Archive

Posts Tagged ‘bluetooth’

Espressif ESP32 LyraTD MS1 HDK is Designed for Smart Speakers, Wireless Audio and other Smart Home Appliances

January 16th, 2018 7 comments

So apparently voice command will represent 50% of all searches in the next two years, and everybody is jumping on the smart speaker bandwagon, with announcements from many companies at CES 2018, including Google’s Android Things + Assistant products‘ announcement,  NXP i.MX 8M official launch, Amazon Alexa Voice Service (AVS) development kit from Amlogic and Allwinner, and more.

Espressif Systems is about to join the party with their ESP32 LyraTD MS1 HDK (Hardware development kit) that most people will likely remember as “Audio Mic HDK” that was announced on Twitter.

Click to Enlarge

Espressif Audio Mic HDK specifications:

  • Wireless Module – ESP32-WROVER module with 802.11 b/g/n WiFi and Bluetooth 4.1 LE connectivity.
  • DSP – 4-mic array chip
  • Storage – micro SD card for audio files
  • Audio
    • Audio driver chip
    • Earphone jack
    • Dual speaker output ports
    • 4x microphone array with up to 3 meter sensitivity while playing music
  • Expansion
    • I2C/SPI header
    • 6-pin UART header
    • I2S header
    • Others undocumented
  • Debugging – USB-UART micro USB interface (based on CP2102N), and JTAG header
  • Misc – Power switch, 8x keys on top
  • Power Supply – 5V via micro USB port

The kit can work over WiFi or Bluetooth, supports major cloud voice vendors such as Amazon Alexa, Google Assistant, and Baidu DuerOS. Soft decoder, and hot word recognition runs directly on ESP32 processor.

In twitter, the company also said you could implement your own hotword/keyword, by providing around 5000 unique recordings of your selected word, and that they expect to ship the board next week. It’s unclear when the board will be available for sale however.

One of the commenter mentioned he made his own ESP32 Circle evaluation kit with an audio jack, and a single microphone. If you are interested in that third party board, you can purchase it on Taobao for 169 RMB (~$26). The official Espressif Audio Mic HDK should sell for a bit higher due to the extra features.

Garmin Launches Vivofit 4 Activity Tracker with One Year Battery Life

December 28th, 2017 2 comments

I have not spent much time covering wearables like smartwatches and fitness trackers this year, mostly because I find they have too many flaws at this stage. Back in 2016, I found many had a short life time, they would just stop working after a few weeks or months, even the fairly popular Xiaomi Mi Band 2 only lasted 2 months after an ill-fated firmware upgrade. In my case, I also found activity / fitness trackers did not have the motivating factor I thought they’d have, so I don’t think I exercise more or less with one. Finally, another annoyance is that most need to be charged every couple of days or weeks, and I’m frequently leaving the one I’m still using (SH09) run out of battery, losing recent data.

The best solution to address the latter issue would be some type of energy harvesting, so that we would never need to charge the device ever again. It does exist thanks to Matrix PowerWatch harvesting energy from your body heat, but it can only be used for the simplest of devices, and implementation into more devices in uncertain in the near future. Another promising technology that will become available later this year thank to companies such as PowerCast or Energous are mid-field (1 meter / desk) and far-field (several meters / room) wireless transmitters/chargers, which should be good enough to keep your compatible wearables and other accessories charged at all times.

But while waiting for those new developments to come to market, we have to find the efficient devices with long battery life, and one of the them is the just released Garmin Vivofit 4 activity tracker that promises over one year of battery life.

Key features / specifications:

  • Display – 11x11mm sunlight-visible, transflective, 8-color display with 88×88 resolution
  • Memory – 4 weeks of activity data
  • Connectivity – Bluetooth Smart and ANT+
  • Sensors – Accelerometer
  • Battery – 2x SR43 user-replaceable batteries good for about a 1 year
  • Strap dimensions –  19 mm (width) x 9.4 mm (thickness);  Circumference (small/medium): 122-188 mm | (large): 148-215 mm
  • Weight – ~25 g
  • Water rating – Swim

The device supports the usual clock/alarm/timer/stopwatch functions, as well as activity tracking features such as step counter, estimated distance and calories burned, and sleep monitoring. It can pair with iOS or Android smartphones, and is compatible with Garmin Connect Mobile.

As a swim- and shower-safe device, Vivofit 4 can be worn at all times, and long battery life is achieved thanks to periodic synchronization, instead of continuous synchronization.

Vivofit 4 can be purchased for $79.99 on Amazon. Visit the product page for further details.

Via Liliputing

Categories: Android, Hardware Tags: ant, ble, bluetooth, garmin, wearables

TDK CeraCharge Solid State Battery-in-a-Chip is Designed for IoT & Wearables

December 19th, 2017 5 comments

We’ve recently seen solid state batteries are prone to dislodge current Lithium Ion battery technology as they are safer, support higher energy density, and faster charging. Such batteries are expected to be seen in car in the first part of the next decade, in smartphones starting possibly in 2019, but TDK has just announced their own CeraCharge rechargeable solid state SMD battery with mass production scheduled to start in April 2018.

TDK CeraCharge battery-in-a-chip will come in compact EIA 1812 package (4.5 x 3.2 x 1.1 mm), offer a capacity of 100 µAh at a rated voltage of 1.4 V, and can be recharged up to 1000 times. Potential applications include IoT devices, real-time clocks, Bluetooth beacons, and systems for energy harvesting.

