Archive

Posts Tagged ‘hikey’

HiKey 960 Android Development Board Gets a 4GB RAM Version for $250

January 13th, 2018 6 comments

Hikey 960 development board is one of the most powerful Arm boards on the market thanks to Huawei/Hisilicon Kirin 960 octa-core processor with four ARM Cortex A73 cores, four Cortex A53 cores, and a Mali-G71 MP8 GPU, fast storage with 32GB UFS 2.1 flash, and 3GB LPDDR3 memory. Like the earlier Hikey (620) board, the board is also an official reference board for AOSP, so you should be able to run the latest Android version, and also play with sensors using Neonkey SensorHub 96Boards mezzanine board.

If you are somehow limited by the 3GB RAM on the board, you can rejoice as Seeed Studio has just launched a 4GB RAM version selling for $249, or about $10 extra. Note that shipping is only scheduled for February 2, 2018, so those are pre-orders.

The rest of the specifications for Hikey 960 4GB RAM version are unchanged:

  • SoC – Huawei Kirin 960 octa-core big.LITTLE processor with 4x ARM Cortex A73 cores @ up to 2.3 GHz, 4x Cortex A53 cores @ up to 1.8 GHz, and a Mali-G71 MP8 GPU @ up to 900 MHz
  • System Memory – 4GB LPDDR4 SDRAM @ 1866 MHz
  • Storage – 32GB UFS flash storage + micro SD card slot up to 2TB (SD3.0, SRD104)
  • Video Output / Display Interface – 1x HDMI 1.4 up to 1080p; 1x 4-lane MIPI DSI connector up to 3840×2400 @ 60 Hz via HS expansion connector
  • Video Decode – H265\HEVC MP/High Tier, Main/High Tier, H.264 BP/MP/HP, MPEG 1/2/4, VC-1, VP6/8, RV8/9/10, DIVX, H265 up to 4K @60fps
  • Video Encode – 4K @30fps H.265/H264
  • Audio – Via HDMI, Tensilica HiFi 3.0 DSP audio subsystem
  • Connectivity – Dual band 802.11 a/b/g/n/a WiFi and Bluetooth 4.1 with two antennas (TI Wilink 8 WL1837 module)
  • USB – 2x USB 3.0 type A host ports, 1x USB 2.0 type C OTG port
  • Camera – 1x 4-lane MIPI CSI, 1x 2-lane MIPI CSI via HS expansion connector
  • Expansion
    • PCIe Gen2 on M.2 M Key connector
    • 40 pin low speed (LS) expansion connector with +1.8V, +5V, DC power, GND, 2x UART, 2x I2C, SPI, I2S, 12x GPIO
    • 60 pin high speed (HS) expansion connector: 4L MIPI DSI, 2L+4L MIPI CSI, 2x I2C, SPI (48M), USB 2.0
  • Misc – LEDs for WiFi & Bluetooth, 4x user LEDs, power button, reset button
  • Power Supply –  8V-18V/2A via 4.75/1.7mm power barrel (EIAJ-3 Compliant); 12V/2A power supply recommended; PMU: Hi6421GWCV530, Hi6422GWCV211, Hi6422GWCV212;
  • Dimensions – 85mm x 55mm
  • Weight – 60 grams

Click to Enlarge

Hikey 960 is purely an Android development platform, as even though there are references to Debian Dekstop/Developer images, there don’t seem to be available for download, so AFAICS there’s no Linux support. Beside information provided in Android developer’s website (linked above), you’ll also find software and hardware documentation on 96Boards Github account.

Linux 4.11 Release – Main Changes, ARM & MIPS Architecture

May 1st, 2017 9 comments

Linus Torvalds has just released Linux 4.11:

So after that extra week with an rc8, things were pretty calm, and I’m much happier releasing a final 4.11 now.

We still had various smaller fixes the last week, but nothing that made me go “hmm..”. Shortlog appended for people who want to peruse the details, but it’s a mix all over, with about half being drivers (networking dominates, but some sound fixlets too), with the rest being some arch updates, generic networking, and filesystem (nfs[d]) fixes. But it’s all really small, which is what I like to see the last week of the release cycle.

And with this, the merge window is obviously open. I already have two pull request for 4.12 in my inbox, I expect that overnight I’ll get a lot more.

Linux 4.10 added Virtual GPU support, perf c2c’ tool, improved writeback management, a faster initial WiFi connection (802.11ai), and more.

