecard samples are playing fine in Media Center:

  • H.264 codec / MP4 container (Big Buck Bunny) – 1080p – OK
  • MPEG2 codec / MPG container – 1080p – OK
  • MPEG4 codec, AVI container – 1080p – OK
  • VC1 codec (WMV) – 1080p – OK
  • Real Media (RMVB), 720p / 5Mbps – Media Center app returns “Can’t play video”
  • WebM / VP8 – 1080p – OK
  • H.265 codec / MPEG TS container – 1080p – OK

The full HD Blu-ray ISO files I tested (Sintel-Bluray.iso and amat.iso) played fine, so were 1080i MPEG-2 samples. I had the usual artifacts with Hi10p videos, but audio and subtitles were displayed correctly.

I also tested a bunch of 720p/1080p movies with various codecs/containers such as H.264, Xvid, DivX, VOB / IFO, FLV, AVI, MKV, MP4, etc… Most could play, except some of my FLV video samples, and DVD Rips would show the “This is a Blu-ray folder” pop-up…

… but the app would also report “Can’t play video”. If I browse to the folder, and select the IFO, it does not work, and the only way to start is to select a VOB file. However, it does not automatically switch to the next file. So there’s a problem with DVD rips in Media Center app.

YouTube app could play videos up to 1440p, but 4K (2160p) is not an option.

I’ve shot a video to show issues in Kodi, as well as Media Center app which work pretty well, and YouTube playback up to 1440p.

DRM Info app shows Widevine DRM L1 is supported, meaning one of the requirements for Full HD Netflix is fulfilled.

Click to Enlarge

The company – as we’ve seen in the firmware changelog – claims support for Netflix 1080p, but since I don’t have an account I could not confirm that. It’s also unclear whether this has been achieved through a hack, or a partnership with Netflix. The latter would be permanent, while the former may not work in a few months. Based on info gathered on Zidoo forums, I can see other boxes like Mecool M8S Pro Plus TV box can play Netflix 1080p through a “3rd party Android TV Firmware”, so it’s likely something similar has been implemented for H6 Pro.

Network & Storage Performance

Zidoo X7 had a somewhat asymmetrical performance while copying a 278 MB file over 802.11ac + SAMBA, and Zidoo H6 Pro appears to have the same issues:

  1. Server to flash (average): 51, or around 5.45 MB/s
  2. Flash to server (average): 3 minutes 22 seconds, or around 1.37 MB/s

So excellent download performance, but weak upload performance with SAMBA. The average is around 2.24 MB/s.

Throughput in MB/s – Click to Enlarge

It’s probably a SAMBA configuration/implementation issue, as testing with iperf shows good performance in both directions:

  • 802.11ac download:

  • 802.11ac upload:

Throughput in Mbps

I also tested Gigabit Ethernet with iperf:

  • Full duplex:

  • Upload only:

  • Download only:

That’s pretty good, and fairly close to the results I got with ROCK64 Board (RK3328).

Switching to store benchmarks with A1 SD Bench.

Click to Enlarge

The cached read is due to the incredibly low exFAT write performance (1.52 MB/s). Read speed is quite weak to at 16.37 MB/s with this file system, but poor exFAT performance is a common to most Android TV boxes. NTFS is much better at 59.07MB/s read, and 42.12 MB/s but still far from the ~100MB/s R/W, I achieved with the same hard drive on ROCK64 board. Nevertheless the performance will be good enough for TV box use case. However, if you need hardware with fast storage (through USB 3.0) and Ethernet, RK3328 processor looks to be better.

Internal performance is good, and helps explain relatively fast boot (when no HDD is connected), fast app loading, and the lack of “app not responding” issues.

Gaming

I installed three games: Candy Crush Sage, Beach Buggy Racing (BBR) and Riptide GP2. I played Candy Crush with my air mouse, and no problem here. I played the two racing games with Tronsmart Mars G01 game controller, and BBR played very smoothly even with max graphics settings. Riptide GP2 was quite playable with max “resolution”, maybe at 25 to 30 fps, but not quite close to 60 fps. I feel Allwinner H6 might be a little better at playing games than Rockchip RK3328, and somewhat comparable to Amlogic S905/S905X. I played both games for around 30 minutes in total, and I did not notice any drop in performance over time, so no obvious throttling/overheating, despite the rather high CPU/GPU temperatures reported by CPU-Z.

Bluetooth

I’ve used Bluetooth more than on any other TV boxes simply because of the Bluetooth remote control. But I could also pair the TV box (seen as petrel-p1) with Xiaomi Mi A1 smartphone, and transfer a few photos over Bluetooth, watch some YouTube video using X1T Bluetooth earbuds, but while I was able to see and pair my BLE fitness tracker in the Bluetooth settings, I was never able to locate the smart band from within “Smart Movement” app.

Zidoo H6 Pro (Allwinner H6) System Info and Benchmarks

CPU-Z still shows a quad core Cortex A53 r0p4 processor clocked between 480 MHz and 1.80 GHz, and a Mali-T720 GPU. Note that I never saw the frequency goes over 1488 MHz, so that 1.80 GHz may only occur during short bursts if at all.

Click to Enlarge

1906 MB total memory was reported, and 10.22 GB storage. Screen resolution was 1920×1080. As with most Allwinner platform you’ll never get a recent kernel (Linux 3.10.65).

The device achieved 40,467 points in Antutu 6.x, or about 5,000+ more compared to competitors based on RK3328 or S905X.

Click to Enlarge

One of the big jump is with 3D graphics, but there’s an easy explanation: Rockchip RK3328 and Amlogic S905X SoCs rely on Mali-450MP GPU which does not support OpenGL ES 3.1 used by “Marooned” benchmark, meaning Allwinner H6 just gets 3,510 points extra just for supporting OpenGL ES 3.1… So in reality, there’s not so much performance difference between the performance.

Vellamo 3.x confirms Allwinner H6 is that much faster with the following scores: Browser: 2,546 points, Metal: 930 points, and Multicore (836 points). I’ll put aside Multicore as on the test failed because of an issue with sysbench: “issue with Finepar: Invalid CPU mode”. But when comparing the metal score result against Amlogic S905X (910) and Rockchip RK3328 (937), the differences are minor.

Click to Enlarge

The Ice Storm Extreme score (3,951 points) is about the same as Amlogic S905X (4,183 points), but quite better than Rockchip RK3328 (2,252 points). We can also see the CPU frequency never surpassed around 1.5 GHz, so I’m wondering whether the 1.8 GHZ reported by CPU-Z might just be for show/marketing…

Conclusion

Despite Allwinner H6 SoC being pretty new, I have not found any really critical bugs in Zidoo H6 Pro TV Box. 4K video playback is working well in Media Center app with automatic frame rate switching, and HD audio pass-through, and overall performance is good, including for Wifi, Ethernet and storage.Widevine Level 1 DRM is installed, and the device is also supposed to support Netflix HD playback (not tested). 3D graphics performance is closer to the one of Amlogic S905X ,and quite better than on Rockchip RK3328 SoC.

The biggest issues I’ve found is poor support for Kodi with most 4K videos I’ve tried not playing well, and red color is over-statured in many videos. Media Center app also have a few limitations such as no support for DTS HD HR/MA pass-through (fallbacks to DTS 5.1), and IFO (DVD Rip) & Real Media video files are not supported. Other issues include poor exFAT performance, and WiFi SAMBA upload speed.

