Archive

Posts Tagged ‘3G’

SixFab Launches Raspberry Pi 3G-4G/LTE Base Shield V2 for $31.20

October 20th, 2017 16 comments

Development boards with 4G LTE are still quite expensive, at least compared to 2G or 3G solutions, with for example Wio LTE GPS Tracker board selling for around $100. So when I saw Sixfab introducing a 3G/4G shield for Raspberry Pi 3 for just $31.20 (pre-orders), I first thought it was an incredible deal.

But I soon realized I missed the “base” word in the name, as the shield just includes the SIM card slot, and mPCIe connector where you can connect Quectel’s UC20-G Mini PCle 3G module or EC25 Mini PCle 4G/LTE Module which adds respectively $59 or $89 to the price. That’s still an interesting HAT board, so let’s have a look.

Raspberry Pi 3 + 3G-4G/LTE Base Shield + Quectel EC25-E 4G Module

Raspberry Pi 3G-4G/LTE Base Shield V2 specifications:

  • Clip-in Mini PCIe socket for:
    • 4G/LTE Module (Quectel EC25) up to 150Mbps downlink and 50Mbps uplink data rates, GPS/GLONASS
    • 3G Module (Quectel UC20) up to 14.4Mbps downlink and 5.76Mbps uplink, GPS/GLONASS
  • Micro SIM card socket
  • USB – 1x micro USB port
  • Compatible with 40-pin Raspberry Pi header
  • Power Supply – 5V via micro USB port or external 5V source
  • Dimensions – 65 x 55 mm

The new version improves on the first model for the shield by reducing the area by 25%, removing the need for screws for the cellular module, using a micro SIM card socket on the top of the board, a more efficient power circuit, and removing the DC barrel jack.

While the board is mostly designed to be used with Raspberry Pi 3 board, it can also be used standalone with your computer, laptop, or another development board over the micro USB port. A blog post explains how to make a PPP Internet connection with the shield connected to RPi 3, and you can get supports in their forums.

Thanks to Nanik for the tip.

PingPong IoT Development Board Supports Cellular Connectivity, WiFi, Bluetooth, LoRa, Sigfox, and More

October 19th, 2017 No comments

Round Solutions, a supplier of products, services and concepts for industrial M2M and IoT markets, has introduced PingPong IoT development board with either Microchip PIC32MZ running an RTOS, or PIC32MZ DA running Linux, and equipped with a Telit modules for either 2G or 3G cellular + GNSS connectivity.

The board can also support WiFi, Bluetooth, ISM/RF, NFC/RFID, LoRa, Sigfox, Iridium satellite, and serial interface thanks to a range of expansion boards.

PingPong IoT board specifications:

  • MCU / Flash
    • RTOS version – Microchip PIC32MZ 32-bit Microcontroller @ 200 MHz, with 512 KB RAM and 2 MB Flash Memory + 4 MB external memory
    • Linux version – Microchip PIC32MZ DA  (Full specs TBA)
  • Connectivity
    • Cellular connectivity
      • Telit xE910 module with 2G, 3G and/or 4G LTE (coming soon)
      • Data
        • GSM/GPRS – Uplink/Downlink: 9.6 kbps
        • UMTS – Downlink: 384 kbps, Uplink: 384 kbps
        • HSPA+ – Downlink: 42.0 Mbps, Uplink: 5.75 Mbps
        • LTE – Download: 100 Mbps, Uplink: 50 Mbps
      • Frequency Bands (MHz) – 1800, 1900, 2100, 850, 900
      • 2x SIM card slots, SIM on chip
      • u.FL antenna connector
    • GNSS
      • Telit SL869 module for GPS, Glonass, and Galileo E1
      • u.FL antenna connector for GPS
    • 10/100M Ethernet (RJ45)
    • Connectivity stackable expansion boards for
      • Wi-Fi/Bluetooth: with webserver on board
      • Satellite communication: Iridium
      • ISM/RF:433MHz/868MHz/915MHz/2.4GHz
      • NFC/RFID: Protocol EPCglobal Gen 2 (ISO 18000-6C)
      • Sigfox/LoRa: Ultra low power transmitter
  • Other stackable expansion boards:
    • I/O & Serial Board: 10 digital/10 analog/4 frequencies, RS485, RS232
    • Still image and video camera
  • USB – 1x micro USB port
  • I/Os
    • 2x connectors for stackable extension boards with UART, SPI, CAN, I²C
    • 1x CAN interface, 2x analog inputs, 4x 3-state logic inputs, 4x NMOSFET outputs, 1-wire interface
    • 2x current measurement inputs (24-bit resolution)
  • Sensors – Magnetometer, accelerometer
  • Power Supply – 9 to 60V DC
  • Dimensions – 85 x 52 x 23 mm
  • Temperature Range – -40 C to +85 C (industrial grade)
  • Certification CE

