Archive

Posts Tagged ‘can’

uCAN CAN Ethernet Converter and Logger is Based on Orange Pi Zero Board

September 19th, 2017 2 comments

The CAN bus is a serial communication protocol used in automotive and automation applications. The guys at ucandevices.pl have designed a solution around Orange Pi Zero board that allows you to log CAN bus data or act as a bridge between the CAN bus and Ethernet or WiFi. They call it “CAN Ethernet converter, CAN Logger, Linux CAN computer”. Sorry, no shorter name that I could find…

Click to Enlarge

uCAN (pronounced micro CAN) CAN Bus board specifications:

  • Main Board – Orange Pi Zero with Allwinner H2+ quad core cortex-A7 processor, 256 MB RAM
  • Network Connectivity – 10/100M Ethernet, 802.11 b/g/n WiFi
  • Can Bus – 2-pin terminal block; support for CAN version 2.0 support
  • Power Supply – DC 5V/2A via micro USB port
  • Dimension – 50 x 50 x 20 mm

The device comes pre-load with Debian distribution provided by Armbian plus various CAN tools. The getting started video below shows uCANTools web interface programmed with Node.js and running by default on the board, and explains how to use sockets instead to access the CAN data.


You can find the source code for uCANTools on Github, and the other pre-installed tools are based on can-utils package available from Debian repository.

uCAN CAN Ethernet converter is normally sold on Tindie for $50 plus shipping, but right as I was about to finish this article the price switched to $150 with the message “This seller is on vacation. Please return after Oct. 14, 2017 to purchase this awesome product!”. Oh well…

Microchip SAM D5x and SAM E5x ARM Cortex-M4 Micro-Controllers Launched with Optional Ethernet and CAN Bus

August 2nd, 2017 No comments

Microchip has just introduced two new families of micro-controllers based on ARM Cortex-M4F with SAM D5x and SAM E5x series sporting up to 1 MB of dual-panel flash and 256 KB of SRAM both with ECC support. Both families also support QSPI flash with XIP (eXecute In Place) support, features an SD card controller and a capacitive touch controller, with SAM E5x family also adding support for two CAN-FD ports and Ethernet.

Microchip SAM A5x/E5x key features and specifications:

  • MCU Core – ARM Cortex-M4F core running at 120 MHz with single precision Floating Point Unit (FPU)
  • Memory – Internal memory architecture with user configurable Tightly Coupled Memory, System memory, Memory Protection Unit and 4KB Combined I-cache and D-cache; up to 256KB ECC SRAM, up to 1MB ECC flash
  • Storage I/F – Quad Serial Peripheral Interface(QSPI) with Execute in Place (XIP) Support
  • Peripherals
    • Up to 2x Secure Digital Host Controller (SDHC)
    • Peripheral Touch Controller (PTC) supporting up to 256 channels of capacitive touch
    • Full speed USB with embedded Host/device
    • Dual 1Msps 12-bit ADCs up to 32 channels with offset  and gain error compensation.
    • Dual 1Msps, 12-bit DAC and analog comparator
    • Up to 8x Serial communication (SERCOM) ports configurable as UART/USART, ISO 7816, SPI or I2C
    • SAM E5x series only:
      • 10/100M Ethernet MAC with IEEE1588 (E53/E54)
      • Dual Bosch CAN-FD 1.0 Controller (E51/E54)
  • Security – Symmetric (AES) and Asymmetric(ECC) Encryption, Public Key Exchange Support (PUKCC), TRNG and SHA- based memory integrity checker
  • Power Modes – Supports 5 Low power modes with 65µA/MHz Active Power Performance
  • Packages – 48 to 128-pin package options
  • Temperature Range – -40°C to 85°C

Some SAMD5x SKUs are pin-to-pin compatible ARM Cortex M0+ based SAMD2X MCU, so you can easily upgrade existing design with a more powerful MCU core. There only one main “sub-family” with SAMD5x: SAMD51, but SAME5x has three sub-families depending on Ethernet and CAN options:

  • SAME51 – 2x CAN-FD
  • SAME53 – Ethernet MAC
  • SAME54 – 2x CAN-FD and Ethernet MAC

