Archive

Posts Tagged ‘dynamiq’

Qualcomm Snapdragon 845 Octa Core Kryo 385 SoC to Power Premium Smartphones, XR Headsets, Windows Laptops

December 7th, 2017 9 comments

Qualcomm Snapdragon 845 processor was expected since May 2017 with four custom Cortex A75 cores, four Cortex A53 cores, Adreno 630 GPU, and X20 LTE modem. with the launch planned for Q1 2018. At least, that what the leaks said.

Qualcomm has now formally launched Snapdragon 845 Mobile Platform and rumors were mostly right, as the the octa-core processor comes with four Kryo 385 Gold cores (custom Cortex A75), four Kryo 385 Silver cores (custom Cortex A55) leveraging DynamIQ technology, an Adreno 630 “Visual Processing System”, and Snapdragon X20 modem supporting LTE Cat18/13.

The processor is said to use more advanced artificial intelligence (AI) allowing what the company calls “extended reality (XR)” applications, and will soon be found in flagship smartphones, XR headsets, mobile PCs, and more.

Qualcomm Snapdragon 845 (SDM845) specifications:

  • Processor
    • 4x Kryo 385 Gold performance cores @ up to 2.80 GHz (custom ARM Cortex A75 cores)
    • 4x Kryo 385 Silver efficiency cores @ up to 1.80 GHz (custom ARM Cortex A55 cores)
    • DynamIQ technology
  • GPU (Visual Processing Subsystem) – Adreno 630 supporting OpenGL ES 3.2, OpenCL 2.0,Vulkan 1.x, DxNext
  • DSP
    • Hexagon 685 with 3rd Gen Vector Extensions, Qualcomm All-Ways Aware Sensor Hub.
    • Supports Snapdragon Neural Processing Engine (NPE) SDK, Caffe, Caffe2, and Tensorflow
  • Memory I/F – LPDDR4x, 4×16 bit up to 1866MHz, 8GB RAM
  • Storage I/F – TBD (Likely UFS 2.1, but maybe UFS 3.0?)
  • Display
    • Up to 4K Ultra HD, 60 FPS, or dual 2400×2400 @ 120 FPS (VR); 10-bit color depth
    • DisplayPort and USB Type-C support
  • Audio
    • Qualcomm Aqstic audio codec and speaker amplifier
    • Qualcomm aptX audio playback with support for aptX Classic and HD
    • Native DSD support, PCM up to 384kHz/32bit
  • Camera
    • Spectra 280 ISP with dual 14-bit ISPs
    • Up to 16 MP dual camera, up to 32 MP single camera
    • Support for 16MP image sensor operating up to 60 frames per second
    • Hybrid Autofocus, Zero Shutter Lag, Multi-frame Noise Reduction (MFNR)
    • Video Capture – Up to 4K @ 60fps HDR (H.265), up to 720p @ 480fps (slow motion)
  • Connectivity
    • Cellular Modem – Snapdragon X20 with peak download speed: 1.2 Gbps (LTE Cat 18), peak upload speed: 150 Mbps (LTE Cat 13)
    • Qualcomm Wi-Fi 802.11ad Multi-gigabit, integrated 802.11ac 2×2 with MU-MIMO, 2.4 GHz, 5 GHz and 60 GHz
    • Qualcomm TrueWireless Bluetooth 5
  • Location – Support for 6 satellite systems: GPS, GLONASS, Beidou, Galileo, QZSS, SBAS; low power geofencing and tracking, sensor-assisted navigation
  • Security – Qualcomm Secure Processing Unit (SPU), Qualcomm Processor Security, Qualcomm Mobile Security, Qualcomm Content Protection
  • Charging – Qualcomm Quick Charge 4/4+ technology
  • Process – 10nm LPP

The company will provide support for Android and Windows operating systems. eXtended Reality (XR) is enabled with features such as room-scale 6DoF with simultaneous localization and mapping (SLAM), advanced visual inertial odometry (VIO), and Adreno Foveation. Maybe I don’t follow the phone market closely enough, but I can’t remember seeing odometry implemented in any other phones, and Adreon Foveation is not quite self-explaining, so the company explains it combines graphics rendering with eye tracking, and directs the highest graphics resources to where you’re physically looking, while using less resources for rendering other areas. This improves the experience, performance, and lower power consumption.

 

Click to Enlarge

Compared to Snapdragon 835, the new processor is said to be around 25 to 30% faster, the Spectra camera and Adreno graphics architectures are claimed to boost power efficiency by up to 30 percent, and the LTE modem is a bit faster (1.2 Gbps/150Mbps vs 1.0 Gbps/150Mbps). Quick Charge 4+ technology should deliver up  to 50 percent charge in 15 minutes. Earlier this year when SD835 was officially launched, there was virtually no mention of artificial intelligence support in mobile APs, but now NNA (Neural Network Accelerator) or NPE (Neural Processing Engine) are part of most high-end mobile processors, which in SD845 appears to be done though the Hexagon 685 DSP. High Dynamic Range (HDR) for video playback and capture is also a novelty in the new Snapdragon processor.