PROS

  • Android 7.0 operating system – Stable and responsive
  • Eye-pleasing ZIUI launcher / user interface
  • Very good support for 4K videos played in Media Center app with automatic frame rate switching support; Smart Color Engine for post-processing
  • HDMI pass-through for Dolby, DTS, and Dolby TrueHD working in Media Center app
  • Relatively fast eMMC flash storage (fast boot/app loading)
  • Very good networking performance for Gigabit Ethernet and 802.11ac WiFi (except for SAMBA uploads)
  • Bluetooth remote control
  • Decent 3D graphics performance
  • Widevine Level 1 DRM; Netflix HD support (not tested)

CONS (and bugs)

  • Kodi 17.5 from Google Play struggles to play 4K videos and color issues (too much red)
  • MediaCenter – No DTS HD pass-through support (DTS 5.1 instead); IFO (DVD rip) and Real Media (RM) videos not supported, some FLV files can’t play.
  • YouTube limited to 1440p (no 2160p option for me)
  • Poor SAMBA upload performance when using WiFi
  • exFAT file system performance poor -> use NTFS instead on external hard drive
  • Slow boot time (~1 minute 30 seconds) when hard drive with many files connected
  • “OK” button stopped to work on the Bluetooth remote control once (despite still working on the air mouse). Reboot fixed the issue.

Zidoo kindly sent the review sample from a local distributor. Resellers can contact the company via H6 Pro’s product page. GeekBuying currently has a promotion for the device where you can get it for as low as $79.99 (only for the first 50 orders), but it’s also sold on other websites for about $85 to 100 including GearBest, Amazon, or Aliexpress.

MeLE PCG35 Apo Mini PC Review – Part 2: Windows 10 Home

October 23rd, 2017 7 comments

Laptops and mini PCs powered by the new generation of Intel Gemini Lake processors are coming soon, but companies are still launching Apollo Lake based products with various features. MeLE PCG35 Apo mini PC is one of them, and what makes it interesting compared to most of the competition is support for 80mm M.2 SSDs and 2.5″ SATA drives, on top of featuring a Celeron J3455 processor, one of the most powerful of the family. I took photos of the mini PC, accessories, and internal design in the first part of the review, so I’ll report about my experience with Windows 10 Home, explain how to manage the different drives, and test stability under load.

MeLE PCG35 Apo Setup, Drives Configuration, Display Settings

Last time, I’ve showed how to install an M.2 SSD and 2.5″ SATA hard drive inside MeLE PCG35 Apo, so I just have to connect a few cables (HDMI, VGA, Ethernet, Power) and USB peripherals with USB keyboard, USB mouse, and USB hard drive.

Click to Enlarge

When we connect the power the power button should be red, and we can press it to start the device, the power LED changes to blue, and within a few seconds we’ll be greeted by the setup wizard asking us to select the language. With MINIX NEO Z83-4 Pro, I had Cortana assisting me through the process, but it did not happen here, so it must be a Windows 10 Pro only feature (TBC).

The process was actually the same as on other Windows 10 Home mini PC with configuration for keyboard, connectivity, privacy, user setup and so on. Once the setup was done, I went to check for my drives

C: is the eMMC flash with Windows 10, D: is the M.2 SSD, and E: and F: are respectively the NTFS and exFAT partition of the USB drive. I had to format D: to be able to use it, but my SATA HDD was nowhere to be seen. I’ve using the drive for Windows and Linux reviews, which explains why Windows did not show it. So I started Disk Management.

Click to Enlarge

Sure enough, I could see all the 4 drives with Disk 0 being my SATA drive. I deleted and create the partition for Disk 0 again, assigned letter G: to it, and formatted it with NTFS within Disk Management program.
I now had access to all my drives as shown in the screenshot above. A typical use would be as follows:

  • C: – eMMC flash, reversed for Windows 10
  • D: – M.2 SSD – Programs, caches, databases (e.g. email client data), and potentially user directory (not recommended). Best sequential and random I/O performance, but higher costs
  • G: – SATA HDD – Data like documents, photos, videos, large downloads, etc… that do not really benefit from fast random I/Os.
  • E: / F: (Normally only one drive) – Potentially for backup purpose

As we’ll see below, the M.2 SSD are much better performance compare to the eMMC flash, so you’d possibly gain a little bit performance by moving Windows 10 to the SSD, and use the eMMC flash for something else. The only problem is that it does not comply with Microsoft’s discounted Windows 10 license, which prohibits installation media larger than 32GB, so Windows would not be activated if you move it to another drive. Linuxium managed to move Windows 10 from the eMMC to SSD and keep it activated on Beelink AP34, but the instructions are a little complicated, and there’s guarantee it will work overtime, as Microsoft may change the way it detects the activation. So I’d recommend to keep Windows 10 on the eMMC flash, and if you need more space for program and/or better performance, add an M.2 SSD.

Now Windows will still try to install program to the C: drive by default. You can usually change that while installing programs, but it’s easy to forget, so it’s better to change the default to D:, or whatever the drive letter for your SSD. Launch Regedit, and go to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion to change all default paths to D:.

Click to Enlarge

You may also consider moving your email client and browser(s)’ profiles to the SSD drive both to save space on the eMMC flash, and gain better performance. I have not done it for the review.

Then I right clicked on Documents, Photos,  Videos, Music, and Downloads folder in the File Explorer, selected Properties->Location, and change C: to G: in order to make sure all files are stored on my hard drive as shown below for the Downloads directory.

I did not have to remove any programs during this review, but at the end, I only had just under 4GB free space on the eMMC flash (C:).

WinDirStat can help you find out what takes space. For example, the screenshot below shows applications installed from Windows Store – such as Asphalt 8: Airborne – are found in the C drive. So you may want to move that directory, as I have already explained in MeLE PCG03 Apo review.

Click to Enlarge

Most people will probably just use an HDMI display with 1920×1080 resolution, but the mini PC also supports 3840×2160 or 4096×2160 resolution @ up to 60 Hz. Windows 10 Home will however show a message about “optimal resolution” being 1920×1080 when you do so.

Click to Enlarge

As with most other MeLE mini PC, PCG35 Apo also comes with an extra VGA port which allows for dual display setup, and I had no troubles using it.

Dual Display Setup – Click to Enlarge

The mini PC is also equipped with a USB type C port, but note that it is only for data (like another USB 3.0 port), and can not be used as a DisplayPort output, nor for fast charging.

MeLE PCG35 Apo System Information

Going to Control Panel > System and Security > System shows the mini PC is indeed powered by an Intel Celeron J3455 processor @ 1.50 GHz with 4 GB RAM, and runs an activated version of Windows 10 Home 64-bit.

Click to Enlarge

I’ve also taken a screenshot of Device Manager for people waiting more technical details.

Click to Enlarge

HWiNFO64 gives some more details about Celeron J3455, and unsurprisingly it has the same features as Celeron N3450, but the base frequencies (CPU HFM (Max)) and turbo frequencies are different.

Click to Enlarge

The memory clock (800 MHz) is lower than on MeLE PCG03 Apo (933.33 MHz = 14 x 66.7 MHz).

MeLE PCG35 Apo (Intel Celeron J3455) Benchmarks

As we’ve just seen above, and confirmed on Intel website, Celeron N3450 and J3455 are basically the same SoC, but later has higher base and turbo clocks for both CPU and GPU, resulting in a higher 10W TDP. So in theory, we should expect PCG35 Apo (J3455) to be very slightly faster than PCG03 Apo (N3450).

I’ve started benchmarking with PCMARK 10 and 8.

Click to Enlarge

Click to Enlarge

MeLE PCG35 Apo achieved respectively 1,391 and 1,724 points for both, which compares to 1,334 and 1,767 points on PCG03 Apo. So both platforms actually perform about the same on those two benchmarks.

Passmark PerformanceTest 9.0 shows quite a different story with PCG35 Apo only getting 790.7 points against against 995.7 for PCG03 Apo.

Click to Enlarge

If we look at the detailed CPU Mark is higher, Disk Mark similar, Memory Mark a little lower, but most of the points are lost because of 2D graphics mark, and especially 3D graphics mark (163 vs 335.9). Very odd.

I’ve also run  Passmark 8 to compare with older results.

