Archive

Posts Tagged ‘amazon’

Dragonwally is a Stereoscopic Computer Vision Mezzanine for 96Boards CE Boards

October 11th, 2017 No comments

Hardware based on 96Boards specifications may not have the number of sales as Raspberry Pi or Orange Pi boards, but there’s heavily used by Linaro member and other developer working on bleeding edge software. More and more companies are designing boards compliant with the standard, and several new mezzanine expansion boards such as Secure96, were showcased at Linaro Connect SFO 2017, and are yet to be show up on 96Boards Mezzanine page.

Another 96Boards mezzanine expansion board in development is Dragonwally, designed for stereoscopic computer vision, currently used with DragonBoard 410c board, and targetting applications such as object recognition,  people counting, access control, or driver identification and safety.

DragonWally DW0 board specifications:

  • MIPI DSI interface with high speed connector
  • 2x 5MP cameras
  • 1x USB port
  • 96Boards CE compliant

The two Brazilian developers working on the project interfaced it with DragonBoard 410c running Linaro Debian, and using OpenCV and Python for computer vision development. To demonstrate the capability of the board, they added a touchscreen display for a demo leveraging Amazon Rekognition API for face recognition and camera distance estimation.

DragonWally board does not seem available yet, nor the source code for the demo above. If you’d like more information, visit DragonWally website, or join 96Boards OpenHours #74 tomorrow.

NComputing RX300 Thin Client Review – Part 2: Hardware Setup, Windows Server 2016

October 8th, 2017 8 comments

Ncomputing RX300 is a thin client based on Raspberry Pi 3 board, allowing to run Windows operating systems on a powerful server with the Raspberry Pi 3 handling the display, audio, and keyboard/mouse inputs.

The company sent me a sample for review, and I checked out the hardware and accessories in the first part entitled “NComputing RX300 Thin Client Review – Part 1: Unboxing and Teardown“, so in the post I’ve started the thin client, and connected it to vSpace Pro server.

Hardware Setup

RX300 uses the same peripherals as any mini PC, so I connected USB keyboard and mouse, an Ethernet cable (WiFi is also possible), and the power adapter. You could also connect other devices, and I added a USB flash drive which, as we’ll see later, will be properly recognized by the server. I was also sent a USB to VGA adapter that you can connect to the remaining USB port to add a secondary display, but it would never work with through my TV, maybe because VGA is limited to 1600×1050, and the resolution confused the adapter.

Server Options

You’ll also need to setup a server, and you have two main option here:

  • Download vSpace Pro 10 to install and manage a self-hosted server. I did not do this in this review, because my main PC is running Ubuntu 16.04, and the program only support Windows operating systems, and server virtualization infrastructure solutions from VMWare, Citrix and Microsoft.
  • So instead I used a vSpace Pro server hosted in Singapore using AWS (Amazon Web Services) with a demo account prepared by the company for the review

If you’re interested in the first solution, you may want to read to Quick Installation Guide to find out more.

Ncomputing RX300 and Windows Server 2016 AWS instance

Once the thin clients are installed, and the server is configured, you can start your RX300 devices. About an animated boot logo, you should soon (around 15 to 20 seconds total boot) time see vSpace Pro client interface as shown below. Please ignore the vertical lines in the photos and video below, it’s just a problem with my TV.
You’ll see two sections with a list of auto-detected servers if you have setup any local vSpace Pro 10 machine, and/or server groups with other vSpace Pro servers. I’m located in the north of Thailand, and Thailand->Thailand was already setup, so I had nothing to do except click on Connect, and within a few short second, I was asked to login into Windows.

I typed the credentials provided by the demo, and I ended up in Windows right away, and could use it normally. A few times later however, I was automatically disconnected during the login process: I would type the user name and password to login, Windows desktop will appear, only go to back to vSpace Pro client interface. Trying again once or twice usually did the trick.

As soon as I entered into the server, I wanted to find out what kind of hardware the virtual machine was running on. Intel Xeon CPU E5-2676 v3 @ 2.40 GHz running Windows Server 2016 64-bit with 4 GB RAM, and a 39.9 GB Windows partition.

Click to Enlarge

Quite a powerful machine so we should expect good performance that may be affected by the Internet connection between my ISP’s modem router and the server. You’ll also notice “Ubuntu 16.10” D: drive. That’s my own flash drive connected to one of the USB port of the Raspberry Pi 3 board.