Some notable changes for Linux 4.11 include:

  • Pluggable IO schedulers framework in the multiqueue block layer – The Linux block layer is know to have different IO schedulers (deadline, cfq, noop, etc). In Linux 3.13, the block layer added a new multiqueue design that performs better with modern hardware (eg. SSD, NVM). However, this new multiqueue design didn’t include support for pluggable IO schedulers. This release solves that problem with the merge of a multiqueue-ready IO scheduling framework. A port of the deadline scheduler has also been added (more IO schedulers will be added in the future)
  • Support for OPAL drives – The Opal Storage Specification is a set of specifications for features of data storage devices that enhance their security. For example, it defines a way of encrypting the stored data so that an unauthorized person who gains possession of the device cannot see the data. This release adds Linux support for Opal nvme enabled controllers. It enables users to setup/unlock/lock locking ranges for SED devices using the Opal protocol.
  • Support for the SMC-R protocol (RFC7609) – This release includes the initial part of the implementation of the “Shared Memory Communications-RDMA” (SMC-R) protocol as defined in RFC7609. SMC-R is an IBM protocol that provides RDMA capabilities over RoCE transparently for applications exploiting TCP sockets. While SMC-R does not aim to replace TCP, it taps a wealth of existing data center TCP socket applications to become more efficient without the need for rewriting them. A new socket protocol family PF_SMC is introduced. There are no changes required to applications using the sockets API for TCP stream sockets other than the specification of the new socket family AF_SMC. Unmodified applications can be used by means of a dynamic preload shared library.
  • Intel Bay Trail (and Cherry Trail) improvements – Intel HDMI audio support, patchsets for AXP288 PMIC, I2C driver, and C-state support to avoid freezes.

New features and bug fixes specific to ARM architecture:

  • Allwinner:
    • Allwinner A23 –  Audio codec device tree changes
    • Allwinner A31 – SPDIF output support
    • Allwinner A33 – cpufreq support, Audio codec support
    • Allwinner A64 – MMC Support, USB support
    • Allwinner A80 – sunxi-ng style clock support
    • Allwinner H2+ – New SoC variant, similar to H3 (mostly with a different, lower end VPU)
    • Allwinner H3 – Audio codec device tree changes, SPDIF output support
    • Allwinner V3s – New SoC support, USB PHY driver, pinctrl driver, CCU driver
    • New boards & devices – LicheePi One, Orange Pi Zero, LicheePi Zero, Banana Pi M64, Beelink X2
  • Rockchip:
    • Renamed RK1108 to RV1108
    • Clock drivers – New driver for RK3328, and non-critical fixes and clk id additions
    • Tweaks for Rockchip GRF (General Register File) usage (kitchensink misc register range on the SoCs)
    • thermal, eDP, pinctrl enhancements
    • PCI – add Rockchip system power management support
    • Add machine driver for RK3288 boards that use analog/HDMI audio
  • Amlogic
    • Add support for Amlogic Meson I2C controller
    • Add SAR ADC driver
    • Add ADC laddered keys to meson-gxbb-p200 board
    • Add configurable RGMII TX delay to fix/improve Gigabit Ethernet performance on some boards
    • Add pinctrl nodes for HDMI HPD and DDC pins modes for Amlogic Meson GXL and GXBB SoCs
    • New hardware: WeTek TV boxes
  • Samsung
    • Add USB 3.0 support in Exynos 5433
    • Removed clock driver for Samsung Exynos4415 SoCs
    • TM2 touchkey, Exynos5433 HDMI and power management improvements
    • Added Samsung Exynos4412 Prime SoC
    • Removed Samsung Exynos 4412 SoC
    • Added audio on Odroid-X board
    • Samsung Device Tree updates:
      • Add necessary initial configuration for clocks of display subsystem. Till now it worked mostly thanks to bootloader.
      • Use macro definitions instead of hard-coded values for pinctrl on Exynos7.
      • Enable USB 3.0 (DWC3) on Exynos7.
      • Add descriptive user-friendly label names for power domains. This  makes debugging easier
      • Use proper drive strengths on Exynos7.
      • Use bigger reserved memory region for Multi Format Codec on all Exynos chipsets so it could decode FullHD easily
      • Cleanup from old MACHs in s5pv210.
      • Enable IP_MULTICAST for libnss-mdns
      • Add bus frequency and voltage scalling on Exynos5433 TM2 device (along with  necessary bus nodes and Platform Performance Monitoring Unit on Exynos5433).
      • Use macros for pinctrl settings on Exynos5433.
      • Create common DTSI between Exynos5433 TM2E and TM2E.
  • Qualcomm
    • Added coresight, gyro/accelerometer, hdmi to Qualcomm MSM8916 SoC
    • Clock drivers – Updates to Qualcomm IPQ4019 CPU clks and general PLL support, Qualcomm MSM8974 RPM
    • Errata workarounds for Qualcomm’s Falkor CPU
    • Qualcomm L2 Cache PMU driver
    • Qualcomm SMCCC firmware quirk
    • Qualcomm PM8xxx ADC bindings
    • Add USB HSIC and HS phy driver for Qualcomm’s SoC
    • Device Tree Changes:
      • Add Coresight components for APQ8064
      • Fixup PM8058 nodes
      • Add APQ8060 gyro and accel support
      • Enable SD600 HDMI support
      • Add RIVA supprort for Sony Yuga and SD600
      • Add PM8821 support
      • Add MSM8974 ADSP, USB gadget, SMD, and SMP2P support
      • Fix IPQ8064 clock frequencies
      • Enable APQ8060 Dragonboard related devices
      • Add Vol+ support for DB820C and APQ8016
      • Add HDMI audio support for APQ8016
      • Fix DB820C GPIO pinctrl name
      • etc…
  • Mediatek
    • Mediatek MT2701 – Added clocks, iommu, spi, nand, adc, thermal
    • Added Mediatek MT8173 thermal
    • Added Mediatek IR remote receiver
  • GPU – Add Mali Utgard bindings;  the ARM Mali Utgard GPU family is embedded into a number of SoCs from Allwinner, Amlogic, Mediatek or Rockchip
  • Other new ARM hardware platforms and SoCs:
    • Marvell – SolidRun MACCHIATOBin board, Marvell Prestera DX packet processors
    • Broadcom – BCM958712DxXMC NorthStar2 reference board
    • HiSilicon – Kirin960/Hi3660 SoC, and HiKey960 development board
    • NXP – LS1012a SoC with three reference board; SoMs: Is.IoT MX6UL, SavageBoard, Engicam i.Core; Liebherr (LWN) monitor 6;
    • Microchip/Atmel – SAMA5d36ek Reference platform
    • Texas Instruments – Beaglebone Green Wireless and Black Wireless, phyCORE-AM335x System on Module
    • Lego Mindstorms EV3
    • “Romulus” baseboard management controller for OpenPower
    • Axentia TSE-850 Data Radio Channel (DARC) encoder
    • Luxul XAP-1410 and XWR-1200 wireless access points
    • New revision of “vf610-zii” Zodiac Inflight Innovations board

Finally here are some of the change made to MIPS architecture in Linux 4.11:

  • PCI: Register controllers in the right order to avoid a PCI error
  • KGDB: Use kernel context for sleeping threads
  • smp-cps: Fix potentially uninitialised value of core
  • KASLR: Fix build
  • ELF: Fix BUG() warning in arch_check_elf
  • Fix modversioning of _mcount symbol
  • fix out-of-tree defconfig target builds
  • cevt-r4k: Fix out-of-bounds array access
  • perf: fix deadlock
  • Malta: Fix i8259 irqchip setup
  • Lantiq – Fix adding xbar resoures causing a panic
  • Loongson3
    • Some Loongson 3A don’t identify themselves as having an FTLB so hardwire that knowledge into CPU probing.
    • Handle Loongson 3 TLB peculiarities in the fast path of the RDHWR  emulation.
    • Fix invalid FTLB entries with huge page on VTLB+FTLB platforms
    • Add missing calculation of S-cache and V-cache cache-way size
  • Ralink – Fix typos in rt3883 pinctrl data
  • Generic:
    • Force o32 fp64 support on 32bit MIPS64r6 kernels
    • Yet another build fix after the linux/sched.h changes
    • Wire up statx system call
    • Fix stack unwinding after introduction of IRQ stack
    • Fix spinlock code to build even for microMIPS with recent binutils
  • SMP-CPS: Fix retrieval of VPE mask on big endian CPUs”

Read Linux 4.11 changelog – with comments only – generated using git log v4.10..v4.11 --stat, to get the full list of changes. You may also want to checkout Linux 4.11 changelog on kernelnewbies.org.