However, 3DMark results are much closer, with on average PCG35 Apo performing very slightly better.

Click to Enlarge

Detailed results:

  • Ice Storm – PCG35 Apo: 26,075 points; PCG03 Apo: 23,194 points
  • Fire Strike – PCG35 Apo: 248 points; PCG03 Apo: 275 points
  • Sky diver – PCG35 Apo: 865 points; PCG03 Apo: 945 points
  • Cloud Gate – PCG35 Apo: 2,322 points; PCG03 Apo: 2,073 points

For most results above, I doubt the user would notice any differences, except possibly for 3D graphics in Passmark 9.0 (I repeated the test twice to make sure).

Switching to storage performance with CrystalDiskMark 5.2.2 x64. The 32GB eMMC flash performs as expected with 164 MB/s sequential reads, and ~80 MB/s sequential writes, and average random I/O.

KingDian N480 SSD attached to the M.2 slot is much faster both for sequential R/W and random I/Os, and the results are about the same as during the SSD review.


I also tested the SATA hard drive, and again the results are as expect with around 110 MB/s sequential R/W speeds, and very poor random I/O due to slow seek time on mechanical drives.

Gigabit Ethernet is working well, as per iperf 2.9.x full duplex transfer results:

I had no troubles to connect to WiFi 802.11ac.

But for some reasons, data transfers results with iperf  were quite asymmetrical, with upload…

much slower than download:

Upload was similar to download speed in MeLE PCG35 APo (~250 to 275 Mbps). I repeated upload tests at three different times, but they were all around 55 to 57 Mbps.

WiFi Throughput in Mbps

I’ve pitted MeLE PCG35 Apo against other low power mini PCs in the chart below, including systems based on Braswell (MINIX NGC-1, Vorke V1), Cherry Trail (Voyo V3, MINIX NEO Z83-4), Apollo Lake (Voyo V1 VMac Mini, MeLE PCG03 Apo), and Skylake (Compute Stick) for various benchmarks.

Click to Enlarge

Note: The scores have been adjusted for easier reading on single chart., e.g. Ice Storm scores divided by 20, Fire Strike scores multiplies by 4 for scale, etc..

Kodi 4K Video Playback and HDMI Audio Pass-through

I also installed Kodi 17.4 to test a few 4K H.265, VP9, and H.264 videos from the USB drive, since I could not connect to Windows network (SMB):

  • HD.Club-4K-Chimei-inn-60mbps.mp4 (H.264) – Not always smooth
  • Beauty_3840x2160_120fps_420_8bit_HEVC_MP4.mp4 (H.265) – OK
  • BT.2020.20140602.ts (H.265 Rec.2020 compliant video) – OK, except for two audio cuts at the beginning
  • big_buck_bunny_4k_H264_30fps.mp4 – OK
  • Fifa_WorldCup2014_Uruguay-Colombia_4K-x265.mp4 (4K, H.265, 60 fps) – OK
  • Samsung_UHD_Dubai_10-bit_HEVC_51.4Mbps.ts (10-bit HEVC / MPEG-4 AAC, 23.976 fps) – OK
  • The.Curvature.of.Earth.4K.60FPS-YT-UceRgEyfSsc.VP9.3840×2160.OPUS.160K.webm (4K VP9 @ 60 fps + opus audio) – 4 to 6 fps (Software decode) + buffering issues

Automatic frame rate switching is also working well with the resolution changed to 3840×2160 when playing video, and the refresh rate matching the one of the framerate video. VP9 is using software decode, and does not play well.

So I enabled audio pass-through in Kodi by going to Settings->System Settings->Audio, switching to Advanced mode, enabling Allow passthrough, and selecting WASAPI: HDMI TX-NR636 (Intel Display Audio)…. as the Passthrough output device. You should then get a list fof HD audio codecs to enable / disable, and I switched them all on: AC3, E-AC3, DTS, TrueHD, and DTS-HD since those are supported by Onkyo TX-NR636 receiver.

Video HDMI Pass-through
AC3 / Dolby Digital 5.1 OK
E-AC-3 / Dolby Digital+ 5.1 OK
Dolby Digital+ 7.1 PCM 2.0 (no audio)
TrueHD 5.1 PCM 2.0 (no audio)
TrueHD 7.1 PCM 2.0 (no audio)
Dolby Atmos 7.1 PCM 2.0 (no audio)
DTS HD Master PCM 2.0 (no audio)
DTS HD High Resolution PCM 2.0 (no audio)
DTS:X PCM 2.0 (no audio)

Same results, and disappointment, as with MeLE PCG03 Apo, the eDP 1.2 to HDMI 2.0 chip might get in the way with audio pass-through, as Apollo Lake HDMI 1.4 usually support AC3 and DTS at least.

User Experience, Stress Test, and Power Consumption

Beside playing with Kodi 17.4, I also did a user experience test like with other Windows 10 PCs

  • Multi-tasking – Launching and using Firefox, Thunderbird, LibreOffice, and Gimp at the same time
  • Web Browsing with Firefox & Microsoft Edge
    • Loading multiple tab in Firefox with CNX Software blog
    • Playing Candy Crush Saga in Firefox
    • Playing a 4K (VP9) YouTube Videos in Youtube and Microsoft Edge
  • Gaming with Asphalt 8

It’s hard to see much differences between all those Apollo Lake platform, but in this case 4K Youtube videos were unwatchable in Firefox, even after disabling VP9 with h264ify extension. 4K VP9 YouTube video played fine in Microsoft Edge with no frames dropped (as per stats for nerd). However, I could head audio cuts every few minutes. I also used HWiNFO64 in sensor only mode, and thermal throttling was never reported by the program…, so MeLE PCG03 Apo is a solid device with good thermal design. You can watch Voyo VMac V1 video if you’ve never an Apollo Lake mini PC in action.

After that I tested system stability with AIDA64 Extreme, and for a little over 30 minutes, everything went fine, but then I noticed a sudden drop in temperature, but no CPU throttling detected. I waited a bit longer, and surely enough it happened again, and I could see the CPU frequency drop as low as 400 MHz before creeping back up to 2.2 GHz within a few seconds.

Click to Enlarge

As you can see from the red highlight, still not thermal throttling… But if we scroll down just bit we can see “Power Limit Exceeded” for Core #1, #2, and #3, as well as as “Package/Ring Power Limit Exceeded”.  So somehow the power used by the chip must have gone over 10W, and it automatically reduced the frequency.


If we continue with the stress test up to the hour, we can see waves in the temperature chart every few minutes, and each time frequency drops to around 400 MHz, then up to 900 MHz, etc… and up to 2.2 GHz. So performance is not perfectly constant.

Click to Enlarge

This must also be related to temperature, as during the first 30 minutes, CPU temperature was lower, and I did not see any sudden drops in temperature. That means the mini PC does not run at full capacity all the time when under load. I rebooted the computer, and ran HWiNFO64 while using the computer for web browsing, playing videos, and checking email, and the same power limit were exceeded too. My room temperature is close to 30°C, and you experience may differ at 20 or 25°C, as it should take longer for the problem to occur, if ever.

I also measured power consumption in various cases:

  • Power off – 0.4 to 1.1 Watts
  • Sleep – 1.3 Watts
  • Idle – 9.3 Watts (note that’s with SSD, SATA and USB HDDs attached)
  • Kodi 17.4 4K 10-bit H.265 Video Playback from USB HDD – 15 to 18 Watts
  • AIDA64 Stress Test – 18 to 20.1 Watts (Drops to around 13.1 Watts during temperature drops)

Conclusion

If you’d expected MeLE PCG35 Apo to perform better than MeLE PCG03 Apo you’ll be disappointed. Benchmarks are similar, but cooling? did not work as well with the system CPU frequency dropping from time to time due to “exceeded power limit”. Cooling is more tricky on that model due to the 10W Celeron J3455 SoC, and the fact that I tested it with both M.2 SSD and SATA HDD installed inside the device. However, HWiNFO64 never detected any over heating, but only “over powering”. Maybe there’s a BIOS option for that but I did not investigate yet. My room temperature is close to 30°C, so it may have impacted the results too.