Click to Enlarge

Microchip has used the higher end version of SAME54 processor in SAM E54 Xplained Pro Evaluation Kit in order to help customer kick-start development as soon as possible. Key features for ATSAME54-XPRO board:

  • MCU – Microchip ATSAME54P20A microcontroller
  • Storage – 256 Mbit QSPI Flash, SD/SDIO card connector, AT24MAC402 serial EEPROM with EUI-48 MAC address
  • Connectivity – 10/100M Ethernet (RJ45) via KSZ8091RNA PHY
  • USB – micro USB interface, host, and device
  • Expansion
    • Parallel Capture Controller header (ArduCAM compatible)
    • CAN connector
    • Three Xplained Pro extension headers
  • Debugging
    • 10-pin Cortex Debug Connector with SWD
    • 20-pin Cortex Debug + ETM Connector with SWD and four bit trace
    • Embedded Debugger
    • Embedded current measurement circuitry (XAM)
  • Security – Microchip ATECC508 CryptoAuthentication device
  • Misc – 1x reset button, 1x programmable button, 1x QTouch PTC button, 1x yellow user LED, backup super capacitor, 32.768 kHz & 12 MHz crystals
  • Power Supply – 5V via micro USB port

The board and all Atmel SAMD5x / E5x processor are supported by Atmel Studio 7 IDE, and Atmel START online tool to configure peripherals and software.

Microchip SAM D5x and SAM E5x are in available in volume production, with pricing starting at $2.43 for 10K orders. SAM E54 Xplained Pro Evaluation Kit is available for $84.99. Adafruit is also working on – likely cheaper –  SAMD51 based Feather M4 and Metro M4 boards that will support Arduino (See github for current code).

More details can be found on SAM D and SAM E MCU product pages.

Olimex ESP32-EVB Board with Ethernet, CAN Bus, and Relays up for Sale for 26 Euros

May 30th, 2017 3 comments

One of the new feature of Espressif ESP32 SoC over ESP8266 is the inclusion of an Ethernet MAC interface, but so far few boards come with an RJ45 jacks. ESP32 Monster board is an option, also including an OLED Display and CAN Bus, and sold on Tindie for $35, but Olimex has now stocked their ESP32-EVB board with Ethernet, CAN Bus, and two relays, and you can purchase it for 26 Euros per unit, and less in larger quantities.

Olimex ESP32-EVB Rev. B specifications:

  • Wireless Module – ESP32-WROOM32 module with 802.11 b/g/n WiFi and Bluetooth LE
  • Wired Connectivity – 10/100M Ethernet with RJ45 jack (via LAN8710A)
  • External Storage – micro SD slot
  • Relays – 2x 10A/250VAC relays with LED status
  • Expansion
    • 40-pin GPIO female header (2.54mm pitch)
    • UEXT connector for sensors and modules
    • CAN Bus
  • USB – 1x micro USB port for debugging (CH340T) and power
  • Misc – Reset and user buttons, IR receiver and transmitter with up to 5 meter range
  • Power Supply
    • 5V via power jack or micro USB port
    • LiPo charger and step up converter allowing ESP32-EVB to run from LiPo battery
  • Dimensions – 75 x 75 mm

The specifications are a little different compared to the Rev. A prototype shown in February, as they added IR transmitter and receiver, a CAN bus, and a micro USB port for debugging, which increases the size of the PCB, and also explains why the price went up from an expected 22 Euros to 26 Euros for the final board.

The board is open source hardware, and you’ll find hardware design files on Github. The software directory is empty for now, but the Tindie page about ESP32 Monster board indicates that “Ether and CAN programming requires ESP-IDF environment and still not by Arduino IDE”, so if you want to use the latter you may have wait a little longer. Olimex is also planning for a color 2.8″ LCD 320×240 pixel display board connected through UEXT header.