One of the first device powered by Snapdragon 845 will be Xiaomi Mi 7 smartphone, and according to leaks it will come with a 6.1″ display, up to 8GB RAM, dual camera, 3D facial recognition, and more. Further details about the phone are expected for Mobile World Congress 2018. Considering the first Windows 10 laptop based on Snapdragon 835 processor are expected in H1 2018, we may have to wait until the second part of the year for the launch of Snapdragon 845 mobile PCs.

More details may be found on Qualcomm Snapdragon 845 mobile platform product page.

ARM Cortex-A75 & Cortex-A55 Cores, and Mali-G72 GPU Details Revealed

May 27th, 2017 23 comments

We’ve already seen ARM Cortex A75 cores were coming thanks to leak showing Snapdragon 845 SoC will feature custom Cortex A75 cores, but we did not have many details. But since we live in a world where “to leak is glorious”, we already have some slides originally leaked through VideoCardz with the post now deleted, but Liliputing & TheAndroidSoul got some of the slides before deletion, so let’s see what we’ve got here.

ARM Cortex A75

So ARM Cortex-A75 will be  about 20% faster than Cortex A73 for single thread operation, itself already 30% faster than Cortex A72. It will also be the first DynamIQ capable processor together with Cortex A55 with both cores potentially used in big.LITTLE configuration.

Cortex A75 performance is only better for peak performance, and remain the same as Cortex-A73 for sustained performance.

The chart above does not start at zero, so it appear as though there are massive performance increases, but looks at the number and we can see 1.34x higher score with GeekBench, and 1.48x with Octane 2.0. Other benchmarks also have higher scores but between 1.16 and 1.33 times higher.

Click to Enlarge

Cortex A75 cores will be manufactured using 10nm process technology, and clocked at up to 3.0 GHz. While (peak) performance will be higher than Cortex A73, efficiency will remain the same.

ARM Cortex A55

Click to Enlarge

ARM Cortex A55 is the successor if Cortex-A53 with about twice the performance, and support for up to eight cores in a single cluster. There are octa-core (and even 24-core) ARM Cortex A53 processor but they also use multiple 4-core clusters.

Click to Enlarge

Power efficiency is 15% better too, and ARM claims it is 10x more configurable probably because of DynamIQ & 8-core cluster support.

Click to Enlarge

If we have a closer look at the benchmarks released by the company, we can see the 2x performance increase is only valid with LMBench memcpy memory benchmark, with other benchmarks from GeekBench v4 to SPECINT2006 showing 1.14x to 1.38x better performance. So Integer performance appears to be only slightly better, floating point gets close to 40%, and the most noticeable improvement is with memory bandwidth.

ARM Mali-G72 GPU

Click to Enlarge

Mali-G72 will offer 1.4x performance improvement over 2017 devices, which must be Mali-G71…, and will allow for machine learning directly on the device instead of having to rely on the cloud, better games, and an improved mobile VR experience.

Click to Enlarge

The new GPU is also 25& more efficient, and supports up to 32 shader cores. GEMM (general matrix multiplication) – used for example in machine learning algorithms – is improved by 17% over Cortex A73.

Click to Enlarge

Based on the information we’ve got from Qualcomm Snapdragon 845 leak, devices based on ARM Cortex A75/A55 processor and Mali-G72 GPU should start selling in Q1 2018. We may learn a few more details on Monday, once the embargo is lifted.

ARM DynamIQ Improves on big.LITTLE Technology, Supports Up to 8 Heterogeneous Cores in a Single Cluster

March 21st, 2017 13 comments

ARM unveiled big.LITTLE technology in 2011 which consisted of clusters of low power cores such as Cortex A7 or A53, and high performance cores such as Cortex A15 or A72, with the system assigning tasks to the best processor for the job in order to  optimize battery life. big.LITTLE supports up to 4 cores per cluster, and you can mix different types of cores within a single cluster. ARM DynamIQ changes all that as up to 8 cores are supported within one cluster, and you can mix low power and high performance cores within a given cluster.

ARM DynamIQ multicore microarchitecture will be available for all new ARM Cortex-A processors starting this year, and targets automotive, networking, server, and primary compute devices. ARM claims it’s especially advantageous for artificial intelligence due to better performance, and autonomous driving due to increased safety, and it allows for much faster response from accelerators. Based on the slide below showing the evolution of multi-core implementation with ARM SoC, the company might as well as called it ARM’s Just Do What You WantTM multi-core technology, especially as they explain that any configuration is possible such as 1+7 (1x big and 7x LITTLE CPUs), 2+4, 1+3 etc…
One advantage of using multiple heterogeneous cores within a single cluster is that it’s less “expensive” to migrate tasks from a LITTLE processor to a big processor, with increased efficiency as processors share the same memory (and cache?), and most big.LITTLE implementations going forward are likely to use a single cluster design, unless you need more than 8 cores.

You may find more details on DynamIQ technology page, ARM’s community related blog post, and the presentation slides.

Categories: Processors Tags: arm, big little, dynamiq