The battery – which will look very similar to an SMD capacitor – does not include liquid electrolyte, and instead uses a solid ceramic element as electrolyte which rules out any risk of fire, explosion, or leakage. The solution works in a wide temperature range from -20 °C to +80 °C making it suitable for outdoor use such as weather stations, and multiple CeraCharge components can be connected in series and parallel to increase capacity and voltage.

TDK CeraCharge is currently sampling with mass production of the CeraCharge 1812 scheduled for Spring 2018, but the company is also working on even smaller CeraCharge types in other sizes such as EIA 0603 (1.6 mm × 0.8 mm) and with other capacities in order to cover an even wider range of applications. More details can be found in these presentation slides.

Via Nikkei Technology

RAK Wireless Introduces LoRa + BLE Module, LoRa GPS Tracker, and NB-IoT/eMTC Arduino Shield

December 9th, 2017 1 comment

We’ve previously covered several products from RAK Wireless, including RAK WisCam Arduino compatible Linux camera, RAK CREATOR Pro Ameba RTL8711AM WiFi IoT board, and WisCore modular development kit for application leveraging voice assistants such as Amazon Alexa.

AFAIK, the company had not released any new products since their RAK831 LoRa gateway module launched last summer, but they just contact me with the release of three new wireless products, namely RAK813 BLE + LoRa module, RAK811 LoRa tracker board, and WisLTE NB-IoT/eMTC/eGPRS Arduino shield.

RAK813 BLE + LoRa module & Development Board

Main features and specifications:

  • Connectivity
    • LoraWAN via Semtech SX127x (LoRa) chipset
      • Frequency Ranges
        • 433MHz, 470MHz
        • FCC Frequency range 902~928MHz
        • CE Frequency range 863~870MHz
        • MIC Frequency range 920~928MHz
        • KCC Frequency range 920~923MHz
      • Receiver Sensitivity: LoRa down to -146 dBm
      • TX Power – adjustable up to +14 dBm, max PA boost up to 20dbm
      • Range – Up to 15 km in rural area, up to 5 km in urban area
      • u.FL antenna connector
    • Bluetooth 5 via Nordic Semi nRF52832 SoC, u.FL antenna connector
  • 33 castellated holes with up to 13x GPIO, 1x UART, 1x I2C, 1x SPI, 3x ADC, SWD, GND, VDD (LoRa/BLE), and antenna pins
  • Power – 3.3V DC input; consumption down to 2uA in sleep mode
  • Dimensions – 27.20 x 23 x 1.7 mm

Bear in mind that while nRF52832 SoC support Bluetooth 5, it does not support long range mode. The module is expected to be used  for environment monitoring, parking systems, smart cities, asset / personnel positioning, smoke alarms, industrial monitoring and control, and other remote battery powered applications.

In order to get you started before you design your own baseboard, the company also provide WisLoRaB-RAK813 Arduino compatible board with external antenna connectors, micro USB port for power programming, and a reset button. Documentation now is limited as we can only download the hardware datasheets for the module and board.

The module is sold for $14.90 on Aliexpress, with only 868MHz and 915 MHz models available right now, and the development board goes for $19.90 plus shipping, again with the same frequency range models.

RAK811 LoRa Tracker Board

Specifications:

  • Connectivity – LoRaWAN Version V1.0.2 via RAK811 module based on STM32L151 MCU and Semtech SX1276 LoRa chip; SMA connector for antenna
  • Location – GPS/GLONASS via Ublox MAX-7Q GPS Module, u.FL antenna connector
  • Expansion – 2x 10-pin with I2C, GPIOs, SWD, GND, VCC (3.3V)
  • USB – 1x micro USB port for charging and debugging
  • Battery – Optional 2200mAh rechargeable battery good for 2 years (depending on use)
  • Dimensions – 54mm x 22mm x17mm with antenna connector
  • Temperature Range – -20°C ~ 60°C

There’s also a RAK811 SensorNodeBoard with the same features minus GPS.

Documentation looks pretty good here, as beside the datasheet, we can download the user manual, schematics, etc.., and source can be found in Github with CoIDE  or Keil5 tools supported..

RAK811 TrackerBoard is sold with LoRa and GPS antennas, a micro USB port, some jumper cables, jumpers, and battery for $29.99 plus shipping on Aliexpress with two models for 868 MHz or 915 MHz bands.

WisLTE NB-IoT/eMTC/eGPRS Arduino Shield

Specifications:

  • Wireless Module – Quectel BG96 with Cat.M1 (eMTC) / Cat LTE NB1 (NB-IoT) & EGPRS connectivity, GNSS support (GPS)
  • Antennas – 2x u.FL antenna connector for LTE and GNSS
  • SIM card slot on back of the board
  • Expansion
    • Arduino UNO compatible headers with UART, 1x I2C, 2x ADC, etc…
    • UART switch pin (blue header)
  • USB – micro USB port for power and debugging, 1x USB host port
  • Misc – Reset and power buttons, USB boot jumper, serial voltage selection (3.3V or 5V)

I had heard about BC95 NB-IoT module before, but I think it may be the first time I come across BG96 module, and beside adding EGPRS and Cat M1, is also adds GPS positioning, a USB interface, I2C, one extra UART interface, and one extra ADC interface. NB-IoT uplink and download data rate are also a little higher than in BC95.