Other features are very similar to PCG03 Apo with dual display support (HDMI 2.0 + VGA), 4K 60 Hz video output and playback, and so on. However I found some issues with 3D graphics in PerformanceTest 9.0 benchmark, and WiFi upload speed is quite slower than PCG03 (although most people will only care about download). I’ll try Ubuntu 17.10 installed to the M.2 SSD in a few days.

The main selling point of MeLE PCG35 Apo is support for internal 2.5″ hard drive, and if you don’t do anything too demanding you could purchase the mini PC for $179.99 shipped on Aliexpress (Wait for the week-end if the price is higher when you check it out). If you don’t care about the internal SATA bay, MeLE PCG03 Apo going for $159.20 including shipping is probably a better option.

MINIX NEO Z83-4 Pro Mini PC Review – Part 2: Windows 10 Pro

September 5th, 2017 3 comments

MINIX launched NEO Z83-4 Cherry Trail mini PC last year, but the company has now launched NEO Z83-4 Pro, an updated version with a slightly faster Atom X5-Z8350 processor, Windows 10 Pro (instead of Home), and a a VESA mount kit. I’ve already checked the hardware in the first part of the review, so today I’ll report my experience with Windows 10 Pro.

Windows 10 Home vs Windows 10 Pro

My main computer runs Ubuntu 16.04, and I’m only using Windows 10 during reviews… But so far all other mini PCs I tried came with Windows 10 Home, and NEO Z83-4 Pro is my first Windows 10 Pro computer. So I had to educate myself, and Microsoft website has a comparison between the two versions of Windows 10. Windows 10 Pro supports all features of Windows 10 Home, plus the following:

  • Security
    • Windows Information Protection – Formerly Enterprise Data Protection (EDP), requires either Mobile Device Management (MDM) or System Center Configuration Manager to manage settings. Active Directory makes management easier, but is not required.
    • Bitlocker – Full disk encryption support. Requires TPM 1.2 or greater for TPM based key protection. More details here.
  • Business – Management and deployment
    • Group Policy
    • Enterprise State Roaming with Azure Active Directory – Separate subscription for Azure Active Directory Premium required
    • Windows Store for Business – Available in select markets. Functionality and apps may vary by market and device
    • Assigned Access
    • Dynamic Provisioning
    • Windows Update for Business
    • Shared PC configuration
    • Take a Test – app in Windows 10 to create the right environment for taking a test (education)
  • Windows Fundamentals
    • Domain Join
    • Azure Active Directory Domain Join, with single sign-on to cloud-hosted apps – Separate subscription for Azure Active Directory required
    • Enterprise Mode Internet Explorer (EMIE) – For compatibility issues of web apps in Internet Explorer 11 (emulates IE 8).
    • Remote Desktop
    • Client Hyper-V

If you don’t understand some of the option, you most probably don’t need then. Bitlocker works more securely if a TPM (Trusted Platform Module) chip is present in the system, so the presence of that secure chip is something I’ll have to check out during the review. AFAIK, the original MINIX NEO Z83-4 does not include any TPM.

A few days ago, I wrote about BBen MN10 TV stick available with either Windows 10 Home or Windows 10 Pro, and the former is offered for $21.39 extra, the later for $30.33, so the Pro version is only about $10 more expensive than the Home version on such entry level hardware. If you had to purchase Windows 10 Pro license by yourself, it would cost $199.99, or the same price as the complete MINIX NEO Z83-4 Pro mini PC including the Win10 Pro license… That sounds crazy/unbelievable, but apparently that’s just the way Microsoft handles licenses, and one of the main reason MINIX decided to launch this new model.

MINIX NEO Z83-4 Pro Setup & System Information

I connected a USB 3.0 hard drive to the USB 3.0 port, USB mouse and keyboard, HDMI and Ethernet cables, and started up the device by pressing the power button right after connecting the 12V power adapter.

Click to Enlarge

The first boot was a little different than what I’m accustomed to, as I was doing something, I started to hear a female voice… asking to select the region… So Microsoft has now enabled Cortana voice assistant by default in the setup Wizard. If you don’t like it you can turn it off by pressing the Volume icon on the bottom right corner.

NEO Z83-4 Pro does not come with an built-in microphone, but you have one you can answer “Yes” to go the next step while Cortana is listening. I’ve shot a short video to show what the new Windows 10 (Pro) setup wizard feels like.

The whole process is slightly different. For example, I normally do not sign-in with a Microsoft account, and used to press skip in that section, but there’s no such Skip button in the new interface, and instead you can click on Offline account button in the bottom left.

You’ll also be asked about privacy settings for location, diagnostics, speech recognition, and so on, which I cannot remember in other mini PCs I tested with Windows 10. All options are enabled by default, so if you want better privacy you should set them to off.

Click to Enlarge

Once the setup is complete Windows 10 Pro looks just like Windows 10 Home, except you’ll be informed you are running the Pro version in the System window.

Click for Original Size

That window confirms the information we already knew with Z83-4 Pro model powered by Intel Atom x5-Z8350 processor @ 1.44 GHz, with 4GB RAM, and Windows is activated..
The eMMC flash has a 28.2GB Windows drive (C:) with 16.5 GB free. The system could also detect the NTFS and exFAT partitions on my USB drive, as well as some Windows network locations.

Click to Enlarge

I’ve also taken a screenshot for the Device Manager to get more technical details, and we can also notice a Trusted Platform Module 2.0 is enabled, so that’s another feature in Z83-4 Pro that was absent from Z83-4 mini PC.

Click to Enlarge

I also started tpm.msc to get some more details about the TPM as shown above, and by default it is not enabled, but you can follow Microsoft TPM instructions to use it properly for better – hardware based – security.

Click to Enlarge

HWiNFO64 show further details about the system and processor.

I noticed the computer would turn off (not sleep) by itself after a few minutes when I ran benchmarks. I could fix that by going to Power & sleep settings and changing the 10 minutes sleep time to Never.

Click to Enlarge

MINIX NEO Z83-4 Pro Benchmarks

Z83-4 Pro was strangely slightly slower than Z83-4 mini PC in PCMark 8 Home Accelerated 3.0 with 1,445 points against 1,543 points for the latter.

Click to Enlarge

If we look at the details, we can actually see Z83-4 Pro was faster in most tests, but is 50% slower in Advanced Photo Editing Accelerated, and significantly slower in Video Chat Encoding v2 Accelerated, so there might be a driver issue with OpenCL support since those accelerated tests are supposed to leverage the GPU. You’ll find the detailed results here.

Click to Enlarge

I’ve also run the newer PCMARK 10 benchmark to have a reference point for Cherry Trail platform, and in this test Z83-4 Pro got 896 points, which compares to 1,334 points on a faster Celeron N3350 Apollo Lake mini PC.

Passmark 9.0 failed in the 3D graphics section, so I ran Passmark 8.0 instead, where the device got 698.8 points, against 656.30 points in the original Z83-4 mini PC, a results closer to expectations.

NEO Z83-4 Pro archived 20,284 and 233 points on respectively 3DMark’s Ice Storm 1.2 and Fire Strike 1.1 3D benchmarks, which compares to 16,030 points and 187 points on the older version.

Click to Enlarge

The extra boost is likely due to the higher GPU frequency on x5-Z8350 SoC.

CrystalDiskMark 5.2.1 shows roughly the same eMMC flash performance as on MINIX NEO Z83-4 model. That’s rather average but normal for 32GB parts mandated by Microsoft for a discounted license.