The company had install several programs such as Chrome and LibreOffice, as well as demo files.  I also tried to install my own program (Gimp), and I could do that, and persistent storage mean even after I disconnect the client, or reboot the server, my programs and files were still present in the system.

So I went on to use it like I would for a desktop machine in a business setting, browsing the web, and loading multiple programs.

Click to Enlarge

More specifically, I ran the following tests:

  • Launching Chrome, LibreOffice Calc (excel spreadsheet), LibreOffice Impress (powerpoint presentation), LibreOffice Writer (word doc), and Gimp in succession to demonstrate the speed to launch apps
  • Multi-tab browsing in Chrome and Octane 2.0 benchmarks
  • Playing 1080p YouTube video in embedded and full screen modes
  • Playing local 1080p video with VLC

Overall the performance is impressive for a remote system, and in many cases, it’s hard to know we are not using a “normal” computer. The fonts may not be as sharp as on a normal PC, but it’s hardly noticeable, and the screen updates while scrolling up or down web pages are slower than on my main computer. However, I did not feel either issues were a big problem, and they will likely depend on your network performance, in my case “low to moderate”. It feels much better than the few times I used VNC in the past.

The first time however, YouTube video playback was very choppy, but then I saw Chrome complaining about “vCAST feature not available”. vCast streaming technology is a premium feature allowing you to watch videos smoothly on thin clients. After the company enable vCAST in the server, I could streaming 1080p YouTube videos, and play local video in VLC smoothly.

You can watch the video below to have an idea of the performance, and a look at the client settings.

Once you are done, you can click on the power icon and select Disconnect to go back to vSpace Pro client user interface.

vSpace Pro client configuration options and Going back to Raspbian

If you’ve watched the video above, you’ll know that the gear icon on the bottom right brings use to the configuration menu.

Click to Enlarge

The menu has eight sub-menus:

  • General to select between Thin client mode and Raspbian Desktop mode
  • Connections to select servers manually or automatically
  • Server Groups to manage servers
  • Kiosk Mode to automatically login and/or launch a program when connecting to the vSpace server
  • Display to change HDMI resolution, or manage dual display setups.
  • Audio to select audio output and input priority
  • Network to configure Ethernet or WiFi
  • Support for firmware update option
  • About with some information about the thin client.

I tried the Raspbian desktop mode, and sure enough it will be into Raspbian, and you could potentially use it as a normal Raspberry Pi 3 board too.

Once you’ve selected this mode, it will boot to Raspbian by default. If you want to use it as a thin client again, the Switch to Thin Client Mode icon will reboot RX300 to vSpace client user interface.

Recycling older Windows computer with vSpace Pro Client

If your organization owns some older Windows PCs or laptops that lack the performance or memory to run recent programs, you could download vSpace Pro client for Windows to put them to good use. Just to the the Software Downloads page, register or/and login, and select vSpace Pro Client for WIndows 7, 8.1 or 10 as needed. Linux clients are not available for download.

You could then have a “fleet” a thin clients mixing older hardware and NComputing RX300. You’d have to consider electricity charges while calculating your TCO, as RX300 only consumes around 3.0 to 3.4 Watts, and older hardware may consume much more than that.

The Costs

Larger organizations should probably contact the company to find out the best way to match their requirements. But if you have smaller needs, or just want to evaluate the system, you could purchase Ncomputing RX300 for $99 MSRP with a 1-year license, or $174.99 with a 3-year license. I understand vCAST streaming is included for free for 6 months, but after you’d have to pay extra for the feature. What I could not find is public pricing for the various licenses. The company however has a cost calculator allowing you to check how much you’d save with thin clients compared to having PCs, but again premium features license costs such as vCAST or dual display are not included. You’d also have to consider Windows server license requirements.

Amazon Introduces Echo 2, Echo Plus, Echo Connect, and Echo Spot Alexa Devices

September 28th, 2017 No comments

Beside their “all-new” Amazon Fire TV 2017, Amazon has made a bunch of other announcements mostly related to their Alexa services with four new or updated Echo devices:  the “all-new” Echo, the Echo Plus, Echo Connect, and the Echo Spot.

