Archive

Posts Tagged ‘ios’

IkaScope WiFi Oscilloscope Probe Works with Windows, Linux, Mac OS X, Android and iOS

September 13th, 2017 10 comments

Last year, I wrote about Aeroscope, a portable Bluetooth oscilloscope that looks somewhat like a Stabilo Boss highlighter pen, and sends measurements over the air directly to your Android and iOS tablet or smartphone. It was introduced through a crowdfunding campaign which eventually failed, but Aeroscope can now be purchased for $199 on Amazon US or their own website. If you’d prefer WiFi over Bluetooth, and would like something that also works on Windows, Linux, and/or Mac OS X, IKALOGIC has just launched IkaScope WiFi oscilloscope probe compatible with all popular mobile and desktop operating systems.

IkaScope WS200 specifications:

  • Analog Bandwidth  – 30 MHz @ -3dB
  • Sample Rate – 200 MSps
  • Connectivity – 802.11 b/g/n/e/i WiFi @ 2.4 GHz configurable as access point or station
  • Input Range – +/-40 V range CAT1
  • Offset Range – +/- 20V to +/- 40V offset
  • Input Impedance – 10MΩ || 14pF
  • Input Contact – ProbeClick intelligent probe tip that will only start measurements upon contact
  • Voltage Resolution – 100 mV/division to 10 V/division
  • Sample Resolution – 8-bit
  • Max Refresh Rate – 250 fps
  • Memory Depth – 4K points (4x 1000 points for burst buffers)
  • Protection Input Level – 253 VAC 1min
  • USB – Isolated micro USB port for charging only
  • Misc – Power/Charging and WiFi status LEDs
  • Battery – 420 mAh battery good for about 1 week battery life with daily regular use.
  • Dimensions – 161mm long

IkaScope specifications are slightly better than the ones of Aeroscope when it comes with analog bandwidth and sample rate for example, but the battery capacity is lower. However,  the latter is likely more than compensated by ProbeClick technology that will only measure when a contact is detected, hence saving power during idle times. One advantage of WiFi over Bluetooth is that it allows for a higher refresh rate up to 250 fps.

The probe ships with a ground clip and a USB charging cable. OS support will be brought step by step starting with Windows, but Linux, Mac OS X, iOS, and Android will all be supported by November 9th if the schedule’s deadlines can be met, and all desktop OK will be supported by the end of September before shipping. More details about the software can be found in IkaScope knowledge base.

IKALOGIC has started taking pre-order for IkaScope for 299 Euros excluding VAT and shipping scheduled by the end of the year. “EARLYBIRD” coupon valid until the 20th of September will power the price by 10%.. Some more information, and the purchase link are available on the product page.

Sonoff Wireless Switches & Light Bulbs Now Work With Google Home

August 8th, 2017 No comments

ITEAD Studio Sonoff wireless switches can be controlled by voice commands using Amazon Alexa or Google Home, but so far, the latter was only possible by emulating Belkin Wemo switch in alternative open source firmwares such as ESPurna or Sonoff-Tasmota. For people who don’t want to update the firmware themselves, and instead prefer to use the stock firmware with eWelink mobile app, the manufacturer has now announced support for Google Home, on top of the already supported Amazon Alexa service.

Click to Enlarge

The instructions are explained in details in ITEAD’s blog post, but basically, you need to start Google Home app in your mobile, select your Google Home device, go to Home Control to add Devices, select Smart We Link, login to eWelink with your username/phone number and password, name the devices you want to control and you’re done.

You should now be able to control devices or rooms with voice commands such. For single port devices it’s easy:

OK Google, turn on the bedroom light.
Hey Google, turn off the bedroom light.

For switches with multiple sockets or switches you also need to add the name of the “gang”:

Hey Google, turn on dual switch light one.

You can set the color and dim your lights too:

Hey Google, turn on {light name}
Hey Google, turn {light name} green
Hey Google, set {light name} to 50%
OK Google, dim {light name}
Hey Google, brighten {light name}

If you have assigned devices to rooms, you can control a complete room, or all devices with one voice commands, for example:

OK Google, turn off all of the lights
Hey Google, turn on lights in living room

Some features are not supported, and it’s unclear whether they’ll ever be, such as setting timers, or adjusting the temperature threshold for SonoffTH10/TH16. Since I recently configured an Orange Pi Zero board with Google Assistant, I wanted to try, but Google Home app cannot detect my device. That’s normal as Google Assistant SDK release notes list this as an issue:

Account linking for third party services requires owning a Google Home and installing the Google Home application. This affects using services like Uber, or connecting to home automation devices like Hue.

