Archive

Posts Tagged ‘pine64’

Popcorn Hour RockBox Basic TV Box To Leverage ROCK64 Board Firmware Images

October 2nd, 2017 8 comments

Pine64 launched ROCK64 development board powered by Rockchip RK3328 processor a few months ago. The board exposes fast interfaces like Gigabit Ethernet and USB 3.0, and support 4K video playback, and runs Android 7.1 or various Linux distributions such as Ubuntu 16.04 and others.

Pine64 and Cloud Media companies share some of the same owners, and RK3328 being a TV box processor, it should not come as a surprise that Cloud Media has introduced Popcorn Hour Rockbox Basic TV box based on the processor. While the box is running Android 7.1 by default, it will also be support alternative operating systems such as LibreELEC, Android TV OS, Ubuntu, etc… thanks to the work of Pine64/Rock64 community.

Popcorn Hour RockBox Basic specifications are quite standard:

  • SoC – Rockchip RK3328 quad core Cortex A53 processor @ 1.5 GHz with Mali-450MP2 GPU
  • System Memory – 1 GB LPDDR3
  • Storage – 8 GB eMMC flash + microSD card slot
  • Video Output – HDMI 2.0a up to 4K @ 60 Hz with HDR10 and HLG support
  • Video Codec – 4K VP9, H.265 and H.264. 1080p VC-1, MPEG-1/2/4, VP6/8
  • Audio – Via HDMI, optical S/PDIF output
  • Connectivity – 10/100M Ethernet, 802.11 b/g/n WiFi
  • USB – 1x USB 2.0 OTG port, 1x USB 3.0 port
  • Misc – IR receiver
  • Power Supply – 5V/2A
  • Dimensions – TBD

The box is not based on ROCK64 board per se, but the hardware will be similar enough, so that community firmware will work without too many modifications. The box will run Android 7.1.2 by default with RKMC (Kodi 16.1 fork) supporting HD audio pass-through, automatic framerate switching, and BD ISO. Kodi 17.4 installed from the Play Store will also work,but maybe the aforementioned features may not perform a well as in RKMC for now.

Other firmware image will be posted on Rockbox firmware page as they become available. For now, only Android 7.1.2 firmware can be downloaded.

The device ships with an IR remote control and a 5V/2A EU or US power supply, and can be purchased for $44.90 with free shipping to some countries like the US and Eurozone countries, while others may be charged an extra $9.99 for shipping. For comparison, A95X R2 TV box has similar specifications and sells for around $33 shipped, but build quality might be lower – for example the eMMC flash used is a bit slow -, and you’d likely have to spend more time figuring out how to run alterntive operating systems.

[Update: There will be another RockBox model with more memory and storage, Gigabit Ethernet, and stackable aluminum casing]

Google Cloud IoT Core Enters Public Beta, Various Devkits Available

September 29th, 2017 No comments

Back in May, I wrote about Allwinner R18 based Banana Pi BPI-M64 Board with Google Cloud IoT Core support, as Google unveils the new cloud service during Google I/O. However, at the time it was only available to selected partners, and Google has recently launched the public beta making their IoT device management platform available to all.

Click to Enlarge

I first learned about this through an ARM community blog post announcing availability of the ARM-based IoT Kit for Cloud IoT Core on Adafruit using Raspberry Pi 3 board,  a breadboard, and various modules that can be managed through Google services.

But that are plenty of other IoT kits or boards for Google Cloud IoT Core including:

You’ll find purchase links and documentation for each board on Google Cloud IoT Core’s IoT Kit page. Sample code specific to the RPI3 kit can also be found on Github.

Google Cloud IoT Core Architecture / Features Overview

Google IoT Core is free to use for up to 250 MB/month with no limit on the number of devices, and if you exceed this limit pricing per MB depends on data usage:

  • 250MB to 250 GB – $0.0045 per MB
  • 250GB to 5 TB – $0.0020 per MB
  • Over 5 TB – $0.00045 per MB

Linux 4.13 Release – Main Changes, ARM & MIPS Architectures

September 4th, 2017 6 comments

Linus Torvalds has just announced the release of Linux 4.13 and a kidney stone…:

So last week was actually somewhat eventful, but not enough to push me to delay 4.13.

Most of the changes since rc7 are actually networking fixes, the bulk of them to various drivers. With apologies to the authors of said patches, they don’t look all that interesting (which is definitely exactly what you want just before a release). Details in the appended shortlog.

Note that the shortlog below is obviously only since rc7 – the _full_4.13 log is much too big to post and nobody sane would read it. So if you’re interested in all the rest of it, get the git tree and limit the logs to the files you are interested in if you crave details.