The company provides a getting started guide while connected to a PC, and BG96 AT command sets documentation on their website, but AFAICT there’s no code in their Github account, like Arduino libraries to easily use the shield. I did find another user, probably a beta tester, that wrote an Android Things driver for WisLTE.

Click to Enlarge

If you are interested in the board, WisLTE is sold for $39.90 plus shipping on Aliexpress.

Qualcomm Snapdragon 845 Octa Core Kryo 385 SoC to Power Premium Smartphones, XR Headsets, Windows Laptops

December 7th, 2017 9 comments

Qualcomm Snapdragon 845 processor was expected since May 2017 with four custom Cortex A75 cores, four Cortex A53 cores, Adreno 630 GPU, and X20 LTE modem. with the launch planned for Q1 2018. At least, that what the leaks said.

Qualcomm has now formally launched Snapdragon 845 Mobile Platform and rumors were mostly right, as the the octa-core processor comes with four Kryo 385 Gold cores (custom Cortex A75), four Kryo 385 Silver cores (custom Cortex A55) leveraging DynamIQ technology, an Adreno 630 “Visual Processing System”, and Snapdragon X20 modem supporting LTE Cat18/13.

The processor is said to use more advanced artificial intelligence (AI) allowing what the company calls “extended reality (XR)” applications, and will soon be found in flagship smartphones, XR headsets, mobile PCs, and more.

Qualcomm Snapdragon 845 (SDM845) specifications:

  • Processor
    • 4x Kryo 385 Gold performance cores @ up to 2.80 GHz (custom ARM Cortex A75 cores)
    • 4x Kryo 385 Silver efficiency cores @ up to 1.80 GHz (custom ARM Cortex A55 cores)
    • DynamIQ technology
  • GPU (Visual Processing Subsystem) – Adreno 630 supporting OpenGL ES 3.2, OpenCL 2.0,Vulkan 1.x, DxNext
  • DSP
    • Hexagon 685 with 3rd Gen Vector Extensions, Qualcomm All-Ways Aware Sensor Hub.
    • Supports Snapdragon Neural Processing Engine (NPE) SDK, Caffe, Caffe2, and Tensorflow
  • Memory I/F – LPDDR4x, 4×16 bit up to 1866MHz, 8GB RAM
  • Storage I/F – TBD (Likely UFS 2.1, but maybe UFS 3.0?)
  • Display
    • Up to 4K Ultra HD, 60 FPS, or dual 2400×2400 @ 120 FPS (VR); 10-bit color depth
    • DisplayPort and USB Type-C support
  • Audio
    • Qualcomm Aqstic audio codec and speaker amplifier
    • Qualcomm aptX audio playback with support for aptX Classic and HD
    • Native DSD support, PCM up to 384kHz/32bit
  • Camera
    • Spectra 280 ISP with dual 14-bit ISPs
    • Up to 16 MP dual camera, up to 32 MP single camera
    • Support for 16MP image sensor operating up to 60 frames per second
    • Hybrid Autofocus, Zero Shutter Lag, Multi-frame Noise Reduction (MFNR)
    • Video Capture – Up to 4K @ 60fps HDR (H.265), up to 720p @ 480fps (slow motion)
  • Connectivity
    • Cellular Modem – Snapdragon X20 with peak download speed: 1.2 Gbps (LTE Cat 18), peak upload speed: 150 Mbps (LTE Cat 13)
    • Qualcomm Wi-Fi 802.11ad Multi-gigabit, integrated 802.11ac 2×2 with MU-MIMO, 2.4 GHz, 5 GHz and 60 GHz
    • Qualcomm TrueWireless Bluetooth 5
  • Location – Support for 6 satellite systems: GPS, GLONASS, Beidou, Galileo, QZSS, SBAS; low power geofencing and tracking, sensor-assisted navigation
  • Security – Qualcomm Secure Processing Unit (SPU), Qualcomm Processor Security, Qualcomm Mobile Security, Qualcomm Content Protection
  • Charging – Qualcomm Quick Charge 4/4+ technology
  • Process – 10nm LPP

The company will provide support for Android and Windows operating systems. eXtended Reality (XR) is enabled with features such as room-scale 6DoF with simultaneous localization and mapping (SLAM), advanced visual inertial odometry (VIO), and Adreno Foveation. Maybe I don’t follow the phone market closely enough, but I can’t remember seeing odometry implemented in any other phones, and Adreon Foveation is not quite self-explaining, so the company explains it combines graphics rendering with eye tracking, and directs the highest graphics resources to where you’re physically looking, while using less resources for rendering other areas. This improves the experience, performance, and lower power consumption.

 

Click to Enlarge

Compared to Snapdragon 835, the new processor is said to be around 25 to 30% faster, the Spectra camera and Adreno graphics architectures are claimed to boost power efficiency by up to 30 percent, and the LTE modem is a bit faster (1.2 Gbps/150Mbps vs 1.0 Gbps/150Mbps). Quick Charge 4+ technology should deliver up  to 50 percent charge in 15 minutes. Earlier this year when SD835 was officially launched, there was virtually no mention of artificial intelligence support in mobile APs, but now NNA (Neural Network Accelerator) or NPE (Neural Processing Engine) are part of most high-end mobile processors, which in SD845 appears to be done though the Hexagon 685 DSP. High Dynamic Range (HDR) for video playback and capture is also a novelty in the new Snapdragon processor.