That means you need an actual Google Home, and solutions like AIY Projects Voice Kit with Raspberry Pi 3 board won’t work, at least for now.

Sonoff G1 AC Powered Smart Power Switch Works Over 2G GSM/GPRS

July 22nd, 2017 1 comment

Today, I’ve searched for AC powered wireless switched similar to Sonoff devices, but with ESP32 instead in order to get WiFi and Bluetooth, since the latter is better to use with a battery powered buttons. I did find a DC powered board, but no AC powered ones yet. However, as I visited ITEAD website to check if they had anything of the sort, I discovered they had a new model called Sonoff G1, similar to Sonoff TH16, but instead of using WiFi, you can use 2G GSM/GPRS to control the switch remotely.

Sonoff G1 specifications:

  • Wireless Module – ST86 quad band GSM/GPRS module
  • GSM/GPRS connectivity
    • GSM850, EGSM900, DCS1800 and PCS1900 MHz support
    • GPRS multi-slot class 10, GPRS mobile station class B
    • 1.8V, 3V  SIM card slot
    • Transmit power: Class 4 (2W): GSM850, EGSM900; Class 1 (1W): DCS1800, PCS1900
  • Relay – Up to 16A (3000 Watts max)
  • Terminals – 6 terminals for mains and load’s ground, live and neutral signals. 90~250V AC (50/60Hz) input supported
  • Misc – LEDs for power and connection status, button for manual on/off
  • Standby Power Consumption – 1.0 mW
  • Dimensions – 114 x 52 x 32mm
  • Weight – 100 grams
  • Temperature range – Operating -40°C to +80°C, but recommended is 0 to 40°C… So go figure.

Such system could be useful if you need to control devices in remote locations, as long as you are in a zone not affected by 2G sunset like China and Europe.

You’ll need to open the device to insert your own SIM card, install the usual eWelink app, scan a QR code on the device to initialize it. Once this is done, you can turn it on/off, set timers, integrate it into scenes, and share it with other permitted users. Basically anything you can do with the WiFi model, including Amzon Alexa & (soon) Google Home support, but it adds checking the remaining balance. This is explained in more details in the Wiki and links there. There’s also Sonoff G2 model for mainland China with a built-in China Mobile SIM card. You’ll have to happy with using eWelink Android/iOS app, as that model is unlikely to hackable with a custom firmware.

ITEAD sells Sonoff G1 for $19.90 plus shipping.

Lingmo Translate One2One Earpiece Can Interpret 8 Languages with IBM Watson Natural Language & Translation APIs

June 21st, 2017 3 comments

Automation are greatly reduce the number of workers requires to perform manufacturing, and now technology is moving forward with artificial intelligence applications writing financial & sports news, analyzing medical imaging or other data to speed up and improve accuracy of diagnostics, and more. Yesterday, I found out that pair programming, which normally combines two human programmer working together on the same program, may soon pair a human programmer with an AI programmer helping selecting the best code, and today I found out live interpreters may get some competitions with products like Lingmo Translate One2One earpiece that can interpret 8 languages nearly in real-time.

The device was unveiled at the United Nations Artificial Intelligence (AI) for Good Summit in Switzerland, as it combines IBM Watson’s Natural Language and Language Translation APIs, together with Lingmo’s proprietary hardware and machine learning applications. It’s said to be working as an independent device without the need for Bluetooth or WiFi connectivity, which is a little confusing since it surely must rely on IBM Watson servers, unless everything is embedded in the device itself. English, Japanese, French, Italian, Spanish, Brazilian Portuguese, German and Chinese languages are supported, both users must wear an earpiece, translation takes between 3 to 5 seconds to process, so not quite as responsive as a human translator.

Machine translation has been available for a while though services like Google Translate, but depending on the languages you use, the results are not always pretty. We’d have to see how it performs, as so far I have not seen any independent reviews. One way to be might be to run the company’s Lingmo app for Android and iOS that supports 45 languages with voice to voice, voice to text, text to voice, and text to text support. The app is demonstrated in the video below.


Lingmo is taking orders for $179.00 for one Translate One2One, and $229.00 for two with delivery scheduled for July.

Nordic Thingy:52 Bluetooth 5 IoT Sensor Development Kit Targets Mobile & Web App Developers

June 4th, 2017 No comments

Some developers may be interested in providing solutions for the Internet of Things, but they may not have the skills or interest in making their own hardware, and/or develop firmware, and just want to create demos or prototypes quickly, focusing on app development instead. Nordic Semiconductors has recently launched Thingy:52 IoT Sensor Kit with Bluetooth 5 & NFC connectivity, and various sensors for those developers.