LeMaker HiKey 96Boards Board Sells for $29.70 (Promo)

November 29th, 2016 18 comments

[Update: The promo is over back!]

You’d think Cyber Monday should be over by now, but ITEAD Studio still has a clearance with real 70% discount, as 96Boards hardware compliant LeMaker Hikey board is now sold for just $29.70 instead of the usual $99 price.

96boards-discountA quick reminder of the specifications:

  • SoC – HiSilicon Kirin 620 octa core Cortex A53 processor @ 1.2 GHz with ARM Mali-450MP4 GPU
  • System Memory – 2 GB LPDDR3 @ 800 MHz
  • Storage – 8GB eMMC + micro SD slot
  • Video Output / Display – HDMI up to 1080p, MIPI-DSI interface
  • Connectivity – 802.11 a/b/g/n Wi-Fi, Bluetooth 4.1 LE (WL1835MOD module)
  • USB – 2x USB 2.0 host ports, 1x micro USB OTG
  • Camera – MIPI CSI interface
  • Debugging – UART header), unpopulated 10-pin JTAG header (back)
  • Expansion headers
    • 40-pin LS (Low Speed) Expansion connector – UART, I2C, 12x GPIOs, SPI, PCM, PWM, SYS_DCIN, 1.8V, 5V, and GND,
    • 60-pin HS (High Speed) Expansion connector – SDIO, MIPI_DSI, MIPI_CSI, I2C, USB 2
  • Misc – Power button, jumper for power/boot/user, LEDs for Wi-Fi/Bt, and 4x User LED
  • Power Supply – 8-18V @ 3A as per 96Boards specs via 4.5/1.7mm power jack. Hi6553V100 PMU
  • Dimensions – 85 x 55 mm

You’ll be able to run Android and Debian images provided by Linaro. The board is also one the rare development board to be officially supported by AOSP.

You may also be interested in LeMaker Guitar quad core ARM Cortex A9 board sold for $13.50 with 1GB RAM.

Thanks to Nanik for the tip.

Linaro Releases the First (Alpha) Version of the 96Boards Reference Software Platform

November 9th, 2015 13 comments

Linaro’s 96Boards initiative was launched at the beginning of the year with Hikey board, and beside the hardware specifications, 96Boards also has some software requirements that include support for “bootloader (open source), accelerated graphics support (binary or open source), a Linux kernel buildable from source code based from mainline, or the latest Google-supported Android kernel version, or the last two LTS kernels, and one of more of the following operating systems: Android, Debian/Ubuntu, Fedora/Red Hat, or an OpenEmbedded/Yocto build of a Linux distribution”.

Click to Enlarge

Click to Enlarge

In order to achieve this goal, Linaro introduced the Reference Software Platform for 96Boards, and they’ve now pushed the first Alpha release for Hikey and DragonBoard 410c boards. The release includes a bootloader, the Linux kernel, Debian and AOSP with firmware, source code, and documentation.

Some highlights of the Reference Software Platform 15.10 Alpha release include:

  • CE Debian RPB (Reference Platform Build)
    • Debian 8.2 “Jessie”
    • Linux 4.3 kernel with additional patches
    • OpenJDK 8 included by default
    • 96Boards artworks and default settings
  • CE AOSP RPB (Hikey board only)
    • AOSP Android Marshmallow 6.0
    • Linux 3.18 based kernel

CE refers to the consumer edition of 96Boards specifications, as there’s also an Enterprise Edition (EE), which is not covered by this release.

You can find documentation, including how to build your own image on 96Boards Wiki on Gihub. You can interact with 96Boards community on the forums, the bug tracker, or #96boards on IRC.

If you want to find out more of the Software Reference Lead Project, you can watch the Linaro Connect presentation below (~42 minutes), and/or download the slides.

The next release is planned for December 2015 (15.12 release), and should include:

  • Have both boards using a single kernel tree/branch and a single kernel binary
  • Better understanding about the upstream gaps
  • Adding support for CE AOSP for Dragonboard410c (with freedreno)
  • Adding support for CE OE/Yocto
  • Enterprise Edition

The Enterprise Edition will likely run on AMD Opteron A1100 96Boards.

Linaro 15.07 Release with Linux 4.2 and Android 5.1

July 31st, 2015 No comments

Linaro 15.07 has been released with Linux 4.2-rc3 (Baseline), Linux 3.10.83, 3.14.45 and 3.18.17 (LSK), and Android 5.1.1_r8.