One of the first device powered by Snapdragon 845 will be Xiaomi Mi 7 smartphone, and according to leaks it will come with a 6.1″ display, up to 8GB RAM, dual camera, 3D facial recognition, and more. Further details about the phone are expected for Mobile World Congress 2018. Considering the first Windows 10 laptop based on Snapdragon 835 processor are expected in H1 2018, we may have to wait until the second part of the year for the launch of Snapdragon 845 mobile PCs.

More details may be found on Qualcomm Snapdragon 845 mobile platform product page.

Mediatek MT2621 Supports Dual Mode NB-IoT and GSM/GPRS for IoT, Wearables, and Industry 4.0

December 1st, 2017 5 comments

Mediatek introduced MT2625 ARM Cortex-M SoC supporting NB-IoT (aka LTE Cat NB1/NB2) compatible with 3GPP Release 14 last summer, and designed for global cellular IoT devices.

The company has now unveiled a new NB-IoT part with Mediatek MT2621 ARM7 dual-mode IoT SoC that is capable of both NB-IoT R14 and GSM/GPRS connectivity for applications such as smart trackers, wearables, IoT security, smart metering and industrial applications. The chip would allow you to start deploying devices with GSM connectivity, and once available in your locale, switch to the more efficient NB-IoT protocol.

Mediatek MT2621 specifications:

  • Processor – Single ARM7 core @ up to 260MHz
  • Memory – 160KB + 4MB PSRAM
  • Internal Flash
  • Connectivity
    • Integrated Baseband, RF, Antenna, and Modem DSP
    • NB-IoT ultra-low/low/mid bands defined by 3GPP Rel-14
    • GSM/GPRS
    • Bluetooth 4.2
  • Display – LCM interface
  • Camera – Camera interface
  • Audio – Audio Amplifier
  • Integrated PMU

Mediatek is really light on details, but still confirms a single SIM and antenna covers both cellular networks (NB-IoT & GSM) with dual standby functionality (SSDS). This will allows a single UICC and mobile number for both networks, “saving PCB space, simplifying design, minimizing cost and speeding time-to-market”.  The company also claims “applications can be built using an easily customizable Linux-based OS”.

You may visit the product page, but you won’t find much there.

Thanks to TLS for the tip.

Categories: Hardware, Linux Tags: bluetooth, cellular, IoT, lpwan, lte, mediatek

HackaBLE Board is a Tiny, Breadboard-Friendly Bluetooth LE Development Board

November 18th, 2017 5 comments

Earlier this year, I wrote about Electronut Labs’ Bluey development board powered by Nordic Semi nRF52832 development board with BLE, NFC, and a few sensors, and partially open source hardware with the KiCAD schematics and PCB layout available on Github.

The company is now back with another open source hardware nRF52832 BLE board, namely hackaBLE, that’s much smaller (28x18mm), and with 2.54mm pitch castellated pin headers making suitable for use for breadboard, or as a module on a custom designed board.

Click to Enlarge

hackaBLE board specifications:

  • SoC – Nordic Semi nRF52832 ANT + BLE ARM Cortex-M4 @ 64 MHz processor with 512kB flash, 64kB RAM
  • Connectivity – Bluetooth 4.2/5 LE and other proprietary 2.4 GHz wireless standards via chip antenna
  • Expansion
    • 2x 9-pin castellated headers with GPIO, 5V, 3.3V, and GND
    • 2x 5-pin solder pads for more I/Os
  • Debugging – 4-pin SWD header
  • Misc – RGB LED, and user button
  • Power Supply – 5 V via VDD or Vin pin.

The company explains “hackaBLE use offers more value than just using the BLE module directly – since it incorporates the necessary passive components – including the ones for the buck converter for power saving – and adds an RGB LED and a button for convenience. It’s also much easier to solder than the bare modules.”. More details, including the KiCAD schematics and PCB layout can be found on Github, as well as the PCB footprint for the board for those who plan on making a custom board.

Click to Enlarge

The company can also provide PogoProg board with 4 pogo pins to program the board through the SWD header, Bumpy SWD debugger, and snapVCC board outputting 5V/3.3V from a 9V battery.

hackaBLE can be purchased from Tindie for $20, and you could also get the $44 premium devkit with hackaBLE and the three boards mentioned and pictured above.

Zidoo H6 Pro (Allwinner H6) TV Box Review – Part 2: Android 7.0 Firmware

November 10th, 2017 5 comments

Zidoo H6 Pro is the very first Allwinner H6 based 4K TV box. The Android 7.0 device support H.265, H.264 and VP6 4K video decoding, comes with fast interfaces such as USB 3.0, and network connectivity with Gigabit Ethernet and 802.11ac WiFi.

I’ve already checkout the hardware in the first part of the review entitled “Zidoo H6 Pro (Allwinner H6) TV Box Review – Part 1: Unboxing & Teardown“, and since then, I’ve had time to play with the TV box, and report my experience with Android 7.0 in this second part of the review.

First Boot and OTA Firmware Update

I’ve connected a USB keyboard and a USB dongle with RF dongles for an air mouse and gamepad on the two USB ports, a USB 3.0 hard drive to the single USB 3.0 ports, as well as HDMI and Ethernet cables before powering up the TV box. I also added two AAA batteries to the IR/Bluetooth remote control.

Click to Enlarge

Boot to the background image takes around 20 seconds, but to reach the actual launched it normally takes around one minute and 25 seconds when I have the hard drive connected (with 4 partitions and many files). If I remove the hard drive, the full boot can complete within 23 seconds. Not that much of an issue, but it still may be something Zidoo wants to optimize.