What’s not so good however is the sequential write speed on the NTFS partition of my USB hard drive, as it can normally achieve 90 to 100 MB/s on most hardware.
The read performance is normal however. So I repeated the test, but got the same poor write speed. I retried a few days later, and after a disk scan, but write speed only went up to around 45 MB/s. So something looks wrong here.


For that reason, I also ran the benchmark on the exFAT partition, and write benchmark is fairly normal at close to 80 MB/s, so it’s not a USB issue, and looks like some issues with NTFS or caching.

Sadly, WiFi AC testing with iperf yielded under average performance.

  • Upload:

  • Download:

Throughput in Mbps

So overall the tests show everything is mostly working as expected, except OpenCL acceleration in PCMark 8, NTFS sequential write speed, and 802.11ac WiFi performance does not look that good compared to the competition, at least with my TP-Link router.

Click to Enlarge

Finally, I’ve compared MINIX NEO Z83-4 Pro benchmark results (adjusted for easier comparison) to Atom x5-Z8300 / x5-Z8500 mini PCs including NEO Z83-4, Kangaroo Desktop, and Tronsmart Ara X5, and as one should expected, there aren’t that many differences between the devices. Z83-4 Pro is slightly faster than x5-Z8300 devices, but a bit slower than an x5-Z8500 mini PC.

Chart adjustments as follows: 3DMark Ice Storm divided by 20, 3DMark Fire Strike multiplied by 4, and storage results multiplied by 5.

MINIX NEO Z83-4 Usability and Stress Testing

I repeated the test I did for Z83-4 to see how the mini PC performs in a typical desktop use case, and check out some BIOS settings.

  • Multi-tasking – Using Firefox, Thunderbird, LibreOffice, and Gimp at the same time
  • Web Browsing
    • Loading multiple tab with CNX Software blog in Firefox
    • Playing 1080p & 4K YouTube Videos in Firefox
    • Playing Candy Crush Saga in Firefox (now smoother/faster since it’s not using Adobe Flash anymore)
  • Gaming with Asphalt 8: Airbone
  • MINIX UEFI Settings

The experience is so similar to MINIX NEO Z83-4, that I have not done another video, and if you want to get a feel about the system performance you can check out last year video.

One difference is that there’s a new MINIX option in the BIOS: USB charging that allows you to charge your phone or other device via the USB 3.0 ports even when the mini PC is turned off. That’s an addition to existing BIOS options to set earphone standard, (automatic) AC power on, Wake-on-LAN, and RTC wake up.

I used Aida64 Extreme’s system stability test for 2 hours to stress the computer in combination with HWiNFO64 to monitor CPU temperature and potential throttling, but the latter never happened, and temperature never exceeded 69°C, or a cool 34°C away from the junction temperature, with an ambient room temperature of around 30°C.

Click to Enlarge

So I’d except the mini PC to perform consistently even in hot climate / room with temperatures exceeding 35/40°C.

Finally some power consumption numbers with all USB devices connected:

  • Power off – 0.2 Watts
  • Sleep – 3.3 Watts
  • Idle – 4.2 Watts
  • Aida64 stress test – 9.4 Watts

Conclusion

If you’re one of the customers who purchased MINIX NEO Z83-4 mini PC and installed Windows 10 Pro, upgrading to NEO Z83-4 Pro for your next purchases is a no-brainer, since performance is similar – usually a bit better -, and you’ll save a nice amount of money on the Windows license. The device also includes enterprise features like a TPM 2.0 module, and ships with a VESA mount. So overall, I’m very pleased with the device, and the only issues I found are disappointing sequential write speed to external USB 3.0 storage with NTFS file system, OpenCL based tests in PCMark 8 are slower than usual for this type of hardware, and WiFi 802.11ac – as tested with iperf – is not quite as fast as on other 802.11ac platforms I’ve tested.

MINIX NEO Z83-4 Pro mini PC sells for $189.99 and up on various sites including AmazonGeekBuying, GearBest, Chinavasion, and others.

Beelink AP34 Ultimate Fanless mini PC Review with Windows 10 and Ubuntu

The AP34 Ultimate combines the passive cooling of an Apollo Lake N3450 SoC with 8GB of RAM and 64GB of storage in a small box form-factor mini PC.

Click to Enlarge

Together with the device comes a pair of HDMI cables, a power adapter, VESA mount with screws, and a couple of leaflets covering basic information.

Click to Enlarge

Not only does this device have three USB 3.0 ports, full size SD card, Gigabit Ethernet, headphone jack and HDMI port, it also has a (vacant) M.2 slot allowing additional storage with the full specification being:
although there was no included remote control.
The device comes pre-loaded with activated Windows 10 Home 64-bit and plenty of available free space at (initially before updates) just over 43GB.

Click to Enlarge

The Windows performance is unremarkable and the reason for this is obvious looking at the basic benchmarks.

Click to Enlarge

Click to Enlarge

Click to Enlarge

Click to Enlarge

Click to Enlarge

The reason being that the eMMC is slow which is disappointing for an ‘ultimate’ device. The eMMC chip is a Toshiba THGBM5G9B8JBAIE 64GB eMMC version 4.41 which used the HS200 interface..

… compared with other devices like the Beelink AP42 whose eMMC (Samsung KLMCG4JENB-B041) is version 5.1 making use of the faster HS400 interface.
Installing Ubuntu as dual-boot is now much simpler as my updated ‘isorespin.sh’ script includes installing the rEFInd bootloader which enables booting on Apollo Lake devices when the BIOS doesn’t support Linux. Performance is again as expected given the limitation of the eMMC.

Apollo Lake Ubuntu Performance Comparison – Click to Enlarge

Ubuntu mini PCs’ Performance Comparison – Click to Enlarge

Looking a key features in more detail the first point to note is that the BIOS is simplified with no access to features you might want to control in an ‘ultimate’ device

Click to Enlarge

The CPU is a quad core Intel N3450:
and memory is dual-channel DDR3 1600MHz:
Networking is Gigabit Ethernet and Intel 3165 (ac) wireless:
and audio is available through HDMI and headphones

Click to Enlarge

Kodi plays 4k video but however 8K is unwatchable
Both internal and external temperatures are fine under load:

Click to Enlarge

So what are the advantages of having 8GB RAM? Well it means the device works better as a mini PC, as it means you can use more memory-hungry applications like browser tabs. As an example I fired up twenty Chrome tabs in Ubuntu

Click to Enlarge

I was going to fire up twenty more but while I was refreshing each tab to make sure I used the most memory Chrome crashed.
However as I hadn’t run out of memory I decided to try with Firefox. Having opened forty tabs in Firefox, I then refreshed the previous twenty Chrome tabs. Everything was now working fine and I was hovering around the 7GB RAM usage with the temperature stable at 61°C

Click to Enlarge

But what use is a device with slow storage? I re-read the license leaflet that came with the device:

Click to Enlarge

and checked the license using ‘slmgr -dli’ which confirmed I had an activated ‘RETAIL’ license. As the device has 8GB RAM and 64GB storage, I can only assume that the device has a full Windows 10 license which means I should be able to use the M.2 drive as the Windows drive. So in theory if I used a small M.2 drive and installed Windows it should then automatically activate as the product key is held in the BIOS.
First I had to install the M.2 drive. This involves prising off the four rubber feet on the base of the device, unscrewing the four screws that are revealed, and then forcing off the base plate which is somewhat stuck to the motherboard by a thermal pad.
Then unscrew the three screws that secure the motherboard to the case and gently lift out the motherboard being careful not to loose the power-button which is now loose and also not ripping off the two wifi antena wires.
You will need a 22mm wide and 42mm long M.2 (or 2242) with at least an “M” slot SSD. The socket is near the yellow battery which the SSD actually covers when installed.
Windows can then be installed using a Windows 10 Disc Image (ISO File) downloaded from Miscrosoftand written to USB.
Except that activation didn’t work. Research seemed to indicate that this was because the drive was seen as a removable device which apparently Windows doesn’t like.
So instead I installed Windows to the eMMC I had just wiped
which activates successfully
and after turning off hibernation and setting the paging file to the minimum the Windows partition can be shrunk
and moved to the M.2 SSD using an Ubuntu LiveUSB and the ‘dd’ command
after which the M.2 drive needs to be ‘fixed’ using ‘gdisk’
and the original eMMC wiped using ‘gparted’ to prevent conflicts
Once rebooted the M.2 should be resized

Click to Enlarge

and after performing updates the M.2 SSD is the C: drive with activated Windows

Click to Enlarge

Although fine as a proof of concept I only used a relatively slow and small capacity (16GB) M.2 SSD. The real question was whether the initially installed Windows could be moved to a larger and faster SSD? The answer is yes!