The Linux kernel got various bug fixes, and a power reduction technique has been implemented for Qualcomm processor. Progress has been made to boot Android with UEFI on Hikey board, and work is still on-going on 96boards including Hisilicon Hikey, Qualcomm DragonBoard 410c, and an upcoming and yet-to-be-formally-announced Marvell PXA1928 board called Helium.

Highlights of this release:

  • Linux Linaro 4.2-rc3-2015.07
    • linaro-android topic updated to 4.2-rc3 and recent AOSP/android-3.18
    • included GATOR version 5.21.1
    • llct-misc-fixes topic: “HACK: of: Limit FDT size for CRC check on arm64” has been dropped. FVP model was the last target to require this hack, but the new FVP firmware doesn’t need it anymore
    • updated integration-linaro-vexpress64 topic by ARM LT: Versatile Express TC2 support is back, HDLCD display now works on TC2, the topic will be renamed to integration-linaro-vexpress next cycle
    • updated integration-linux-qcomlt topic by Qualcomm LT: QCOM Core Power Reduction (CPR) support has been added
    • linaro-builddeb-tweaks topic is dropped (most of our changes have been upstreamed)
  • Linaro builds of AOSP 15.07
    • Android baseline updated to 5.1.1_r8
    • ART CI setup for TIP and stable builds
      • Boot to gui tests added for tip and stable builds
      • ART code coverage for tip and stable builds
      • m-preview based builds setup for emulators
      • ART-host-gtests added for tip and stable builds
    • Hikey builds updated to 5.1.1_r8. Android boots with UEFI and GRUB on HiKey. Wifi drivers are integrated in the build system. Drivers are built as part of Android build process.
  • Linaro OpenEmbedded 2015.07
    • integrated Linaro GCC 4.9-2015.06
    • updated linux-linaro to 4.2-rc3
    • disabled aarch64 bootwrapper
    • integrated various improvements for LNG CI
    • upstreaming:
      • fixed bootimg.bbclass to work with all kernel image types
      • fixed cmake builds for native recipes
  • Linaro Ubuntu 15.07 – updated packages: fvp-pre-boot (FVP firmware), LSK 3.10.83/3.14.45/3.18.17 and linux-linaro 4.2-rc3 kernels
  • 96boards contributions:
    • DragonBoard 410c is now using NetworkManager only to manage the network (previously a combination with systemd-networkd/resolved has been used).
    • HiKey made some progress toward the switch to UEFI. GRUB is now integrated into the snapshots builds for both AOSP and Debian.
    • Initial Debian based build for Marvell PXA1928 Helium is setup and available.

Visit https://wiki.linaro.org/Cycles/1507/Release for a list of known issues, and further release details about the LEB, LMB (Linaro Member Builds), and community builds, as well as Android, Kernel, Graphics, Multimedia, Landing Team, Platform, Power management and Toolchain components.

Linaro 15.05 Release with Linux 4.1 and Android 5.1

May 31st, 2015 6 comments

Linaro 15.04 has been released with Linux 4.1-rc4, Linux 3.10.79 and 3.14.42 (LSK), and Android 5.1_r3. The Ubuntu image is now based on Vivid instead of Utopic.

Android and Debian builds/images have been released for Hikey’s 96boards, Ubuntu Vivid and Android builds have been setup for Qualcomm’s Dragonboard 410c. A new platform, Socionext M8M, has also show in Linaro changelog. I could not find details about M8M, but Socionext is a “new company that designs, develops and delivers System-on-Chip products” and focuses on “imaging, networking and other dynamic technologies”. Their latest press release mentions a 4K media processor with build-in HDMI 2.0 Tx and Rx, so maybe M8M is based on that processor, but I can’t know for sure as they have several chips.