 

The RTOS version uses C/C++ and Python and comes with a USB CDC bootloader, while the Linux version is more versatile with support for Open VPN, IPSEC tunnels for example for IoT gateway / router functionality. The source code is available for both operating system, and the company can also provide ready-made software packages for remote metering, asset tracking, Wi-Fi/Bluetooth gateway, MODbus over TCP, or MODbus RS485.

The board is also compatible with MPLAB Harmony, and can connect to Cumulocity IoT Cloud Platform or Telit m2mAIR Cloud out of the box.

The Linux & 4G versions of the board still appear to be in development, but PingPong IoT 3G/RTOS board is available now, starting at 197 Euros with the board only, and up to 445 Euros with the WiFi/Bluetooth, and RF/ISM add-on boards.

$57 Samgle 3G 3310 3G Feature Phone Looks like Nokia 3310

October 9th, 2017 8 comments

Let’s say you have a product, and need to create a brand or company name… Just think about two world famous brands or companies such as Samsung and Google, and with clever string manipulation come up with your own original brand: Samgle!

Now you need a product name… Find a product from a third brand that’s similar to yours, for example Nokia 3310 3G phone, and you’ve got all your names sorted! Meet Samgle 3G 3310 feature phone with 2G and 3G connectivity.

Click to Enlarge

Samgle 3G 3310 specifications:

  • SoC – TBD
  • System Memory – 64MB RAM
  • Storage – 128MB flash, micro SD slot up to 32GB (or is it 64GB?)
  • Display – 2.4″ curved 320×240 display
  • Camera – 2.0M rear camera
  • Cellular connectivity
    • 2G GSM – 850/600/1800/1900 MHz
    • 3G WCDMA – 900/2100 MHz
    • SIM Card Type – SIM + SIM/micro SD card; Dual SIM dual standby
  • Other Wireless  Connectivity – Bluetooth v3.0
  • USB – 1x micro USB port for charging
  • Audio – Built-in microphone and speaker, 3.5mm audio jack
  • Battery – 1,450 mAh Li Ion removable battery
  • Dimensions – 12.8 x 5.03 x 2.15 cm
  • Weight – 95 grams

Such device is suitable for people where 2G is not available (or soon won’t be), people who don’t want to get constantly tracked / monitored by companies like Google or Facebook, or people who find smartphones too complicated to use. The phone ships with the battery a power adapter, and a user manual in English.

Samgle 3G 3310 vs Nokia 3310 (2G)

Samgle 3G 3310 is sold on GearBest in four different colors for $56.81 including shipping. You’ll also find Samgle MIX on that GearBest page, that looks quite similar to Xiaomi Mi MIX 2 in appearance only. While I’m writing about copypcats, last month Goophone Phone X (iPhone X clone) is now joined by Meiigoo S8 copying – you’ve guessed it – Samsung Galaxy S8 for just $169.99 shipped.