On the very first boot, a few seconds after the launcher showed up, I also had a pop-up window informing me that Firmware v1.0.11 update was available, with a neat changelog listing the main changes including support for Netflix 1080p playback, and YouTube 2K/4K playback.

Click for Original Size

I clicked on the Update button to start downloading the new firmware…

… an cliked Update again after downloading, to complete the firmware update with MD5 check and installation to the eMMC flash.

The system will then reboot, and we can get access the Zidoo ZIUI launcher.

Click to Enlarge

The launcher is identical to the one in Zidoo X7 except for two extra icons on the bottom for BT remote, and “Box RC” app, but more on that later.


Beside those two new remote apps, we’ll also notice HappyCast app used by Airplay/Miracast, and the lack of ZDMC (Zidoo’s Kodi fork), as we are told to use Kodi from Google Play instead.

Settings & Google Play

The settings section looks the same as Zidoo X7 settings, so I will only go through it quickly.

Click to Enlarge

We have four main section with Network, Display, Sound and Other. I could connect to WiFI and Ethernet with no issues, and Bluetooth worked with my smartphone and a pair of headphones. Display can be set up to a resolution / framerate of 3840×2160 @ 60 Hz, and PCM 2.0 output, HDMI & S/PDIF audio pass-through options are available. Looking at the Other section, About tab, and Android Settings about TV box reveals ZIDOO_H6 Pro is running Android 7.0 on top of Linux 3.10.65, and the firmware I tested for the review is v1.0.11, as we’ve seen from the OTA firmware update part of this review.

Click to Enlarge

Android security patch level is dated November 5, 2016. Not the most recent, and you won’t get monthly to bi-monthly security updates like in Android One phones such as Xiaomi Mi A1. The firmware is rooted by default.

Looking into storage options, I had 418MB free out of 10.22GB internal storage partition at the very beginning of the review, and NTFS and exFAT partitions of my USB hard drive could be mounted, but not the EXT-4 and BTRFS partitions.

I could install all apps I needed for review using Google Play, and I also installed Riptide GP2 game with Amazon Appstore since I got it for free there.

Remote Control – IR/Bluetooth, and Box RC Android App

One way Zidoo H6 Pro differs from most competitors is that it comes with a Bluetooth remote control. By default it works with the IR transmitter, and Bluetooth is disable, but you can enable Bluetooth by launching Bluetooth Remote app, or selecting BT Remote icon on the launcher.

Click to Enlarge

Hold the back and menu keys for a few seconds until the LED on the remote start flashing. The app will then show the Bluetooth remote is connected, and the battery level. Bluetooth does not enable air mouse function, and you’d still need to use the arrow keys to move the cursor in mouse mode, so the main advantage of Bluetooth over infrared is that it does not require line of sight. You can hide the box being the TV, or inside a furniture, and the remote would work. You do not need to point the remote control towards the TV box either, it works in any directions. I successfully tested the remote control up to a distance of 10 meters. Once I lost control of the OK and Back keys, but they came back later on after a reboot, and could not reproduce the issue.

I also tested MINIX NEO A2 Lite air mouse / keyboard / remote control, and again no problem. It’s my favorite way to control an Android TV boxes, since it works with all sort of user interfaces and most apps, excluding some games that require touch support.

Another way to control the TV box is to install Box RC  Android app in your smartphone. Launch Box RC app in the TV box, and you should see the QR Code below.

It redirects to RC Box apk file. +  Screenshots of smartphone app.

Click to Enlarge

After installation, you’ll be presented with the “key mode” pad. Tap on “My Device” and select ZIDOO_H6 Pro to connect to the TV box. Clicking on the icon in the top left corner will give you a few more remote modes, including “Handle model” for gaming…… as well as mouse and gesture mode – both of which look like the left screenshot below -, and an Applications with a complete list of apps installed in the TV box. Simply select the app you want to launch in the TV box.

Click to Enlarge

Finally, you’ll have an About section showing the version number, and checking for app updates, and a Screenshot option to remotely take screenshots. Everything worked well. I’m just not quite sure how to use the gesture mode.

Power Consumption & Temperature

Power control is just like on Zidoo X7 with a short press on the remote control power button bringing a menu to select between Power off, Standby, or Reboot. A long press will allow you to configure the behavior of the power button: Off, Standby, or Ask (default).

I measured power consumption in various mode, and here it works better than X7:

  • Power off – 0.0 Watt
  • Standby – 3.2 Watts
  • Idle – 4.0 ~ 4.4 Watts
  • Power off + USB HDD – 0.0 Watt
  • Standby – 6.0 to 6.4 Watts
  • Idle + USB HDD – 6.0 to 6.4 Watts

With regards to temperature, the box itself stays fairly as after playing a 2-hour video in Kodi, I measured 45 and 43ºC max measured on the top and bottom with an IR thermometer, and 47ºC on both sides after playing Beach Buggy Racing & Riptide GP2 for about 30 minutes. However, right after playing, CPU-Z reported respectively 86°C and 80°C CPU & GPU temperatures, which should be close to limit of the SoC. The ambient temperature was around 28°C, and 3D performance was contant while playing.