Click to Enlarge

And when using a 256GB M.2 SSD
an improvement in performance is seen

Click to Enlarge

The fundamental consideration in choosing this device is whether you have the need for 8GB RAM over 4GB as this is an USD 80 question. The slow eMMC whilst disappointing can be overcome through utilizing the M.2 slot. However, it is worth checking how readily available 2242 M.2 SSDs are as they are not common in Australia for example. The price vs specification still favors these type of mini PCs when compared to NUCs and similar. However the convergence point is close, especially when factoring warranty and support. Overall the Apollo Lake CPU offers a slight improvement to last year’s Cherry Trail devices and the passive cooling of this device are definite positives with HDMI 1.4 being the obvious negative, although the limited BIOS might also be too restrictive for some.
I’d like to thank GearBest for providing Beelink AP34 Ultimate for review. If you are interested, you can purchase the device on their website for $259 including shipping [Update: Coupon GBAP348 should lower the price to $239.99. Valid until October 31st.] You’ll also find the fanless mini PC on Aliexpress, just make sure you select the blue version if you want 8GB RAM, the gray version for 4GB RAM.

ECDREAM A9 Apollo Lake HDMI “TV Stick” Review with Windows 10 and Ubuntu 17.04

The ECDREAM A9 is arguably the first Intel Apollo Lake ‘PC stick’ available for purchase. However, in reality it is surprisingly large, and when compared to earlier Intel Atom ‘sticks’ and mini PC ‘boxes’ it lies somewhere in between. Measuring 2.3 inches (58 mm) wide and 0.6 inches (16 mm) thick it feels almost double in size of the original Intel Compute Stick (1.5 in/38 mm by 0.5 in/12 mm) and like nearly half of a mini PC (Beelink’s AP34 is 4.7 in/119 mm by 0.8 / 20 mm). Given that you only get two USB ports, an micro SD card slot and the obligatory HDMI and power port, the large size would be better justified if an Ethernet port had also been included given other smaller ‘sticks’ have shown this is possible.

Click to Enlarge

However the reason for its size is due to the oversized fan and heatsink…

Click to Enlarge

and that will be the deal-breaker for most. Because it is not a quiet fan, but noticeably noisy. However, that is under Windows as the fan doesn’t run under normal Linux.
Taking a look at the package in more detail…

Click to Enlarge

Inside the box together with the device is a short HDMI extender cable, a power supply (with no international variants or adapters), a manual (which is more of a Windows get-started guide) and a further slip of paper with a picture showing what the ports are. The device comes with a large detachable cap that covers the HDMI port. Then inside the device underneath the fan and heatsink is the Intel Apollo Lake SoC, memory chips from Micron, eMMC from Foresee and an Intel wifi chip all matching the advertised specs

Click to Enlarge

Click to Enlarge

The device comes pre-loaded with activated Windows 10 Home 64-bit and has nearly 18GB of available free space to fill up with Windows updates.

Click to Enlarge

Unusually the updates were initially switched off

Click to Enlarge

Click to Enlarge

The Windows performance is impacted in part due to the slower Foresee eMMC

Click to Enlarge

Click to Enlarge

Click to Enlarge

Click to Enlarge

Overall the device performs better than Cherry Trail devices and as expected

Click to Enlarge

4K video (at 30fps) can be watched through Chrome and Kodi and the fan keeps the temperatures down

Temperatures with Chrome 4K (Left) and Kodi (Right) – Click to Enlarge

and the external temperature is acceptable at around 30°C.
However, as mentioned the fan is audible in comparison with other ‘stick’ PCs with fans. Using a battery powered clock as a baseline in a highly unscientific comparison you can judge for yourself, comparing Intel Core M STK2M3W64CC Compute Stick…

… to ECDREAM A9

Initially I was rather happy that the fan didn’t start under Linux, however without it temperatures rocket and the device crashes when playing high definition videos.
Looking at the hardware from a Linux viewpoint the CPU is an Intel Celeron N3350 Apollo Lake
 
useable storage of 28.9GB plus the micro SD card option

Click to Enlarge

2GB DDR3 1600 MHz memory

Click to Enlarge

Intel 3165 wireless

Click to Enlarge

HDMI audio

Click to Enlarge

and everything (except the fan) works using Ubuntu 17.04 with the ISO’s default kernel. This includes Sandisk micro SD cards
which still fail on Cherry Trail devices.
Unfortunately however there is no option in the BIOS allowing Linux to boot directly:
so the Ubuntu ISO had to be respun using ‘isorespin.sh’ to add the rEFInd boot manager

Click to Enlarge

Having installed Ubuntu to eMMC, and running my usual benchmarks there can again be seen the performance improvement over Cherry Trail devices (STCK1A32WFC is the Intel Compute Stick Falls City, STK1AW32SC is the Intel Compute Stick Sterling City, and STKM3W64CC is the Intel Compute Stick Cedar City)​​

Click to Enlarge

Click to Enlarge

Click to Enlarge

Exploring the fan issue further shows the failure appears to be a BIOS ACPI table related issue

Click to Enlarge

even though there are many options in the BIOS for thermal configuration
By recompiling the kernel with a ‘hacky’ patch it is possible to get the fan working
but because the BIOS isn’t populated with appropriate DMI strings it is unlikely that this device will receive mainline support.
However with the fan running the temperature is controlled even after stressing the CPU

Click to Enlarge

making 4K video (30fps) watchable

Click to Enlarge

Although I encountered an issue in that Chrome would successfully stream 4K videos in Windows, yet under Ubuntu it kept intermittently pausing waiting for network data. If I first downloaded the video then playing it was fine using Kodi.
As 32GB of storage is now really too small to run both Windows and Linux given the size, and frequency of Windows updates I installed Ubuntu with my custom kernel to a micro SD card and resized Windows to use the entire eMMC. Again some juggling with rEFInd was required to boot as the micro SD card is not recognized directly during the boot process.

Click to Enlarge

Interestingly there was a slight overall performance increase which is probably due to the slow eMMC. The maximum temperature for the eMMC-based benchmarks reached 80°C after running the ‘openssl’ tests compared with a maximum of 57°C also after the ‘openssl’ test on the fan-assisted micro SD card so thermal throttling would not appear to be a contributing factor.

Click to Enlarge

The device comes with a very unrestricted BIOS so there are lots of ways to brick it
To conclude the product is bulky given its advertised ‘stick’ form factor, and is limited because it only has 2GB RAM. The fan with its noise under Windows and lack of support under Linux limits the product’s appeal. In terms of support, the Windows drivers are available from the manufacturer’s community web page although their specification page incorrectly states the CPU model. It is currently priced at USD 129.99 at Geekbuying who kindly provided the sample for review. [Update: Using GKBECDA9 coupon brings the price down to $113.99]

Review of MeLE PCG03 Apo Fanless 4K Mini PC – Part 2: Windows 10, Benchmarks, and Kodi

July 12th, 2017 20 comments

MeLE PCG03 Apo is an update to MeLE PCG03 mini PC, and one of the rare Apollo Lake mini PCs to be both fanless, and support HDMI 2.0 output. I’ve already checked out the hardware design in “MeLE PCG03 Apo Fanless Apollo Lake mini PC Review – Part 1: Unboxing and Teardown“, so in the second part of the review I tested Windows 10, focusing on HDMI 2.0 features, audio pass-through in Kodi, and performance and stability tests to see how well it compared to similar actively cooled mini PCs such as Voyo V1 VMac mini.