Categories: Hardware Tags: 2g, 3G, clone, nokia, phone, samgle

Hologram Unveils Nova 3G USB Dongle and Python SDK; 200 Raspberry Pi Zero W Kits Given Away to Developers

October 6th, 2017 No comments

This summer I discovered Hologram global cellular IoT SIM card, and since they provided free developer samples with 2MB of monthly data includes, I decided to get one to try it out. I received it a few weeks later, and to my surprise it worked, despite my country of residence having some strict requirements with regards to SIM card registration. The SIM card uses roaming, but with a low fixed worldwide pricing, and does not come with a phone number by default, so maybe that’s why I did not have to register.

The company is now back with Nova, an open source hardware cellular modem certified by OSHWA (ID #US000077). It’s basically 2G/3G USB dongle that’s controlled by Hologram Python SDK, specifically suited to Debian systems like Raspberry Pi 3 or BeagleBone Black. Hackster.io is also involved in the launch with a worldwide contest offering 200 free kits comprised of Nova 3G USB dongle and Raspberry Pi Zero W board for the best project ideas leveraging cellular IoT.

Nova will eventually come in three versions

  • 3G (in production now) – Ublox Sara-U201 module;  Global 3G/2G GSM;  GPRS/GSM/UMTS/HSPA: 850, 900, 1800, 1900 MHz;
  • Cat-M1 (November 2017) – Ublox Sara-R404M module; USA LTE Cat M-1; FDD: 13 (Verizon)
  • Cat-M1/NB1 (Q1 2018) – Ublox Sara-R410M-02B module; Global LTE Cat M-1+ NB; FDD: 1,2,3,4,5,8,12,13,17,18,19,20,25,26,28

All should have the same other interfaces and other specs:

 

  • u.FL Antenna Connector
  • Nano SIM card holder
  • UART GPIO Pads
  • USB Serial
  • Network Status LED; Power LED
  • Fully end certified (FCC, PTCRB, CE, and AT&T)
  • Dimensions – 46mm x 19mm x 6mm (Plugged in PCB);  71mm x 23mm x 9mm (w/ case)
  • Weight – 8 grams

The hardware kit includes the dongle, Hologram global IoT SIM card, a transparent enclosure, 2 Quad-band flexible u.FL antennas, and access to Hologram Developer Tools for modem and data management.

 

The dongle can be controlled using Hologram client tool, or Hologram Python SDK requiring ppp and Python 2.7 packages, and will allow you to send SMS, setup data connection, and more. Any SIM card should work, and it’s not tied to Hologram SIM card. While the company claims OSHWA certifications, the number US000077 is not present (empty line) in the OSHWA certification list yet, and so far, they’ve only released the PDF schematics. However, Python SDK is fully open source and released under an MIT license on Github.

More details can be found in the product page, and Nova 3G kit can be purchased now for $49.

But as mentioned in the introduction, if you have a great project idea, you could also get the kit for free, and possibly another “grand prize” (Apple Watch Series 3)once the project is completed. The contest is opened worldwide (except to US sanctioned countries) with the following timeline:

  • Submit your proposal by October 27, 2017
  • Best project ideas will be selected, and be sent their kit within around 14 days
  • Build and submit your project to Hackster.io by January 5, 2018
  • 8 Grand Prize winners will be announced on January 8, 2018 for four categories: gateway, asset tracking, remote controlling, and remote monitoring.

There are already 135 participants. Good luck!

 

Arduino MKR WAN 1300 & MKR GSM 1400 Boards Launched with LoRaWAN and 3G Connectivity

September 25th, 2017 4 comments

Arduino has introduced two new boards right in time for Maker Faire New York: MKR WAN 1300 with a LoRa radio, and MKR GSM 1400 with a “3.75G” cellular module, both software compatible with Arduino Zero, and in Arduino MKRZero board form factor.