Video & Audio Playback with Kodi, Media Center and YouTube, DRM Info

Some people reported that Kodi installed from Google Play is working well in the box, so I installed Kodi 17.5 from Google Play, enabled automatic frame rate switching, setup the connection to my SAMBA share over Ethernet, and started playing my 4K video samples:

  • HD.Club-4K-Chimei-inn-60mbps.mp4 (H.264, 30 fps) – Not smooth, and some parts of the picture are very red
  • sintel-2010-4k.mkv (H.264, 24 fps, 4096×1744) – Not perfectly smooth
  • Beauty_3840x2160_120fps_420_8bit_HEVC_MP4.mp4 (H.265) – Plays fine, but woman face is more red than usual
  • Bosphorus_3840x2160_120fps_420_8bit_HEVC_MP4.mp4 (H.265) – Not perfectly smooth
  • Jockey_3840x2160_120fps_420_8bit_HEVC_TS.ts (H.265) – Not perfectly smooth
  • MHD_2013_2160p_ShowReel_R_9000f_24fps_RMN_QP23_10b.mkv (10-bit HEVC) – Not perfectly smooth
  • phfx_4KHD_VP9TestFootage.webm (VP9) – 2 to 3 fps (software decode)
  • BT.2020.20140602.ts (Rec.2020 compliant video; 36 Mbps; 59.97 Hz) – OK
  • big_buck_bunny_4k_H264_30fps.mp4 – Not super smooth
  • big_buck_bunny_4k_H264_60fps.mp4 – Not very smooth, audio delay (OK, as not supported by Allwinner H6)
  • Fifa_WorldCup2014_Uruguay-Colombia_4K-x265.mp4 (4K, H.265, 60 fps) – OK
  • Samsung_UHD_Dubai_10-bit_HEVC_51.4Mbps.ts (10-bit HEVC / MPEG-4 AAC) – Plays OK, but red parts are over-saturated?
  • Astra-11479_V_22000-Canal+ UHD Demo 42.6 Mbps bitrate.ts (10-bit H.265 from DVB-S2 stream) – OK
  • 暗流涌动-4K.mp4 (10-bit H.264; 120 Mbps) – ~2 fps (software decode – OK, as not supported by hardware)
  • Ducks Take Off [2160p a 243 Mbps].mkv (4K H.264 @ 29.97 fps; 243 Mbps; no audio) – Not smooth
  • tara-no9-vp9.webm (4K VP9 YouTube video @ 60 fps, Vorbis audio) – 2 to 3 fps (software decode), lots of buffering
  • The.Curvature.of.Earth.4K.60FPS-YT-UceRgEyfSsc.VP9.3840×2160.OPUS.160K.webm (4K VP9 @ 60 fps + opus audio) – 2 to 3 fps (software decode), lots of buffering

Automatic frame rate switching is not working, but that’s only a small issue compared to the disastrous results above. As shown in the screenshot above, H.265 is hardware decoded, but for some videos the CPU usage is really high, close to 100% on all four cores, so something is clearly wrong. H.265 / H.264 1080p videos fare better, so maybe that’s why other people think Kodi works well. Maybe ZDMC, Zidoo’s fork of Kodi is coming soon.

In the meantime, I switched to Media Center, and it’s night and day compared to my experience with Kodi, also played from the same SAMBA share:

  • HD.Club-4K-Chimei-inn-60mbps.mp4 (H.264, 30 fps) – OK most of the time, but the end is a bit choppy
  • sintel-2010-4k.mkv (H.264, 24 fps, 4096×1744) – OK
  • Beauty_3840x2160_120fps_420_8bit_HEVC_MP4.mp4 (H.265) – OK
  • Bosphorus_3840x2160_120fps_420_8bit_HEVC_MP4.mp4 (H.265) – OK
  • Jockey_3840x2160_120fps_420_8bit_HEVC_TS.ts (H.265) – OK
  • MHD_2013_2160p_ShowReel_R_9000f_24fps_RMN_QP23_10b.mkv (10-bit HEVC) – OK
  • phfx_4KHD_VP9TestFootage.webm (VP9) – OK
  • BT.2020.20140602.ts (Rec.2020 compliant video; 36 Mbps; 59.97 Hz) – OK
  • big_buck_bunny_4k_H264_30fps.mp4 – OK
  • big_buck_bunny_4k_H264_60fps.mp4 – Plays but not smoothly, plus audio delay (OK, as not supported by Allwinner H6)
  • Fifa_WorldCup2014_Uruguay-Colombia_4K-x265.mp4 (4K, H.265, 60 fps) – OK
  • Samsung_UHD_Dubai_10-bit_HEVC_51.4Mbps.ts (10-bit HEVC / MPEG-4 AAC) – OK
  • Astra-11479_V_22000-Canal+ UHD Demo 42.6 Mbps bitrate.ts (10-bit H.265 from DVB-S2 stream) – OK
  • 暗流涌动-4K.mp4 (10-bit H.264; 120 Mbps) – Massive artifacts  (OK, as not supported by Allwinner H6)
  • Ducks Take Off [2160p a 243 Mbps].mkv (4K H.264 @ 29.97 fps; 243 Mbps; no audio) – OK
  • tara-no9-vp9.webm (4K VP9 YouTube video @ 60 fps, Vorbis audio) – OK
  • The.Curvature.of.Earth.4K.60FPS-YT-UceRgEyfSsc.VP9.3840×2160.OPUS.160K.webm (4K VP9 @ 60 fps + opus audio) – Not too bad, but not 100% smooth in all scenes. (Note: Most TV boxes struggle with this video).