Highlights of this release:

  • Linux Linaro 4.1-rc4-2015.05
    • GATOR updated to version 5.21.1
    • updated integration-linaro-vexpress64 topic by ARM LT: PCI support added – for Juno r1.
  • Linaro builds of AOSP 15.05 is released – baseline updated to android-5.1_r3
  • Linaro OpenEmbedded 2015.05
    • updated linux-linaro to ll-20150519.0 (based on 4.1-rc4)
    • updated linux-linaro-stable (LSK) to 3.10.74
    • update GATOR to 5.21.1
    • updated ODP to v1.0.3
    • Initial for ptest support to LNG images
    • fixed layout differences between external binary linaro toolchains and OE sysroot
    • fixed CI loop code path for external linaro binary toolchains
  • Linaro Ubuntu 15.05
    • migrated from Utopic based images to Vivid
    • fixed transtion from upstart to systemd (introduced with Vivid)
    • updated packages: LSK 3.10.79/3.14.42 and linux-linaro 4.1-rc4 kernels
  • CI bring up: U-Boot upstream
    • upstream U-boot is now build tested and covers all armv7/armv8 configurations (297 in total)
    • build artifacts are published
  • CI bring up: setup Member LCR and Reference LCR builds
  • CI bring up: Socionext M8M board (DEVPLAT-364)
  • 96boards: HiKey Debian and AOSP builds are released
  • 96boards: setup Ubuntu Vivid build for DragonBoard 410c
  • 96Boards: setup Android build for DragonBoard 410c
  • CI bring up: add 3.18 branches for LSK
  • migrating TCWG jenkins jobs and build slaves to ci.linaro.org
  • Ubuntu baseline: Utopic to Vivid migration
  • Linaro CI: added check-lava-status, LAVA job status is now added to the build job on ci.linaro.org (Jenkins)
  • Linaro CI: migration of AOSP based builds from android-build.linaro.org to ci.linaro.org in progress

Visit https://wiki.linaro.org/Cycles/1504/Release for a list of known issues, and further release details about the LEB, LMB (Linaro Member Builds), and community builds, as well as Android, Kernel, Graphics, Multimedia, Landing Team, Platform, Power management and Toolchain components.

Linaro 15.02 Release with Linux 3.19 and Android 5.0

February 27th, 2015 1 comment

Linaro 15.02 has just been released with Linux 3.19 (baseline), Linux 3.10.68 and 3.14.34 (LSK), Android 5.0.2, and Ubuntu Linaro Utopic.

Listed changes for Linux Linaro are exactly the same as last month, except they’ve used Linux 3.9 release. Power management tools have been added to their AOSP build, and some work has been done for Android 5.0 on the new Hikey board.

Here are the highlights of this release:

  • Linux Linaro 3.19-2015.02
    • GATOR topic: version 5.20.1
    • updated integration-linaro-vexpress64 topic by ARM LT (FVP Base and Foundation models, and Juno support)
    • updated topic from Qualcomm LT (ifc6410 board support)
    • updated topic from HiSilicon LT (Hi36xx, HiP04, and X5HD2 families support)
    • updated LLVM topic (the community llvmlinux-latest branch)
    • included ILP32 patch set v3 rebased onto 3.19. Initial tests using syscalls LTP tests done. When using ILP32 userland, a few tests have to be skipped (msgctl07, msgrcv0[1-7], msgsnd01) to avoid the stalls, and to make the testing to complete. No stalls with LP64 userland.
  • Linaro builds of AOSP 15.02 – Added Power Management Working Group tools (PM QAqa, powertop and powerdebug)
  • Linaro OpenEmbedded 2015.02
    • integrated Linaro GCC 4.9-2015.02
    • fixed linux-dummy to work with new rootfs.py depmod
    • fixed udhcpc command options to prevent
    • updated linux-linaro(-stable) recipes
    • dropped qemu overlay in favour of OE-core version
    • dropped kexec-tools overlay in favour of OE-core version
    • upstreaming – busybox: update to 1.23.1 release
  • Linaro Ubuntu 15.02 – added packages: ti-uim; updated packages: LSK 3.10.68/3.14.32 and linux-linaro 3.19 kernels
  • CI bring up: member build for TI J6-Vayu platform
  • Native ARMv8 build slave for CI
  • WIFI, bluetooth and USB integration with Android L for HiKey

Visit https://wiki.linaro.org/Cycles/1502/Release for a list of known issues, and further release details about the LEB, LMB (Linaro Member Builds), and community builds, as well as Android, Kernel, Graphics, Multimedia, Landing Team, Platform, Power management and Toolchain components.

$129 Hikey Board Features a 64-bit ARM HiSilicon Processor, Complies with Linaro’s 96Boards Specifications

February 9th, 2015 18 comments

In my post about the Embedded Linux Conference 2015, I noticed a talk entitled “Generalizing Android for Low-Cost 64-Bit ARM-Based Community Boards” to be presented by Khasim Syed Mohammed, Linaro, mentioning that “Linaro is developing an open hardware platform specification to encourage software development on low-cost boards to lower the cost and accelerate the availability of maker and embedded products based on ARM SoCs”. But at the time, I had no details about the specifications themselves. As Linaro Connect HK 2015 is now taking place, the 96Boards Consumer Edition specifications have been released, and Hikey board have been unveiled with HiSilicon Kirin 620 octa core Cortex A53 processor, 1 GB RAM, and 4GB eMMC.