2017 Amazon Echo (aka Echo 2)

The new second generation of the Alexa based Echo has a new smaller design, improved sound with Dolby processing, and a lower price at just under $100.

Some of the key features include:

  • Speakers – 2.5″ woofer and 0.6″ tweeter
  • Connectivity
    • Dual band 802.11 b/g/n WiFi for streaming music from Amazon Music, Spotify, Pandora, etc…, controlling smart devices
    • Bluetooth LE
  • Audio
    • 3.5mm audio jack
    • 7-mic array using beamforming technology and enhanced noise cancellation.
    • Improved wake-word (“Alexa”) detection
  • Various designs with 6 different fabrics
  • Dimensions – 148 x 88 x 88 mm
  • Weight – 821 grams

The Echo can make free calls to the US, Mexico and Canada, control smart home devices such as the new Fire TV media player.

Amazon Echo Plus

Echo Plus has similar features to the Echo, but adds a built-in smart home hub to connect your smart devices such a lights, locks, and others. It sells for $149.99 with a Philips Hue smart lightbulb (while supplies last).

Amazon Echo Plus  main features and specifications:

  • Speakers – 2.5″ woofer and 0.8″ tweeter
  • Connectivity
    • Dual band 802.11 b/g/n/ac WiFi
    • Bluetooth LE
  • Audio
    • 3.5mm audio jack
    • 7-mic array using beamforming technology and enhanced noise cancellation.
    • Improved wake-word (“Alexa”) detection
  • Built-in hub for simple setup of compatible (Zigbee) smart home devices
  • Misc – Light ring, volume ring, action button, microphone on/off button
  • Various designs with 6 different fabrics
  • Dimensions – 235 x 84 x 84 mm
  • Weight – 954 grams

Just like the Echo 2, Echo Plus can make free calls to North America, and control smart devices over WiFi and BLE, but the smart home hub appears to add support for Zigbee too allowing for a wider range of devices.

Echo Spot

Echo Spot is a compact devices with a round screen that works like other Echo, but can also show news, weather, smart home camera feeds, video calls, Alexa skills, and more on its display. Sold for $129.99 with delivery planned for December.

Key features:

  • Speakers – 1.4″ speaker
  • Display – 2.5″ round display
  • Connectivity
    • Dual band 802.11 b/g/n WiFi
    • Bluetooth LE
  • Audio
    • 3.5mm audio jack
    • 4-mic array using beamforming technology and enhanced noise cancellation.
    • Improved wake-word (“Alexa”) detection
  • Camera – front facing camera
  • Misc – Volume up/down, mic/camera on/off button,
  • Various designs with 6 different fabrics
  • Dimensions – 104 x 97 x 91 mm
  • Weight – 419 grams

Echo Spot comes with a single speaker, a simpler 4-mic arrow, and supports all features of the Echo 2 device.

Echo Connect

Echo Connect is a little different. It requires an Echo device, and transform it into a smart landline connected speakerphone, allowing you to call any phone numbers leveraging Alexa service, the microphone array, and your landline, if you still have one…

Echo Connect specifications:

  • Connectivity – Dual band 802.11 b/g/n/ac WiFi
  • Ports – RJ11 phone jack
  • Misc – Reset button, LEDs
  • Dimensions – 130 x 90 x 29.5 mm
  • Weight – 126.9 grams

Amazon is taking pre-orderd for Echo Connect for $34.99 with delivery scheduled to start on December 13, 2017.

$69.99 Amazon Fire TV 2017 TV Box Supports 4K HDR-10 Video Playback

September 28th, 2017 9 comments

Amazon has just announced a new Fire TV TV box with support for 4K Ultra HD and HDR (High Dynamic Range), and a cheaper price, as it is selling for $69.99 on Amazon US with delivery scheduled to start on October 25, 2017.