Janz Tec emPC-A/RPI3 is an Industrial Embedded Controller Based on Raspberry Pi 3 Board

February 15th, 2017 No comments

We see more and more industrial devices making use of Raspberry Pi boards, after Kunbus RevolutionPi RevPi Core industrial computer based on Raspberry Pi Computer Module, and RailPi 2.0 embedded computer equipped with a Raspberry Pi 3 (or ODROID-C2) board, Janz Tec is now offering another option with emPC-A/RPI3 industrial embedded controller featuring Raspberry Pi 3 board, and supporting variable DC power input, 24V digital inputs and outputs, and interfaces such as CAN, RS485…

Janztec emPC-A/RPI3 specifications:

  • SoC – Broadcom BCM2837  quad core ARM Cortex-A53 processor @ 1.2 GHz (but limited to 4x 600 MHz on purpose to avoid overheating) and VideoCore IV GPU
  • System Memory – 1GB DDR2 RAM
  • Storage – externally accessible micro SD slot
  • Video Output – HDMI 1.4 port
  • Connectivity – 10/100M Ethernet port, 802.11 b/g/n WiFi and Bluetooth LE (BCM43143)
  • USB – 4x USB 2.0 ports
  • Debugging – 1x 9-pin D-SUB connector for serial debug console (RS232 only with RxD and TxD)
  • I/O connector with:
    • 1x CAN (ISO/DIS 11989-2, opto-isolated, term. settings via jumper, SocketCAN supported)
    • 1x RS232 (Rx, Tx, RTS, CTS) or switchable to RS485 (half duplex; term. settings via jumper)
    • 4x digital inputs (24V DC)
    • 4x digital outputs (24V DC)
  • Misc – Real-time clock, battery buffered
  • Power Supply – 9 … 32 V DC
  • Dimensions – 99.8 x 96.7 x 30.0 mm
  • Temperature Range – Operating: 0 °C … 35/40°C; storage: -20 °C … 75 °C
  • Humidity – 5 % ~ 95 %, non-condensing

The enclosure supports desktop, wall or DIN rail mounting. While customers can boot the operating system of their choice from micro SD card, the company offers support for Raspbian JESSIE Lite operating system, and can also provide – at extra cost – CODESYS V3 runtime environment, Oracle Java Embedded, and CANopen protocol stack and tools.


As with all other industrial solutions, the added features come at a costs, as Janz Tec emPC-A/RPI3 pricing starts at 250 Euros without micro SD card, power supply, nor any optional software options. The embedded computer can be purchased on Saelig website, and you may want to visit the product page for more information.

Via LinuxGizmos

Kunbus RevolutionPi RevPi Core Raspberry Pi based Industrial Computer Sells with Digital I/O Modules and Fieldbus Gateways

December 16th, 2016 8 comments

Kunbus, a German company specialized in industrial network solution, has decided to design an industrial system based on Raspberry Pi Computer module supporting variable power supply, a wide temperature range, DIN rail mounting, etc, as well as corresponding digital I/O modules and fieldbus gateways.

industrial-raspberry-pi-revpiRevolutionPI RevPi Core specifications:

  • SoC – Broadcom BCM2835 ARM11 processor @ 700 MHz
  • System Memory – 512 MB
  • Storage – 4GB flash
  • Video Output – Micro HDMI port
  • Connectivity – 10/100M Ethernet port
  • USB – 2x USB 2.0 host ports, 1x micro USB port
  • Misc – RTC, 3x status LEDs (2 programmable)
  • Power Supply – 10.7 V to 28.8 V; polarity protection; 4 kV / 8 kV ESD protection & EMI passed (according to EN61131-2 and IEC 61000-6-2), surge and burst tests passed
  • Power Consumption – Max: 10 Watts including 2 x 450 mA USB load; typ.: 4 watts.
  • Dimensions – 96 x 22.5 x 110.5 mm (Polycarbonate case)
  • Housing type – DIN rail housing for DIN rail version EN 50022
  • Weight – 108 g
  • Protection class – IP20
  • Temperature Range – Operating: -40 °C to +55 °C (exceeds EN61131-2 requirements); storage: -40 °C to +85 °C (exceeds EN61131-2 requirements); N/B.: No guarantee that the system can start at less than 30 °C with a 24V power supply.
  • Humidity – up to 93% (non-condensing) @ 40°C

The system runs Raspian Wheezy with RT-patch for Linux kernel 4.1.13.

revolution-pi-revpi-core

Beside RevPi Core described above, the company also offers three different galvanically isolated “RevPi DIO” digital IO modules with a 28-pin I/O connector as shown in the first picture, as well as RevPi Gates gateways supporting industrial communication standards including Profinet, Profibus, EtherCat, Modbus, Sercos, CANopen, and more. RevPi DIO and Gates are connected to RevPi core through a overhead Pi Bridge connector allowing two expansions per RevPi Core.