MKR WAN 1300 Board

 

Click to Enlarge

Arduino MKR WAN 1300 specifications:

  • MCU – Microchip Atmel SAMD21 32-bit ARM Cortex M0+ MCU @ 48 MHz with 32 KB SRAM, 256 KB flash (8KB for bootloader)
  • Digital I/O Pins – 8x digital I/Os, 12x PWM, UART, SPI, and I2C, 8x external interrupts
  • Analog Pins – 7x analog inputs (8/10/12-bit ADC), and 1x analog output (10-bit DAC)
  • DC Current per I/O Pin – 7 mA
  • LPWAN connectivity
    • Murata CMWZ1ZZABZ LoRa module based on Semtech SX1276 and STMicro STM32L
    • Antenna power – 2dB
    • Carrier frequency – 433/868/915 MHz
    • Working regions – EU/US
  • USB – 1x micro USB port for power and programming
  • Misc – Reset button, 6x LEDs, 32.768 kHz RTC
  • Power
    • 5V via micro USB port or Vin pin
    • 2x AA or AAA batteries support
    • I/O Operating Voltage – 3.3V
  • Dimensions – 67.64 x 25 mm
  • Weight – 32 grams

It’s interesting to note that the Murata module includes an STM32L MCU, and exposes ADC/DAC, GPIOs, SPI, I2C.. pins, so in theory it would be possible to create a similar board without the Microchip/Atmel chip, but Arduino IDE compatibility may have suffered despite work on Arduino STM32, and the exposed I/Os could not be the same (e.g. only 4x ADC).

MKR GSM 1400

 

Click to Enlarge

Arduino MKR GSM 1400 board has very similar specifications, except it replaces the LoRa radio with a u-blox cellular module, and supports LiPo batteries:

  • MCU – Microchip Atmel SAMD21 32-bit ARM Cortex M0+ MCU @ 48 MHz with 32 KB SRAM, 256 KB flash (8KB for bootloader)
  • Digital I/O Pins – 8x digital I/Os, 12x PWM, UART, SPI, and I2C, 8x external interrupts
  • Analog Pins – 7x analog inputs (8/10/12-bit ADC), and 1x analog output (10-bit DAC)
  • DC Current per I/O Pin – 7 mA
  • Cellular Connectivity
    • u-blox SARAU201 cellular module supporting 3.75G UMTS/HSPA with 2G GSM/(E)GPRS fallback
    • NanoSIM card slot
    • u.FL connector for external antenna
    • Working regions – Global
  • USB – 1x micro USB port for power and programming
  • Misc – Reset button, 6x LEDs, 32.768 kHz RTC
  • Power
    • 5V via micro USB port
    • 5V to 12V Vin pin
    • 3.7V LiPo battery support
    • I/O Operating Voltage – 3.3V
  • Dimensions – 67.64 x 25 mm
  • Weight – 32 grams

Both boards are up for pre-order with shipping expected for November 15th with MKR WAN 1300 going for $39 / 35 Euros excluding VAT, and MKR GSM 1400 selling for $69.00 / 59.90 Euros excluding VAT. Further documentation is accessible through the store links.

Particle E Series is a Family of 2G, 3G, 4G LTE Cellular IoT Modules Optimized for Mass Production

September 7th, 2017 9 comments

Cellular IoT has really taken off this year from the low cost Orange Pi 2G IoT board to 4G GPS Trackers, and global IoT SIM cards. Particle has been in this market for a couple of years, starting with their Electron boards, and the company has just announced the new Particle E series family of industrialized 2G, 3G, and LTE-enabled modules and a development kit.