I’m pretty happy with the results, and automatic frame rate switching works, it just need to be enabled in Advanced menu.
Switching audio tracks and subtitles are supported by the app, and work well. SmartColor engine is specific to Allwinner processors, and may help improve the video quality, or adjust the image to your taste.


Let’s carry on testing with PCM 2.0 (stereo) output to my TV, and HDMI audio pass-through to Onkyo TX-NR636 A/V receiver, with some advanced audio codec in Media Player.

Audio Codec in Video PCM 2.0 Output HDMI Pass-through
AC3 / Dolby Digital 5.1 OK OK
E-AC-3 / Dolby Digital+ 5.1 OK OK
Dolby Digital+ 7.1 OK OK
TrueHD 5.1 OK OK
TrueHD 7.1 OK OK
Dolby Atmos 7.1 OK TrueHD 7.1 (OK)
DTS HD Master OK DTS 5.1
DTS HD High Resolution OK DTS 5.1
DTS:X OK DTS 5.1

Audio works pretty well with the only downside being a lack of support for DTS HD MA/HR which all fallback to DTS 5.1. My receiver does not support Atmos, so the box outputs TrueHD 7.1 as it should.

I’ve also tested HD videos with various bitrates:

  • ED_HD.avi (MPEG-4/MSMPEG4v2 – 10 Mbps) – OK (except running scene that is not smooth)
  • big_buck_bunny_1080p_surround.avi (1080p H.264 – 12 Mbps) – OK
  • h264_1080p_hp_4.1_40mbps_birds.mkv (40 Mbps) – OK
  • hddvd_demo_17.5Mbps_1080p_VC1.mkv (17.5Mbps) – OK
  • Jellyfish-120-Mbps.mkv (120 Mbps video without audio) – HDD: OK

Most Linaro media and H.265 elecard samples are playing fine in Media Center:

  • H.264 codec / MP4 container (Big Buck Bunny) – 1080p – OK
  • MPEG2 codec / MPG container – 1080p – OK
  • MPEG4 codec, AVI container – 1080p – OK
  • VC1 codec (WMV) – 1080p – OK
  • Real Media (RMVB), 720p / 5Mbps – Media Center app returns “Can’t play video”
  • WebM / VP8 – 1080p – OK
  • H.265 codec / MPEG TS container – 1080p – OK

The full HD Blu-ray ISO files I tested (Sintel-Bluray.iso and amat.iso) played fine, so were 1080i MPEG-2 samples. I had the usual artifacts with Hi10p videos, but audio and subtitles were displayed correctly.

I also tested a bunch of 720p/1080p movies with various codecs/containers such as H.264, Xvid, DivX, VOB / IFO, FLV, AVI, MKV, MP4, etc… Most could play, except some of my FLV video samples, and DVD Rips would show the “This is a Blu-ray folder” pop-up…

… but the app would also report “Can’t play video”. If I browse to the folder, and select the IFO, it does not work, and the only way to start is to select a VOB file. However, it does not automatically switch to the next file. So there’s a problem with DVD rips in Media Center app.

YouTube app could play videos up to 1440p, but 4K (2160p) is not an option.

I’ve shot a video to show issues in Kodi, as well as Media Center app which work pretty well, and YouTube playback up to 1440p.

DRM Info app shows Widevine DRM L1 is supported, meaning one of the requirements for Full HD Netflix is fulfilled.

Click to Enlarge

The company – as we’ve seen in the firmware changelog – claims support for Netflix 1080p, but since I don’t have an account I could not confirm that. It’s also unclear whether this has been achieved through a hack, or a partnership with Netflix. The latter would be permanent, while the former may not work in a few months. Based on info gathered on Zidoo forums, I can see other boxes like Mecool M8S Pro Plus TV box can play Netflix 1080p through a “3rd party Android TV Firmware”, so it’s likely something similar has been implemented for H6 Pro.

Network & Storage Performance

Zidoo X7 had a somewhat asymmetrical performance while copying a 278 MB file over 802.11ac + SAMBA, and Zidoo H6 Pro appears to have the same issues:

  1. Server to flash (average): 51, or around 5.45 MB/s
  2. Flash to server (average): 3 minutes 22 seconds, or around 1.37 MB/s

So excellent download performance, but weak upload performance with SAMBA. The average is around 2.24 MB/s.

Throughput in MB/s – Click to Enlarge

It’s probably a SAMBA configuration/implementation issue, as testing with iperf shows good performance in both directions:

  • 802.11ac download:

  • 802.11ac upload:

Throughput in Mbps

I also tested Gigabit Ethernet with iperf:

  • Full duplex:

  • Upload only:

  • Download only:

That’s pretty good, and fairly close to the results I got with ROCK64 Board (RK3328).

Switching to store benchmarks with A1 SD Bench.

Click to Enlarge

The cached read is due to the incredibly low exFAT write performance (1.52 MB/s). Read speed is quite weak to at 16.37 MB/s with this file system, but poor exFAT performance is a common to most Android TV boxes. NTFS is much better at 59.07MB/s read, and 42.12 MB/s but still far from the ~100MB/s R/W, I achieved with the same hard drive on ROCK64 board. Nevertheless the performance will be good enough for TV box use case. However, if you need hardware with fast storage (through USB 3.0) and Ethernet, RK3328 processor looks to be better.

Internal performance is good, and helps explain relatively fast boot (when no HDD is connected), fast app loading, and the lack of “app not responding” issues.