Nordic:52 IoT Sensor development kit (nRF6936) hardware specifications:

  • MCU – Nordic Semi nRF52832 ARM Cortex-M4F Bluetooth 5 System on Chip (SoC)
  • Connectivity – Bluetooth 5 LE and NFC
  • Sensors
    • Temperature,Humidity, Air pressure, Air quality (CO2 and TVOC), color and light intensity
    • 9-axis motion sensing – Tap detection, orientation, step counter, quaternions, euler angles, rotation matrix, gravity vector, compass heading, raw  accelerometer, gyroscope, and compass data
  • Audio
    • Speaker for playing prestored samples, tones, or sound streamed over BLE (8-bit 8 kHz LoFi)
    • Microphone streaming (ADPCM compressed 16-bit 16 kHz)
  • Expansion Headers (all unpopulated)
    • 20-pin header with GPIOs, I2C, Analog inputs
    • 2x 4-pin I2C headers
    • 4-pin analog/digital header (2 I/O)
    • 4-pin analog/digital header (1 I/O)
  • Misc – Configurable RGB LEDs and button; programming & debugging connector
  • Power Supply – 5V via micro USB port, LiPo battery connector (A battery is already included in the devkit)
  • Dimensions – 6×6 cm plastic & rubber case

Click to Enlarge

Nordic provides example apps for Android & iOS with cloud connectivity for the devkit, as well as a web application relying on Web Bluetooth API. Thingy:52 kit supports secure Over-the-Air device firmware upgrade (DFU). While the company promote the kit to app developers, the application firmware source code and hardware design files are also available for download. You’ll find all info on Nordic Semi’s Infocenter. A Node.js library is also available for the board on Github.

Nordic Thingy:52 can be purchased for around $40 via distributors such as Mouser, Digikey, and Arrow.

Thanks to Jan for the tip.

$59 HDFury Universal PSU Doctor Supports Power Monitoring via iOS or Android

May 3rd, 2017 4 comments

We’ve recently covered Cambrionix PowerPad 15S, a high-end 16-port USB hub that can deliver 5V/2.1A on each port, integrates power monitoring function, and an API to control and monitor each port individually. That’s a very cool device, but it’s also expensive at around $600, and even the cheaper PowerPad 15C without data pins, come at $200. If you don’t need the complete set of features offered by Cambrionix devices, but you’ll like to get a reliable multi-port USB charger with power monitoring function, HDFury Universal PSU Doctor could be an interesting option.

HDFury Universal PSU Doctor specifications:

  • MCU – Renesas RL78 16-bit MCU
  • USB – 3x USB ports with 2x 5V ports up to 5V/2.14A, 1x USB QC 2.0 port supporting 5V/2.14A, 9V/1.6A or 12V/1.2A output
  • ADC – Up to 11 channels, 10-bit resolution for power monitoring
  • Sensor – n-chip temperature sensor
  • Power Supply
    • Built-in 100 ~ 240V AC with US, EU, UK plug types (Sorry Australian readers).
    • Ripple and Noise: 80mV
    • Efficiency: 80%
  • Power Consumption @ 5V?
    • Stop – RAM retained: 0.23 μA; LVD enabled: 0.31 μA
    • Snooze – 0.7 mA (UART), 1.20 mA (ADC)
    • Operating: 63 μA /MHz
  • Dimensions – 8.9 x 5.3 x 4.2 cm.
  • Weight – 142g
  • Certifications – Rohs, CE and FCC (no UL / ETV / TUV?)

Click to Enlarge

The first two USB ports (1 & 2) can handle 5V, and the first one can connect to a smartphone audio jack to report the voltage, current, and power for all three USB ports. The third port also supports Quick Charge 2.0.

Power monitoring is done through DrPSU app available for Android and iOS, but note that it’s expected to work only on branded smartphones such as Samsung, LG, Sony, Xiaomi, Apple… and obviously this feature won’t work on the most recent models without an headphone jack since it is required. The app cannot control the USB port individually, for example to turn them on and off, it only displays the data. The video below demonstrates well how it all works.

HDFury Universal PSU Doctor is sold for $59 with free shipping on HDfury website. There’s a 5-year warranty, but you’d have to return the charger to China, and I could not find the warranty’s terms and conditions.

Kudrone Nano Drone Shoots “4K” Videos, Follows You With GPS (Crowdfunding)

March 24th, 2017 6 comments

Kudrone is a palm-sized drone equipped with a 4K camera that can follow you around for up to 8 minutes thanks to its 650 mAh battery by tracking your smartphone location via GPS. You can also take matters on your own hands by piloting the drone with your smartphone.