Key features of Particles E series modules:

  • Cellular Connectivity
    • u-blox SARA modules for cellular connectivity
      • LTE: SARA-R410M
      • 3G: SARA-U201/U260/U270
      • 2G: SARA-G350 (2G)
    • Embedded SIM card, Particle MVNO support in 100+ countries
    • u.FL antenna connector
  • MCU – STM32F205RGT6 120MHz ARM Cortex M3 microcontroller with 1MB flash, 128KB RAM
  • Storage – • Expandable flash memory
  • I/Os – 63-pin surface mountable castellated module with up 30x GPIOs, 12x ADC, 2x DAC, 13x PWM, 3x UART, 2x SPI, 1x I2S, 2x CAN, 1x USB 2.0 (Some signals are multiplexed)
  • Power Supply – 3.88 to 12V input; BQ24195 power management unit and battery charger; MAX17043 fuel gauge
  • Power Consumption (@5V?)
    • Operating current (cellular ON): 180 mA to 250 mA
    • Operating current (cellular OFF): 47 mA to 50 mA
    • Peak current: 800mA (3G), 1800 mA (2G)
    • Sleep Current: 0.8 mA to 2 mA
  • Dimensions – 43 x 36 x 4.6 mm
  • Weight – < 10 grams
  • Temperature Range – -20 to +85°C (extended range)
  • Certifications – FCC, CE, IC wireless certifications, PTCRB (End-Product Certified) & GCF cellular certifications, RoHS

A total of 7 modules are planned to launch by mid 2018 with the naming convention using the first number reserved for the “G” number, the second for local (0) or global (1), and the third being an incremental number:

  • E210 – 2G only – Q4 2017 working worldwide (quad band)
  • E301 – 3G with 2G fallback – Q4 2017 for Americas/Australia (850/1900 MHz)
  • E302 – 3G with 2G fallback – Q4 2017 for Europe, Asia, and Africa (900/1800/2100 MHz)
  • E310 – 3G with 2G fallback – Q4 2017 working worldwide (850/900/1800/1900/2100 MHz)
  • E401 – LTE M1 – Early 2018 for US (LTE B13)
  • E402 – LTE M1 – Early 2018 for North America (LTE B2/4/5/12)
  • E410 – LTE M1/NB1 – Mid 2018 for the global market

Electron Board (Left) and E-Series Eval Kit (Right)

The new modules share the same software development tools, Particle Cloud platform, code and peripherals as Electron prototyping board with the modules running FreeRTOS, supporting  CoAP encrypted messaging, TCP/IP and UDP/IP, GCC toolchain, and various firmware update methods including OTA. E series were created because while Electron board suitable for evaluation, pin-row headers, plastic SIM cards, and USB connectors made it less appropriate for integration into products and mass production.

The company has also introduced an E Series evaluation kit working globally with the following specifications:

  • Module – Particle E310 3G with 2G fallback
  • Breakout Board with
    • 2x micro USB port for flashing and serial communications
    • SMA antenna connector
    • 1x female expansion header, 2x Grove connectors
    • Misc – MODE and RESET buttons, Charge and status LEDs
    • Power – Li-Po battery connector,  power barrel jack
  • Battery –  2,000 mAh Li-Po battery
  • Antenna – Taoglas penta-band antenna (u.FL), SMA to u.FL adapter for connecting external SMA antennas
  • 1x Grove temperature sensor
  • 1x USB Micro cable
  • Pinout reference card

The kit will come with three months of Particle’s 1MB monthly data plan upon eSIM activation. Data plan pricing depends on the country of operation and number of nodes, but for reference, for up to 100 nodes in the US, you’d pay $2.99 per month/device including 1MB data, plus $0.99 per extra MB.

Pricing information has not been publicly disclosed for the module, but you can purchase E series development kit for $99.99, or $249 with 3 extra spare E310 modules. Visit Particle E-Series product page for further details.

Checking out Hologram’s Developer SIM Card for Worldwide IoT Projects

August 20th, 2017 5 comments

Hologram is a service that offers 2G/3G/4G cellular connectivity for the Internet of Things via a SIM card that works in over 170  countries, and with pricing starting at $0.40 per month. In order to promote their services, the company offers a free developer SIM card which I ordered when I first wrote about the service last month. I was pleased and surprised they would sent it to Asia for free, and I got the card in a bubble envelop.