Gaming

I installed three games: Candy Crush Sage, Beach Buggy Racing (BBR) and Riptide GP2. I played Candy Crush with my air mouse, and no problem here. I played the two racing games with Tronsmart Mars G01 game controller, and BBR played very smoothly even with max graphics settings. Riptide GP2 was quite playable with max “resolution”, maybe at 25 to 30 fps, but not quite close to 60 fps. I feel Allwinner H6 might be a little better at playing games than Rockchip RK3328, and somewhat comparable to Amlogic S905/S905X. I played both games for around 30 minutes in total, and I did not notice any drop in performance over time, so no obvious throttling/overheating, despite the rather high CPU/GPU temperatures reported by CPU-Z.

Bluetooth

I’ve used Bluetooth more than on any other TV boxes simply because of the Bluetooth remote control. But I could also pair the TV box (seen as petrel-p1) with Xiaomi Mi A1 smartphone, and transfer a few photos over Bluetooth, watch some YouTube video using X1T Bluetooth earbuds, but while I was able to see and pair my BLE fitness tracker in the Bluetooth settings, I was never able to locate the smart band from within “Smart Movement” app.

Zidoo H6 Pro (Allwinner H6) System Info and Benchmarks

CPU-Z still shows a quad core Cortex A53 r0p4 processor clocked between 480 MHz and 1.80 GHz, and a Mali-T720 GPU. Note that I never saw the frequency goes over 1488 MHz, so that 1.80 GHz may only occur during short bursts if at all.

Click to Enlarge

1906 MB total memory was reported, and 10.22 GB storage. Screen resolution was 1920×1080. As with most Allwinner platform you’ll never get a recent kernel (Linux 3.10.65).

The device achieved 40,467 points in Antutu 6.x, or about 5,000+ more compared to competitors based on RK3328 or S905X.

Click to Enlarge

One of the big jump is with 3D graphics, but there’s an easy explanation: Rockchip RK3328 and Amlogic S905X SoCs rely on Mali-450MP GPU which does not support OpenGL ES 3.1 used by “Marooned” benchmark, meaning Allwinner H6 just gets 3,510 points extra just for supporting OpenGL ES 3.1… So in reality, there’s not so much performance difference between the performance.

Vellamo 3.x confirms Allwinner H6 is that much faster with the following scores: Browser: 2,546 points, Metal: 930 points, and Multicore (836 points). I’ll put aside Multicore as on the test failed because of an issue with sysbench: “issue with Finepar: Invalid CPU mode”. But when comparing the metal score result against Amlogic S905X (910) and Rockchip RK3328 (937), the differences are minor.

Click to Enlarge

The Ice Storm Extreme score (3,951 points) is about the same as Amlogic S905X (4,183 points), but quite better than Rockchip RK3328 (2,252 points). We can also see the CPU frequency never surpassed around 1.5 GHz, so I’m wondering whether the 1.8 GHZ reported by CPU-Z might just be for show/marketing…

Conclusion

Despite Allwinner H6 SoC being pretty new, I have not found any really critical bugs in Zidoo H6 Pro TV Box. 4K video playback is working well in Media Center app with automatic frame rate switching, and HD audio pass-through, and overall performance is good, including for Wifi, Ethernet and storage.Widevine Level 1 DRM is installed, and the device is also supposed to support Netflix HD playback (not tested). 3D graphics performance is closer to the one of Amlogic S905X ,and quite better than on Rockchip RK3328 SoC.

The biggest issues I’ve found is poor support for Kodi with most 4K videos I’ve tried not playing well, and red color is over-statured in many videos. Media Center app also have a few limitations such as no support for DTS HD HR/MA pass-through (fallbacks to DTS 5.1), and IFO (DVD Rip) & Real Media video files are not supported. Other issues include poor exFAT performance, and WiFi SAMBA upload speed.

PROS

  • Android 7.0 operating system – Stable and responsive
  • Eye-pleasing ZIUI launcher / user interface
  • Very good support for 4K videos played in Media Center app with automatic frame rate switching support; Smart Color Engine for post-processing
  • HDMI pass-through for Dolby, DTS, and Dolby TrueHD working in Media Center app
  • Relatively fast eMMC flash storage (fast boot/app loading)
  • Very good networking performance for Gigabit Ethernet and 802.11ac WiFi (except for SAMBA uploads)
  • Bluetooth remote control
  • Decent 3D graphics performance
  • Widevine Level 1 DRM; Netflix HD support (not tested)

CONS (and bugs)

  • Kodi 17.5 from Google Play struggles to play 4K videos and color issues (too much red)
  • MediaCenter – No DTS HD pass-through support (DTS 5.1 instead); IFO (DVD rip) and Real Media (RM) videos not supported, some FLV files can’t play.
  • YouTube limited to 1440p (no 2160p option for me)
  • Poor SAMBA upload performance when using WiFi
  • exFAT file system performance poor -> use NTFS instead on external hard drive
  • Slow boot time (~1 minute 30 seconds) when hard drive with many files connected
  • “OK” button stopped to work on the Bluetooth remote control once (despite still working on the air mouse). Reboot fixed the issue.

Zidoo kindly sent the review sample from a local distributor. Resellers can contact the company via H6 Pro’s product page. GeekBuying currently has a promotion for the device where you can get it for as low as $79.99 (only for the first 50 orders), but it’s also sold on other websites for about $85 to 100 including GearBest, Amazon, or Aliexpress.