MeLE PCG03 Apo Setup and System Information

I connected a USB 3.0 drive to one of the USB 3.0 ports, USB keyboard and mouse, and RF dongle for a wireless gamepad to the other USB 2.0/3.0 ports, as well as USB type C to micro USB adapter itself connected to a micro USB OTG adapter in order to add a USB flash drive. Finally I added Ethernet, VGA and HDMI cables, and of course the power supply to complete the setup.

Click to Enlarge

A typical boot to the login window takes around 15 seconds, but the very first boot, I went through the usual Windows 10 setup wizard to select the language, create a user, etc…, as well as retrieve the latest Windows update. So that’s better than some other Windows 10 mini PCs which are already configured with a default user, and may raise suspicions.

I still wen to Control Panel->System and Security->System to check Windows 10 is indeed activated, and the mini PC is running Windows 10 Home 64-bit on an Intel Celeron N3450 with 4GB RAM as expected.

Click to Enlarge

The next step was to check HDMI 2.0 support that should allow 4K resolutions @ 60 Hz, and I could select and use 3840×2160 or 4096×2160 up to “60p Hz” without any issues.

Click to Enlarge

Since we have a VGA port too, I tested dual display setup using extended desktop mode with 3840×2160 resolution @ 60 Hz on my 4K TV, and 1600×1050 on my Full HD TV, as it was the maximum resolution I was offered.

No problem here again, and I could use to independent display one connected via HDMI 2.0, and the other via VGA.

Click to Enlarge

I’ve also included a screenshot of the dual display setup for those interested.

Click for Original Size

I took the screenshot below after starting to download a few programs (but no installation), and 28.9GB storage is really tight for Windows 10, I could not install all programs used for the review, without uninstalling one or more. For example, if I install PCMark 8, complete the benchmark, I had to remove it before install PCMark 10, even when moving all download the USB partitions.

So may want to run Disk Cleanup from time to time, and uninstall some pre-installed games. I may also consider disabling hiberfil.sys file, learn how to do folder redirection and filesystem junction with mklink, which I used for Package Cache directory. You could do this to external USB hard drive, but performance may suffer while loading programs or during databases accesses, so you could consider adding a 80mm M.2 SSD inside the mini PC. I could not get one to test, but the company told me they tested three models available on Aliexpress:

Another thing I discovered is that when you “uninstall” Windows Store apps, there are not deleted, but for some reasons kept in C:\Programs Files\WindowsApps\Deleted directory, so I’d have to take ownership of the directory and delete it if you want to free up some more space.

The 32GB eMMC flash capacity is the most negative point I found about this mini PC, I wished the company could offer a 64GB version, or better a pre-installed 128 M.2 SSD [Update: I forgot this would be a problem with the discounted Windows 10 license]. This will not be a problem if you only plan to use the box as an HTPC, but for desktop use, you really need more external storage.

The mini PC recognized the NTFS and exFAT partition in my USB 3.0 drive, but the USB flash drive which I connected the USB type C port was not found. I tried to connect the keyboard there instead, and then to my computer via a USB type C to USB type A cable, but again no luck in both cases. It looks like the USB C port is not usable for anything. Maybe my sample has some issues.

I took a screenshot of the Device Manager for people who want a few more technical details about peripherals.

Click to Enlarge

… as well as HWiNFO64 which basically reports the same info as on Voyo V1 Vmac Mini since it’s based on the same Celeron N3450 processor.

Click to Enlarge

MeLE PCG03 Apo Benchmarks

Let’s start with PCMARK 8  HOME ACCELERATED 3.0 benchmark at 1080p60 resolution and framerate.

Click to Enlarge

The score here is surprisingly higher than on the fan cooled Voyo mini PC (1,566 points), and not too far to the score I got (1,846)with the Pentium N4200 version of Voyo V1 VMac Mini.

Since PCG03 Apo is a candidate to use as 4K desktop for simple tasks, I run the same benchmark using 3840×2160 @ 60p Hz video output, and the score dropped a little to 1,431 points.

Click to Enlarge

Please note that only two passes out of three could complete, as the benchmark failed somewhere during the third pass, but the average should not change, it’s just we can 2 test samples, instead of 3. I tried the benchmarks 3 times in total, and the two other times it failed during the first pass ending with no score. You can find the details results here.

FutureMark has recently released PCMark 10, so for future reference I also ran that version of the benchmark using 1080p60 output.

Click to Enlarge

Check this link for full results. All other benchmarks below were done using 1920×1080 @ 60 Hz video output / resolution.

Passmark PerformanceTest 9.0 confirmed the good performance of the device with 995.70 points, which compares to 998.4 points for Voyo V1 (N3450), and 1087 points for Voyo V1 (N4200).

Note the performance of Disk Mark is quite weaker here, and the Voyo models who got close to 3,000 points, but the latter had the C: drive in a 128GB SSD, instead of a 32GB flash, which explains the massive performance difference here.

I ran three 3DMark tests showing performance that’s almost as good as Voyo mini PC based on Pentium N4200 processor.

Click to Enlarge

Details for all three results can be found below:

CrystalDiskMark reports up to 258 MB/s sequential read speed, and 51 MB/s write speed, with random I/O up to 28 MB/s for the C: drive (32GB eMMC flash). That’s actually roughly the same as the 32GB eMMC flash in Voyo mini PC, but a big difference compared to the 500MB/s+, you got from the 128GB FORESEE SSD installed in the same devices.

Random I/O performance will be better in the SSD too, so you may considering re-installing Windows 10 in an M.2 SSD if you decide to purchase one [Update: Not a good idea, the Genuine Windows key in the device will be ignore, and Windows 10 will not be activated]. You’ll find BIOS, drivers, and instructions to re-install Windows 10 in MeLE’s forums.

USB 3.0 performance is fine with my USB driver achieving around 100MB/s read and write sequential speed.
The random I/Os number shows why you don’t want to install Windows or apps in such drive.

I used iperf 2.x to measure network performance with using dual duplex transfer over Gigabit Ethernet:

All good, so I connected the mini PC to my AC router…

… and performed WiFi upload and download tests with iperf:

  • Upload
  • Download

Those are decent results with my setup, i.e. the AC router is located about 4 meter from the DUT and with a wall in between. You can see a comparison with some 802.11ac Android TV boxes I’ve recently reviewed.

802.11ac WiFi Download and Upload Speed in Mbps

To give a better idea of the performance I compare it against other low power mini PCs based on Braswell (MINIX NGC-1, Vorke V1), Cherry Trail (Voyo V3, MINIX NEO Z83-4), Apollo Lake (Voyo V1 VMac Mini), and Skylake (Compute Stick) for various benchmarks.

Click to Enlarge

Note: Ice Storm scores divided by 10, Fire Strike scores multiplies by 4 for scale.

The Skylake compute stick really stands out despite having similar TDP, but it’s also much more expensive. Other mini PCs are closely matched, but the good news is the MeLE PCG03 Apo mini PC fairs well in all benchmarks, except for storage speeds, but it can be made to match other systems if you use a M.2 SSD to run Windows instead of the 32GB eMMC flash.

Kodi 4K Video Playback and HDMI Audio Pass-through

I’ve installed the latest Kodi 17.3, and run it using 1920×[email protected] output.