The drone also includes various sensors such as an accelerometer, a gyroscope, a magnetic compass, a sonar, and a vision positioning sensor enabling features such as auto hovering. Some of the specifications include:

  • Storage – Up to 64GB (micro SD card)
  • Connectivity – 802.11 b/g/n WiFi up to 80 meters
  • GNSS – GPS / GLONASS
  • Camera
    • Sony CMOS 1/3.2 image sensor (13MP)
    • F2.8 / H100 V78.5 / D:120 lens
    • Image resolution up to 3280 x 2464
    • Video resolution 4K, 2.7K, 1080p, 720p
  • Flight Parameters – Max altitude – 30 meters; hovering accuracy: +/- 0.1 meter
  • Battery – 650 mAh LiPo1S battery good for up to 8 minutes (but lower when the camera and GPS are on)
  • Dimensions – 174 x 174 x 43 mm

It’s a little odd that it records 4K videos, but image resolution is limited to 3280×2464, so there may be some extrapolation here and the video quality is unlikely to match what most people would consider “4K”. You can see a video shot with drone – but apparently not while flying – here, and it is limited to 1080p60 on YouTube.

Kudrone Team  provided a comparison pitting their drone against some other cheap nano drones, and some higher end drones by DJI and Parrot.

iPhone or Android mobile apps will allow you to control the drone, enable/disable features, and sync your photos and videos with your  smartphone. The preview is shown at 720p with a 160 ms delay.

The drone launched on Indiegogo several days ago, and has been pretty popular having raised close to $700,000 with 21 days to go. All very early bird rewards at $99 are gone, but you could still get the drone for $109 with two propeller sets, a charger, a 16GB micro SD card, two batteries, and a pair of propeller protector. Shipping adds $9 to the US or China, and $25 to the other countries I checked. Delivery is scheduled for July 2017. The drone is made by a company called Fujian Ruiven Technology, and Kudrone is not their first drone. However, you may want to check out the update section on Indiegogo to see pictures and video samples, as well as videos of the drone in action to get a better idea of the drone current capabilities.

Categories: Hardware Tags: Android, drone, indiegogo, ios, wifi

Texas Instruments CC3200 WiFi SensorTag is Now Available for $40

March 15th, 2017 No comments

Texas Instruments launched SensorTag in 2013, and at the time there was just a Bluetooth 4.0 LE version with 6 different sensors. I bought one for $25 at the time, and tried it with a Raspberry Pi board and a BLE USB dongle. Since then, the company has launched a new multi standard model (CC2650STK) supporting Buetooth low energy, 6LoWPAN, and ZigBee, and has just started to take orders for CC3200 WiFi SensorTag for $39.99, which seems expensive in a world of $2 ESP8266 modules.

But let’s see what the kit has to offer:

  • Wireless MCU – Texas Instruments CC3200 SimpleLink ARM Cortex-M4 MCU @ up to 80 MHz, with up to 256KB RAM, Hardware Crypto Engine, DMA engine
  • Storage – 1 MB serial flash memory
  • Connectivity – 802.11 b/g/n WiFi with on-board inverted-F antenna with RF connector for conducted testing
  • Sensors – Gyroscope, accelerometer, compass, light sensor (OPT3001), humidity sensor (HDC1000), IR temperature sensor (TMP007), and pressure sensor (BMP280)
  • Expansion – 20-pin DevPack SKIN connector
  • Debugging – Debug and JTAG interface for flash programing
  • Misc – 2x buttons, 2x LEDs, reed relay MK24, digital microphone, and a buzzer for user interaction
  • Power – 2x AAA batteries good for up to 3 months (with 1 minute update interval)

So it has plenty of sensors to play with, and rather long battery life for a WiFi evaluation platform. The kit ships with one CC3200 WiFi SensorTag, two AAA batteries, and a getting started guide.

WiFi SensorTag Mobile App – Click to Enlarge

Resources includes hardware design files (schematics, PCB layout, BoM, etc..), iOS and Android apps and source code, IoT Device Monitor for Windows, Code Composer Studio, and cloud-based development tools. Note that there’s no embedded software for the Wi-Fi SensorTag, it is only a a demo platform, while you can modify cloud-based applications, you can’t modify the firmware. If you want an embedded development platform, you’d have to go with CC3200 LaunchPad board. You can still have some fun SensorTag using Android or iOS app, or connecting it to IBM Watson IoT Platform.

Visit SensorTag page for further information.