Amazon Fire TV 2017 specifications:

  • SoC – Amlogic S905Z quad core ARM Cortex-A53 processor @ 1.5 GHz with penta-core Mali-450MP3 GPU
  • System Memory – 2GB RAM
  • Storage – 8GB flash
  • Video & Audio Output – HDMI 2.0a up to 4K 60 Hz with HDCP 2.2, Doby Atmos support
  • Video – HDR-10. H.265, H.264
  • Connectivity – Dual band 802.11 b/g/n/ac WiFi + Bluetooth 4.1 LE
  • USB – 1x micro USB port for power (and optional USB Ethernet adapter)
  • Dimensions – 65 x 65 x 15 mm
  • Weight – 87 grams

Amazon just mentions “Amlogic Quad-core 1.5GHz | ARM 4xCA53” for Fire TV processor, so it first assumed it could either be S905X, S905D or S905L since all support 4K60, HDR-10, and H.265, but since Amazon did not list VP9 in the store page, I assumed Amlogic S905L should be the one. But based on more complete specs, the TV box is actually powered by a new Amlogic S905Z processor that supports VP9 too…

The new Fire TV runs Fire OS 6 based on Android 7.1, and ships with an Alexa voice remote control, a USB cable and power adapter, a quick start guide, a product guide, and 2 AAA batteries for the remote control. The device is as simple as possible with only two ports: a short built-in HDMI cable, and a micro USB port for power. That’s it. The latter can also be used to connect a $15 USB Ethernet adapter. Netflix, Hulu, SHOWTIME, Amazon Video, and more services will be accessible using the buttons on the remote control or Alexa, and the TV box can also be paired to Echo devices for far-field voice control.

As with most Amazon devices it will be mostly be for the US market, and some services and features may not work overseas. As a side note, Amlogic has made some recent good deals in the US, as Amlogic S905X is found in Xiaomi Mi Box entry-level Android TV TV box, and now in Amazon Fire TV.

Review of Vobot Alarm Clock with Alexa

September 17th, 2017 4 comments

Karl here with a review of Vobot sent By Cafago. I had to Google it when I was asked to review it. Turned out it was an Echo type device with a pixel display and a battery. It started as an Indiegogo campaign. I had been wanting to try to do some sort of voice control with my home automation so I agreed to review it.

Vobot Clock C1 Specifications

These are pulled from Vobot’s website. No power supply is included but a long USB cable is.

Click to Enlarge

Vobot Setup

I let my wife do the initial setup as I figured that she would use it the most. She followed the instructions, and it seemed straightforward from what she told me. She said she had to reboot it once during a step but it continued the setup with no problems. She tied to our Amazon Prime account, and she quickly was playing some music. During research, I did find out that it was not an always listening device.

Firmware Update

I logged into myvobot.com today to see if anything had changed, and there was an update. It suggested that I rebooted the device so I did before updating. Without logging in I wouldn’t have known there was an update. Maybe I missed something but I don’t remember seeing or hearing some sort of notification. I received a verbal notification that it could take up to 10 minutes, but only took a few minutes. The thing is I have no idea what has changed or improved. There is no changelog.

Vobot Display

Display settings allow you to set Brightness, and the time to display Time, Date, Day of Week, Battery Status, and Date + Time.

Click to Enlarge

That’s what the time display looks like.

After pressing the mic button

Get this at times and the eyes blink

Date and time

Hard to catch this one..Starting to play music

Unplugging power and of course get different one when plugging in

Loading music stream

Teardown

I wanted to do a teardown when I first received the speaker, but I was afraid to break it. Now here at the end, I finally put some force behind it and finally got it apart. Only a few minor scratches and it seems to be fine. The teardown reveals that it is running on a Mediatek MT7688AN, and confirms battery’s capacity. 512MB NANYA storage NT5TU32M16FG-AC completes the list of the main chips. Maybe some enterprising soul will hack this and bring some imaginative new usage.

One big issue

Everything that I tried worked the way I expected for the most part . Home assistant can emulate a Hue bridge, but after reading in the forums, it only works with an Amazon Echo or Google Home speaker. Bummer, that is not the real issue I wanted to bring up. I really wish that it had an always listening microphone. You have to press the button to put it in listening mode. I understand that it has a battery, and would drain the battery but why not have it always listening when plugged in and use the button when roaming about.

Random final thoughts

OK now that I have a device that will take voice commands now what. I like the scrolling display. It is pretty cool and a little retro. I used this about 95% of the time just to play music. Don’t expect much from the speaker, but you can send audio to a home system through the 3.5mm jack on the back.

I know that there are 1000’s of skills but few attracted me. I did like the idea of calling another Alexa device but not supported. Arggh, OK maybe another issue. I did use the weather feature asking about the weather for the next day on occasion.