Click to Enlarge

You don’t need to set the Windows resolution to 3840×2160 to watch videos, since Kodi will automatically do that if you go to Settings->Player Settings->Videos, and set Adjust display refresh rate to On start / stop, as it will also automatically adjust to the best resolution for the video.

Once I’d done that I tested my usual 4K video samples via SAMBA over Gigabit Ethernet unless otherwise stated:

  • HD.Club-4K-Chimei-inn-60mbps.mp4 – Mostly OK, but the video seems to skip frames a few times
  • sintel-2010-4k.mkv – OK
  • Beauty_3840x2160_120fps_420_8bit_HEVC_MP4.mp4 (H.265) – OK
  • Bosphorus_3840x2160_120fps_420_8bit_HEVC_MP4.mp4 (H.265) – OK
  • Jockey_3840x2160_120fps_420_8bit_HEVC_TS.ts (H.265) – OK
  • MHD_2013_2160p_ShowReel_R_9000f_24fps_RMN_QP23_10b.mkv (10-bit HEVC, 24 fps) – OK
  • phfx_4KHD_VP9TestFootage.webm (VP9) – 4 to 6 fps (Software decode)
  • BT.2020.20140602.ts (Rec.2020 compliant video) – SAMBA: Audio cuts and buffering issue; HDD: OK
  • big_buck_bunny_4k_H264_30fps.mp4 – OK
  • big_buck_bunny_4k_H264_60fps.mp4 – Not super smooth, but no audio delay like on ARM TV boxes. Almost watchable
  • Fifa_WorldCup2014_Uruguay-Colombia_4K-x265.mp4 (4K, H.265, 60 fps) – OK
  • Samsung_UHD_Dubai_10-bit_HEVC_51.4Mbps.ts (10-bit HEVC / MPEG-4 AAC) – OK
  • Astra-11479_V_22000-Canal+ UHD Demo 42.6 Mbps bitrate.ts (10-bit H.265 from DVB-S2 stream) – OK
  • 暗流涌动-4K.mp4 (10-bit H.264; 120 Mbps) – Maybe 10 fps (Software decode) and buffering issues
  • Ducks Take Off [2160p a 243 Mbps].mkv (4K H.264 @ 29.97 fps; 243 Mbps; no audio) – HDD: OK
  • tara-no9-vp9.webm (4K VP9 YouTube video @ 60 fps, Vorbis audio) – 4 to 6 fps (Software decode) + buffering issues
  • The.Curvature.of.Earth.4K.60FPS-YT-UceRgEyfSsc.VP9.3840×2160.OPUS.160K.webm (4K VP9 @ 60 fps + opus audio) – 4 to 6 fps (Software decode) + buffering issues

Automatic frame rate switching is working well, but playing videos with bitrate over 50Mbps over SAMBA seems to be an issue with this mini PC. VP9 and 10-bit H.264 codecs are not supported by Apollo Lake processor, so Kodi revert to software decoding, but the processor is not powerful enough to handle those codecs at 4K. Hi10p up to 1080p is fine. One small issue worth noting is that almost all videos had a short audio cut after 16 to 19 seconds, but the problem would not reoccur at other points in the videos.

Apollo Lake mini PC are supposed to support audio pass-through, but HDMI 2.0 is implemented via an eDP to HDMI bridge which in the past has created issue with this features. So I enabled audio pass-through in Kodi by going to Settings->System Settings->Audio, enabling Allow passthrough, and selecting DIRECTSOUND: TX-NR636…. as the Passthrough output device before running the tests with various audio codecs.

Video HDMI Pass-through
AC3 / Dolby Digital 5.1 OK
E-AC-3 / Dolby Digital+ 5.1 PCM 2.0
Dolby Digital+ 7.1 PCM 2.0
TrueHD 5.1 PCM 2.0
TrueHD 7.1 PCM 2.0
Dolby Atmos 7.1 PCM 2.0
DTS HD Master PCM 2.0
DTS HD High Resolution PCM 2.0
DTS:X PCM 2.0

So only AC3 is supported. I changed to WASAPI output device instead, and the results are not much better.

Video HDMI Pass-through
AC3 / Dolby Digital 5.1 OK
E-AC-3 / Dolby Digital+ 5.1 OK
Dolby Digital+ 7.1 PCM 2.0
TrueHD 5.1 PCM 2.0
TrueHD 7.1 PCM 2.0
Dolby Atmos 7.1 PCM 2.0
DTS HD Master PCM 2.0
DTS HD High Resolution PCM 2.0
DTS:X PCM 2.0

Disappointing, as HDMI 1.4 Apollo Lake mini PCs can normally handle DTS 5.1 as well even with DTS HD files.

User Experience, Stress Test, and Power Consumption

I did a user experience test like with other Windows 10 PCs with multi-tasking by launching an using ThunderBird, Firefox, Libre Office, and Gimp at the same, multi-tab browsing in Firefox playing some Flash games, and watching 4K YouTube videos. I also played Asphalt 8, and as shown in the section above used Kodi to watch videos. The experience felt very similar to other Apollo Lake mini PC with maybe apps not launching as fast due to the eMMC flash. I also run HWiNFO64 in sensor only mode during my tests and benchmarks, and CPU throttling was never reported by the program, so MeLE PCG03 Apo is a solid device with good thermal design.

I have not done any video this time, but if you’re new to Apollo Lake system, you may want to watch Voyo V1 Vmac Mini video below which should give you an idea of the performance.

I also ran AIDA64 Extreme stability test during 2 hours with HWiNFO64 also running side by side, and the CPU temperature never went above 79 °C with the average CPU clock speed being 1.6 GHz right between the base frequency (1.1 GHz) and turbo frequency (2.2 GHz).

Click to Enlarge

Power consumption is about 6.4W in idle mode with the USB 3.0 drive connected, 1.0W in sleep mode, and 0.0W in power off mode.

Conclusion

MeLE PCG03 Apo is a solid device that stays cool enough under load despite thanks to a good fanless thermal design, and HDMI 2.0 works as expected with 4K @ 60 Hz supported. The VGA port also allows for dual independent display setups. Gigabit Ethernet, and 802.11ac WiFi are performing very well. The main downsides I can see are the small eMMC flash, USB type C port that would not work for anything (sample issue?), and HDMI audio pass-through is limited to Dolby Digital 5.1. The first issue can easily be solved by installing a larger (and faster) 80mm M.2 SSD inside the device.

If you are interested in this mini PC, you can purchase MeLE PCG03 Apo for $159.20 including shipping on Aliexpress. If the price is higher when you check it out, it may pay to wait until the week-end to get a better price.

[Update: MeLE’s answers to some of the issues raised in this review:

Read / Write speed
1. It is clear that MeLE PCG03 Apo (N3450) is far behind VOYO VMac Mini (N3450 and N4200) because MeLE follows Microsoft’s policy strictly to install the genuine Windows 10 Home as C: Disk on 32GB eMMC while VOYO does that on the 64GB or 128GB SSD.
2. According to the policy, the unit price for genuine Windows 10 Home on Apollo Lake mini PC is USD 45 at least if the storage capacity (as C: Disk) is equal or over 64GB. That is why user may see a 64GB SSD as C: Disk on VOYO VMac Mini while there is still a 32GB eMMC as D: Disk on the PCB board. It is a trick which has just been discovered and warned by Microsoft in China.
Audio Setting
1. I will check with technical team on how to make DD & DTS 7.1 working in Kodi as well, I will keep you updated.
2. It will get Audio 7.1 DD & DTS with LAV codecs using MPC-HC as player for example.
USB Type-C
1. It is actually a standard USB 3.0 interface converted into USB Type-C shape.
2. It only supports normal (not fast) power charging, and data transfer directly to USB Drive or HDD in external enclosure with Type-C interface.
3. For this point, we will update our product description on our official store on Aliexpress to make it more specific for every buyer to avoid any misunderstanding.
]