The back of the card includes a 18 to 22 digit SIM card number and bar code, that we’ll need to use for activation, and a link that redirects to https://hologram.io/docs/.

I planned to try the card with Wio GPS tracker board which requires a nano SIM card, and there are convenient cutouts to convert the SIM card to micro SIM or nano SIM card formats.

Before using the card in your board, you’ll need to activate it by logging into the dashboard with email and password you used to purchase the SIM card.

You can then click on Activate your first SIM to get the activation page.

In the first part of the page, you’ll need to type your SIM card number, and select your data plan between developer, pay-as-you-go, or monthly.

The second part of the page will allow you to select the zone with zone 1 being cheaper buy supporting less countries, and zone 2 supporting all countries shown above. It will show the cost summary, in my case $0.00 since I’m using the developer plan, and you can click on Activate to complete registration. That’s it, no requirement for ID card or passport copy, or anything.

Click to Enlarge

You’re newly registered SIM card will then show up the list of devices.

I tried two Arduino samples with Wio GPS tracker:

  1. Send SMS (MC20_SMSSend.ino)
  2. Download text file over GPRS / HTTP (MC20_GPRSHTTP.ino)

The first failed without error, and the second requires you to change the APN to hologram (See line 2):

But the program also failed with QIOPEN AT command failure (ERROR:QIOPEN) when trying to establish a TCP connection. Roaming needs to be enabled, but I could find a way to do so, and I did not have much luck already with my own SIM card during Wio GPS review possibly to the 2G limitation of the board, so I decided to try another option. Hologram has a tutorial with Raspberry Pi and a 3G USB dongle, but I did not want to purchase a dongle that I would not use regularly, so I decided to try the card with my phone, even though it’s definitely not the use case for it.

So I replace my current SIM card with hologram SIM card in my phone, and immediately I could see a 4G connection was established with the notification showing a “Local Telco”|Hologram message, and the local Telco changing between at least two different companies during my review.

Click to Enlarge

I then tried to send an SMS to a local number using the internal format with country code, and it was successful from my side, but the other phone never received anything, even after several attempts and enabling roaming.

I went back the Hologram Dashboard in my web browser and send an SMS via the web interface and it worked nicely with the SMS coming from a number in the UK (+44), but you can already spoof any number using the dashboard or SMS API.

Going into Configuration part of the dashboard, I discovered the SIM card did not come with phone number by default, which may explain why I could not send SMS in the first place. But you can purchase a US phone number for $1.00, and various prices for numbers from some other countries, but note that option is not available for number from all countries, for example you can’t currently get a number from Framce or Thailand. Here’s what the page says about getting a phone number:

A phone number allows you to easily send an SMS to your device from another SMS-compatible device. Phone numbers are NOT necessary to deliver an SMS via API calls or via the Dashboard – they basically enable you to send an SMS to your device directly from another cell phone.

The main reason to purchase a phone number is if you want to send an SMS from a phone to your device instead of using the Dashboard or API.

Note that the device will be able to respond back to your SMS but the response may show up as being from a different number. This is a special, internal number that your phone may not be able to SMS directly so you should send all messages to the purchased phone number. This is something that we’re working with our carrier partners to improve in the near future.

Beside SMS, you can also use the SIM card for data, and to do so you have to configure hologram APN in your device without username/password, and enable roaming.

Click to Enlarge

I could do this easily in my Android phone. The company also mention to enable DHCP, but I did not have that option in my phone and it was not needed. Finally, I enabled data connection in my phone, and created a small text files on my server to download it over a cellular data connection. I did so, because you have to remember your free monthly data is limited to 1MB, and the average webpage is now 3MB… The text in the file reads “Hologram GPRS Success”, but it was actually done over an LTE data connection.

It might also be a good idea to disable auto-sync, if you plan to test the SIM card in your phone, as background traffic is not negligible with 586KB of data transfered over a few seconds. The Usage Reports in the dashboard is not updated in real-time at all, as I took the screenshot below after 5 hours, and no activity was registered at all.