My 5 year old son was easily able to start music, and it could understand his voice which surprised me. The display is nice, and battery powered is a plus, but I don’t understand one thing. For just about the same price, I can get an Echo Dot which gets me always listening, and 100% works with all the features but no battery or display. I bet that the limitations with the exception of the always listening is inherent to all non Echo devices.

If you are looking for a portable Alexa powered device with a display then the Vobot might be for you. Seems sturdy. Descent battery life. I listened for about 2 hours and it still had a charge on the battery. To get an official Echo Tap it sets you back $120. It is the only official Echo that has a battery.

I would like to thank Cafago for sending the device for review. They provided a coupon code “V3127SA” for the Vobot which is good until 9/30/17, and brings the price down to $ 41.99/€36.1. You’ll also find it for $45 and up on other sites such as DX.com or Amazon.

Design Amazon Alexa Gateways, Robots and Smart Speakers with WisCore Modular Development Kit

June 17th, 2017 3 comments

RAK Wireless has launched a new development board powered by Mediatek MT7628A processor running OpenWrt with built-in WiFi and Ethernet connectivity, and audio codec and microphone to support Amazon Alexa voice service. Bluetooth, Zigbee, and Z-wave will also be supported via UART modules.

Wiscore Specifications:

  • Processor – Mediatek MT7628A MIPS24KEc CPU @ up to  580MHz
  • System Memory –  128MB DDR2 (64 MB optional)
  • Storage – 16 MB flash + micro SD card

    Block Diagram – Click to Enlarge

  • Audio
    • MicroSemi ZL38062 for audio in and out
    • MicroSemi ZL38067 to handle “Alexa” keyword
    • single or dual digital microphone up to 5 meter range
    • Far field voice wake up
    • Support for echo cancellation
  • Connectivity
    • 802.11 b/g/n WiFi 2×2 MIMO up to 300 Mbps
    • 2x 10/100M Ethernet (LAN and WAN)
    • Optional UART modules for Bluetooth, ZigBeem Z-Wave
  • USB – 1x USB 2.0 host port
  • Expansion – Arduino headers with UART, I2C, SPI and GPIOs
  • Power Supply – 5V via power barrel or mini USB port

As you can see from the photo below, the main components are on separate boards (for some reasons) with a “mother board”, MT7628 module, and an audio sub-board.

As mentioned in the introduction, the MT7628 module runs an OS based on OpenWrt with RAK iGate middleware, and the company provides an SDK allowing you to develop solutions based on Amazon Alexa thanks to one codec that will detect “Alexa” keyword and wake up to the board, and another codec handling audio capture and output. The software architecture is shown below, Wiscore app for Android and iOS is provided to pair the EVK with Alexa, and more documentation and software can be found in the Wiki on Github.

WisCore Software Architecture

The solution can be used to build voice controlled home automation gateways or appliances, smart speakers, and robots. RAK Wireless sells a development kit with the three boards, an Ethernet cable, a speaker, a USB cable, two antennas, some Dupont wires, some jumpers, and a Quick Start Guide for $49 plus shipping. Visit the product page for a few more details.

Amazon AWS Greengrass Brings Local Compute, Messaging, Data Caching & Sync to ARM & x86 Devices

June 8th, 2017 No comments

Amazon Web Services (AWS) provides cloud computing services to manage & store data from IoT Nodes over the Internet, but in some cases latency may be an issue, and Internet connectivity may not be reliable in all locations. AWS Greengrass provides a solution to those issues by running some of the IoT tasks within the local network in ARM or x86 edge gateways running Linux.

Click to Enlarge

You can still manage your devices from AWS cloud, but a Linux gateway running Greengrass Core runtime will be able to run AWS Lambda functions to perform tasks locally, keep device data in sync, and communicate with devices running AWS IoT Device SDK.