Click to Enlarge

Some RevPi Gates Gateways

You can find the full details on Kunbus RevolutionPi microsite, and purchase RevolutionPi RevPi Core (169 Euros), DIO modules and gateways on their webstore.

Thanks to Sander for the tip.

Nvidia Provides More Details About Parker Automotive SoC with ARMv8 Cores, Pascal GPU

August 23rd, 2016 9 comments

Nvidia demonstrated DRIVE PX2 platform for self-driving cars at CES 2016, but did not give many details about the SoC used in the board. Today, the company has finally provided more information about Parker hexa-core SoC combining two Denver 2 cores, and four Cortex A57 cores combining with a 256-core Pascal GPU.

Nvidia_Parker_Block_DiagramNvidia Parker SoC specifications:

  • CPU – 2x Denver 2 ARMv8 cores, and 4x ARM Cortex A57 cores with 2MB + 2 MB L2 cache, coherent HMP architecture (meaning all 6 cores can work at the same time)
  • GPUs – Nvidia Pascal Geforce GPU with 256 CUDA cores supporting DirectX 12, OpenGL 4.5, Nvidia CUDA 8.0, OpenGL ES 3.1, AEP, and Vulkan + 2D graphics engine
  • Memory – 128-bit LPDDR4 with ECC
  • Display – Triple display pipeline, each at up to 4K 60fps.
  • VPU – 4K60 H.265 and VP9 hardware video decoder and encoder
  • Others:
    • Gigabit Ethernet MAC
    • Dual-CAN (controller area network)
    • Audio engine
    • Security & safety engines including a dual-lockstep processor for reliable fault detection and processing
    • Image processor
  • ISO 26262 functional safety standard for electrical and electronic (E/E) systems compliance
  • Process – 16nm FinFet
PX Drive 2 Board with two Parker SoCs

PX Drive 2 Board with two Parker SoCs

Parker is said to deliver up to 1.5 teraflops (native FP16 processing) of performance for “deep learning-based self-driving AI cockpit systems”.

This type of board and processor is normally only available to car and part manufacturer, and the company claims than 80 carmakers, tier 1 suppliers and university research centers are now using DRIVE PX 2 systems to develop autonomous vehicles. That means the platform should find its way into cars, trucks and buses soon, including in some 100 Volvo XC90 SUVs part of an autonomous-car pilot program in Sweden slated to start next year.

Forlinx Embedded Introduces a Features-packed Freescale i.MX6 Industrial Board

April 30th, 2015 1 comment

Forlinx Embedded Technology has made several ARM9, ARM11, and Cortex A8 boards in the past, and they’ve now launched their first ARM Cortex-A9 board powered by Freescale i.MX6 Quad processor with 1GB RAM, 8GB eMMC Flash, HDMI, LCD, and LVDS interfaces, mPCIe connector for 3G module, SATA, GPS, CAN bus, RS485 port, and more.

Forlinx_Freescale_i.MX6The board is composed of a baseboard and a 220-pin CPU module (soldered) with the following combined specifications:

  • SoC – Freescale i.MX6 Quad with 4x ARM Cortex A9 cores @ up to 1.2 GHz and Vivante GC2000 3D GPU
  • System Memory – 1GB DDR3
  • Storage – 8GB eMMC, SATA connector, and SD card slot up to 32GB
  • Video Output / Display I/F – HDMI  1.4, LCD interface (7″ capacitive touch available), and 2x 8-bit LVDS interface. 4-wire resistive touch.
  • Audio – 1x stereo audio jack, 1x mono microphone jack, 2x speaker headers
  • Camera I/F – 1x camera connector up to 5MP (OV5640 sensor)
  • Connectivity – 1x Gigabit Ethernet (Up to 470 Mbps), GPS module (SIRF3) + external antenna, optional Wi-Fi + BT module
  • USB – 2x USB 2.0 host ports, 1x micro USB 2.0 OTG port, 1x micro USB port for debugging (UART)
  • Serial
    • 4x serial port including 1x debug interface, 2x 3-wire UART, and 1x 5-wire UART (TTL by default, RS232 optional)
    • 1x RS485 (Multiplexed with UART2)
    • 1x CAN bus
  • Other I/Os – 1x header with 2x I2C, 1x header with 1x SPI, and connection for Wi-Fi and Bluetooth module.
  • Expansions –  1x mini PCIe connector for 3G modem with SIM card slot on the back of the baseboard.
  • Misc – LEDs, Volume, reset, power, and boot selection keys, battery connector for RTC
  • Power Supply – 12V or battery
  • Dimensions – 60 x 60 mm (CPU module); 190 x 130 mm (Baseboard)
  • Operating Temperature Range – They mention “-20-105℃ (For commercial application), -40-105℃ (For industrial application)  -20-105℃ (For vehicle  application)”. Believe it you want.

i.MX6Q_Core
The company mentions Ubuntu, Android, and Linux support on some pictures, but the software resources page only mentions Android 4.4 with an older Linux 3.0.35 kernel and U-boot 2009.08, as well as relevant drivers. I’ve asked about documentation to the company and it’s clear they still live in the past, as “they kindly provide necessary documentation to buyers” so you can’t check before you buy. I could also confirm “SDK/BSPs are also provided with full support for Android, Linux and Ubuntu”.

Forlinx i.MX6 is available now, at an undisclosed price, but I’ve been told “this is a relative high-end item and special for enterprise users, and the prices are more expensive than all the past ones”.  You can find further information on Forlinx Embedded i.MX6 board page.

Thanks to Nanik for the tip.

Freescale To Give Away StarterTRAK Development Boards for Automotive Applications

September 5th, 2014 No comments

Freescale StarterTRAK development boards are based on the company’s Kinetis EA Cortex M0+ MUCs or Qorivva 32-bit MCU targeting automotive applications with support a wide temperature range (–40° to +125°C) and interfaces such as LIN (Local Interconnect Network) and CAN. These development boards can be used for body and security, powertrain, and safety & chassis applications. Freescale has decided to giveaway 60 StarterTRACK development board to random winners, so if you are knowledgeable in this field it could be an opportunity to try the platform. There will be 5 different kits given away, all based on Kinetis MCU: TRK‐KEA8, TRK‐KEA64, TRK‐KEA128, KEA128LEDLIGHTRD and KEA128BLDCRD. Let’s have a closer look at TRK-KEA128 development board.

TRK-KEA Boards Description (SCI port not available on TRK-KEA128)

TRK-KEA Boards Description (SCI Selector is not available on TRK-KEA128)

Key features and specifications of  TRK-KEA128 board:

  • MCU – Kinetis KEA128 ARM Cortex M0+ MCU @ 48MHz with 16KB RAM and 128KB flash in a 80 LQFP package
  • On-board openSDA debugging and programming circuit using the PK20DX128 MCU
  • LIN communications interface
  • Analog interface with ambient light sensor
  • 4 high efficiency LEDs
  • 2 push buttons
  • SCI serial communication interface (sharing the openSDA interface)
  • CAN communications interface
Kinetis EA MCU Block Diagram

Kinetis EA MCU Block Diagram

The development kit includes a TRK-KEA128 board, a DVD with CodeWarrior software, a USB cable, TRK-KEA Quick Start Guide, and Freescale Warranty Card. Schematics, BoM, as applications notes are also provided by the company. Automotive application possible with this board include HVAC, doors, window lift and seat control, parking breaks, tire pressure monitoring system (TPMS), and more. They can also be used to control brushless DC motors. Full details can be found on TRK-KEA128 page.

If you’d like the board you can either spend $49, or try your luck for with giveaway. The constest is open to individuals who are at least 18 years old and resident in a non‐U.S.‐embargoed country, expect residents of Canada. To enter, simply fill that form with your name, email, and country of residence. That’s all, no question about your potential project is even asked. The draw will take place on September 24, 2014.

Thanks to Nanik!