But checking out the data after and the usage report seemed correct.

So in summary I was able to receive SMS from the dashboard, and setup a cellular data connection to access the web, but for some reasons, I was unable to send SMS using the SIM card, maybe because I did not purchase a phone number. If you live in a country with strict regulations for local SIM cards such as providing an ID card copy and/or proof of address, it looks like it is not needed with Hologram SIM card, because it’s a foreign SIM card that works with roaming, in the same way that tourists would use their phones while in vacation in a foreign country.

When I ordered the card there was a coupon – now expired – for free shipping, so I got it completely for free. However, I’ve been told another LOSANTHIGH5 coupon is now working for free shipping and $3 credit, and you can still get the free developer SIM card for evaluation. Now, I should think about getting a3G or 4G capable IoT board…

Categories: Hardware, Testing Tags: 2g, 3G, 4g, cellular, hologram, IoT, lte, review

Hologram LTE Software-Defined Global Network for Cellular IoT Projects Starts at $0.40 per Month per Device

July 26th, 2017 15 comments

Cellular connectivity can be rather expensive, and in the IoT realms, new LTE standards are still evolving and you may want to manage your own mini cellular network, so ideally we would need a provider that offers both low cost and flexibility. Hologram LTE network does both as it’s a software-defined network, and pricing starts at $5 for the SIM card and $0.40 per month per device.

Global IoT SIM Card

The company also just announced that their network was available for global deployment with the service available in more than 170 countries via partnerships through over 200 cellular carriers. The SIM card supports automatic roaming and carrier switching, and spacebridge inbound tunnel access allows for secure remote programming and device management.

The SIM card specifications are as follows:

  • 2G/GPRS, 3G HSPDA, 4G LTE
  • Read/Write Cycles: Min. 500,000
  • Operating Temperature: -25°C ~ 85°C
  • Data Retention: Min. 25 years at 25°C
  • Triple-cut for Mini, Micro, and Nano SIM formats
    • Mini: 15 x 25mm
    • Micro: 12 x 15mm
    • Nano: 8.8 x 12.3mm

Pricing is divided into zone 1 (cyan) and zone 2 (purple blue) depending in the country where the SIM card operates, with the latter being more expensive.

Within each zone there are two pricing methods, with pay-as-you-go plans with a fixed platform fee per month plus a charge per megabyte, or monthly  plans with a fixed amount of data. For example, a SIM card in zone 1 would cost a $0.40 platform fee per month plus $0.60 per megabyte (charged per KB), or $3.99 for 10MB of data, while a SIM card operating in zone 2 would be $0.40 platform fee per month plus $0.85 per MB, or $6.99 for a monthly 10MB plan. You can also choose monthly plans with less or more data up to 500MB per month, except in the US where the company offers high bandwidth monthly plans up to 5GB per month. Inbound SMS are free, and outbound SMS cost $0.19 per MB or $0.30 per MB depending on your zone. You’ll find all details on the pricing page.

While the SIM card costs $5, you can try the service for free by “purchasing” a developer SIM card that comes with 1MB data per month. I ordered one with DEVPLANBLASTOFF promo code for free shipping. I’ll see if I ever receive it, and whether I can use it where I live, since in theory all SIM cards must be registered with an ID card or passport to work, and mandatory fingerprinting is coming next year.

Hologram Onboarding Kit – Click to Enlarge

You can certainly use the SIM card on your own hardware, but the company can also provide Hologram Dash board based on Ublox Sara-U260 2G/3G module, and kits such as the one above with components, sensors, cables, and other accessories. The documentation explains how to get started with Dash board, the SIM card, and cloud messaging and APIs.

Hologram is not the only company offering pay-as-you-go and monthly plans for cellular IoT, as Particle (previously Spark) has offered an inexpensive monthly plan for a little while, but it does not relies on an SDN implemtation. You’ll find further information and details on Hologram website.