96Boards_Hikey

Hikey board specifications:

  • SoC – HiSilicon Kirin 620 octa core Cortex A53 processor @ 1.2 GHz (10,000 Dhrystone VAX MIPS) with ARM Mali-450MP4 GPU
  • System Memory – 1GB LPDDR3 @ 800 MHz
  • Storage – 4GB eMMC + micro SD v3 slot
  • Video Output / Display – HDMI 1.3 up to 1080p, DSI interface
  • Connectivity – 802.11 a/b/g/n Wi-Fi, Bluetooth 4.1 LE (TI Wilink 8 – WL1835MOD) with on-board antenna. Solder pads for external antenna are also present (6)
  • USB – 2x USB 2.0 host ports, 1x micro USB OTG
  • Camera – CSI interface
  • Debugging – Unpopulated 4-pin UART header (1), unpopulated 10-pin JTAG header (19)
  • Expansion headers
    • 40-pin LS (Low Speed) Expansion connector (2) – 2x UART, 2x I2C, GPIOs, SPI, Audio, reset, 1.8V and GND, as wekk as 5V/12V cooling fan support
    • HS (High Speed) Expansion connector (9) – DSI, CSI, SDIO, USB, etc…
  • Misc – Power button (3), settings header for power/boot/user (1), power measurements through holes (Total / PMIC only / HDMI, USB) (4), LEDs for Wi-Fi/Bt (11), and 3x User LED (13)
  • Power Supply (5) – 8-18V / 2A as per 96Boards specs.
  • Dimensions – 85 x 54 mm

Hikey_BoardDocumentation is available on 96Boards.org, and currently includes a User’s Guide and schematics in PDF format. You can get support on 96Boards Forums, the source code is available on github, and binary images for Linux (Ubuntu?) and Android will soon be available at https://builds.96boards.org/.

Hikey board is available on backorder on Avnet and Arrow for $129 and up.

Let’s also have a quick look at 96Boards specifications.

Stated goals:

  • Low cost ($50-$100 retail for a a minimum configuration)
  • Easy to extend with off the shelf parts available to maker community and OEMs
  • Easy to purchase globally (for example, via Amazon, Alibaba, Farnell, Digikey, Mouser, etc…)
  • Enable a third party ecosystem to develop around expansion (mezzanine) boards/peripherals/displays, etc… that can be used on any 96Board CE compliant board.

Minimum hardware features:

  • Ultra-small low-profile form factor – 85x54x12 mm – Extended Version: 85x100x12mm
  • Design is SoC independent (targets 32- and 64-bit SoCs)
  • 0.5GB RAM (Minimum 1GB recommended for Android_
  • MicroSDHC Socket for up 64GB on-board or expansion flash storage
  • Wi-Fi 802.11g/n and Bluetooth 4.0 LE
  • On-board connectors and expansion I/O:
    • 2x USB Type A or Type C host ports (USB 2.x or 3.x)
    • USB micro-B USB or type C slave or OTG port (USB 2.x or USB 3.x) for PC connection
    • Display and Audio Output: HDMI, or MHL (micro USB), or DisplayPort (USB type C)
    • Low profile 40 way female header for maker/community use
    • Low profile 60 way high speed female module header for advanced maker/OEM use with high speed interface including MIPI-DSI, USB, and optional MIPI CSI-2
    • Board power from low profile DC jack connector

Other requirements and options include at least one current sense resistor, buttons, LEDs, UART, recommended JTAG, and so on.

Software requirements include bootloader (open source), accelerated graphics support (binary or open source), a Linux kernel buildable from source code based from mainline, or the latest Google-supported Android kernel version, or the last two LTS kernels, and one of more of the following operating systems: Android, Debian/Ubuntu, Fedora/Red Hat, or an OpenEmbedded/Yocto build of a Linux distribution.

[Update: Linaro blogged about this, with quotes by several companies including Actions Semiconductors and AMD, so we might expect 96Boards compliant board(s) by these two Silicon vendors too]

Via Mininodes.