Greengrass benefits include:

  • Response to Local Events in Near Real-time
  • Offline operation – Connected devices can operate with intermittent connectivity to the cloud, and synchronizes with AWS IoT once it is restored
  • Secure Communication  – AWS Greengrass authenticates and encrypts device data at all points of connection.
  • Simplified Device Programming with AWS Lambda – Greengrass execute Lambda functions locally, reducing the complexity of developing embedded software.
  • Reduce the Cost of Running IoT Applications – You can program filter device data locally, and only transmit the data you need to the cloud. This reduces the amount of raw data transmitted to the cloud and lowers cost

Greengrass Core’s minimum requirements are a 1GHz Processor with at least 128 MB, so it will run on most x86 products, as well as some ARM boards and devices, with Amazon recommending the following to get started quickly:

Greengrass Core works with Linux distributions with Linux 4.4.11+ or greater including Ubuntu 14.04 LTS, Debian Jessie, etc.. Canonical will also provide snap to easily install it on Ubuntu operating systems. Dependencies include SQLite 3 or greater, Python 2.7 or greater, Glibc 2.14, boto3 (latest), botocore (latest), OpenSSL 1.0.2 or greater, libseccomp and bash. You’ll find more detailed requirements in the FAQ.

Amazon’s announcement today was about AWG GreeenGrass availability to all customers, but it has already been used successfully in the industry by customers such as Enel, the largest utility in Europe, Konecranes now having 15,000 connected cranes, Pentair plc for their aquaculture customers, and Rio Tinto mining group to improve management and safety of their truck fleet.

Greengrass is free to try for one year with up to 3 devices, and costs $0.16 per month or $1.49 per year per device for up to 10,000 devices. If you are going to manage more than 10,000 devices you’d have to contact Amazon for pricing options. You can find more info and get started on Amazon Greengrass page.

 

OpenH PULSAR and QUASAR Boards Add 4G LTE Cat M1, or Cat 4/1 to Raspberry Pi Boards

May 31st, 2017 No comments

We’ve seen a bunch of IoT boards with 2G connectivity recently including Orange Pi 2G-IoT, Wio GPS, and Nadhat, but while in some countries 2G will still work for many years, those boards are already obsolete – or soon will be – in many other countries. However, finding low cost 3G / 4G  boards is more difficult, and while one solution is to use 3G or 4G USB dongles,  “OpenH – Open Hardware” – part of KLiP Industries – has designed two boards with 4G connectivity provided by Quectel modules.

OpenH PULSAR Board

PULSAR board is compatible with Arduino Zero and features the following specifications:

  • MCU – Atmel/Microchip SAMD21 ARM Cortex M0+ MCU (the as the one used in Arduino Zero)
  • Connectivity
  • Security – Dedicated management CPU with crypto engine
  • Power Supply 10W digital power supply and battery charger with direct solar input
  • FCC and Carrier certified

The board can work in standalone mode, but if needed, a Raspberry Pi Zero can optionally be mounted to the board. PULSAR is designed for low-bandwidth projects up to 200 kbps, support OTA firmware updates, and can work with the cloud provider of your choice.

OpenH QUASAR Raspberry Pi HAT Board

If your project needs more bandwidth, you can use QUASAR boards instead on a Raspberry Pi 2/3 board:

  • Connectivity
  • Expansion connectors
  • Security – Dedicated management CPU with crypto engine
  • Power Supply – 25W digital power supply and battery charger with direct solar input
  • FCC and Carrier certified

You’ll get up to 150 Mbps bandwidth using LTE Cat 4 module, and just like the other board is can support OTA firmware update, and popular cloud services like Amazon Web Service (AWS) IoT, Azure IoT Hub, IBM BlueMix, Google Cloud for IoT, ThingSpeak, etc…

Installation and IP67 Enclosure

OpenH explains Bluetooth and NFC are for installation and maintenance, and they appears to have a mobile to access the serial console, authorize access, reboot the board, check GPS coordinates…. over Bluetooth, as shown above using QUASAR board.

Click to Enlarge

Many such long range IoT projects are designed to be placed outdoor, so the company also offer Rubicon IP67 weatherproof enclosure that works with both 4G boards, as well as Raspberry Pi, Arduino, BeagleBone, etc.. and is high enough for one or more add-ons board thanks to a selection of shallow or deep covers. The photo above shows the case with a Raspberry Pi board (left) and Beaglebone Black + PRUDAQ cape (right).

The downside is that the board are not available yet, pricing is unknown, and documentation is very limited right now. If you are interested, you can register your email on openh.io website by clicking on Pre-order Now button. Rubicon IP67 enclosure is available now for $35 plus shipping.