No, the excitement was largely in the mmu notification layer, where we had a fairly last-minute regression and some discussion about the problem. Lots of kudos to Jérôme Glisse for jumping on it, and implementing the fix.

What’s nice to see is that the regression pointed out a nasty and not very well documented (or thought out) part of the mmu notifiers, and the fix not only fixed the problem, but did so by cleaning up and documenting what the right behavior should be, and furthermore did so by getting rid of the problematic notifier and actually removing almost two hundred lines in the process.

I love seeing those kinds of fixes. Better, smaller, code.

The other excitement this week was purely personal, consisting of seven hours of pure agony due to a kidney stone. I’m all good, but it sure _felt_ a lot longer than seven hours, and I don’t even want to imagine what it is for people that have had the experience drag out for longer. Ugh.

Anyway, on to actual 4.13 issues.

While we’ve had lots of changes all over (4.13 was not particularly big, but even a “solidly average” release is not exactly small), one very _small_ change merits some extra attention, because it’s one of those very rare changes where we change behavior due to security issues, and where people may need to be aware of that behavior change when upgrading.

This time it’s not really a kernel security issue, but a generic protocol security issue.

The change in question is simply changing the default cifs behavior: instead of defaulting to SMB 1.0 (which you really should not use: just google for “stop using SMB1” or similar), the default cifs mount now defaults to a rather more modern SMB 3.0.

Now, because you shouldn’t have been using SMB1 anyway, this shouldn’t affect anybody. But guess what? It almost certainly does affect some people, because they blithely continued using SMB1 without really thinking about it.

And you certainly _can_ continue to use SMB1, but due to the default change, now you need to be *aware* of it. You may need to add an explicit “vers=1.0” to your mount options in /etc/fstab or similar if you *really* want SMB1.

But if the new default of 3.0 doesn’t work (because you still use a pterodactyl as a windshield wiper), before you go all the way back to the bad old days and use that “vers=1.0”, you might want to try “vers=2.1”. Because let’s face it, SMB1 is just bad, bad, bad.

Anyway, most people won’t notice at all. And the ones that do notice can check their current situation (just look at the output of “mount” and see if you have any cifs things there), and you really should update from the default even if you are *not* upgrading kernels.

Ok, enough about that. It was literally a two-liner change top defaults – out of the million or so lines of the full 4.13 patch changing real code.

Go get the new kernel,

Linus

Two months ago, Linux 4.12 was released with initial support for AMD Radeon RX Vega GPU, BFQ (Budget Fair Queuing) and Kyber block I/O schedulers, AnalyzeBoot tool for the kernel, “hybrid consistency model” implementation for live kernel patching, but disabled the Open Sound System, and removed AVR32 support, among many other changes.

Some interesting changes in Linux 4.13 – mostly based on LWN 4.13 Merge Window part 1 & part 2 – include:

  • Support for non-blocking buffered I/O operations added at the block level, which should also improve asynchronous I/O support when used with buffered I/O.
  • AppArmor security module’s “domain labeling” code has been merged into the mainline. It was maintained by Ubuntu out of tree previously.
  • Kernel-based TLS implementation that should deliver better performance for HTTPS, and other protocol relying on TLS.
  • CIFS/SAMBA now defaults to v3.0 instead of v1.0 due to security issues
  • File System Changes – EXT-4: support for to ~2 billion files per directory with largedir option, extended attributes up to 64KB, new deduplication feature; f2fs: supports disk quotas; overlayfs union: new “index directory” feature that makes copy-up operations work without breaking hard links.

Changes specific to ARM include:

  • Rockchip:
    • Added support for RV1108 SoC for camera applications
    • Rockchip IOMMU driver is now available on ARM64
    • PCIe – configure Rockchip MPS and reorganize + use normal register bank
    • Clock driver for Rockchip RK3128 SoC
    • Rockchip pinctrl driver now supports iomux-route switching for RK3228, RK3328 and RK3399
    • Sound driver – Support for Rockchip PDM controllers
    • Device tree
      • Added RK3399-Firefly SBC
      • Added ARM Mali GPU
      • Added cru
      • Added sdmmc, sdio, emmc nodes for Rockchip RK3328
  • Amlogic
    • Updated CEC EE clock support
    • Enabled clock controller for 32-bit Meson8
    • Device tree changes
      • Meson UARTs
      • new SPI controller driver
      • HDMI & CVBS for multiple boards
      • new pinctrl pins for SPI, HDMI CEC, PWM
      • Ethernet Link and Activity LEDs pin nodes
      • SAR ADC support for Meson8 & Meson8b
    • Defconfig changes – Meson SPICC enabled as module; IR core, decoders and Meson IR device enabled;
    • New boards & devices: NanoPi K2, Libre Computer SBC, R-Box Pro
  • Samsung
    • Clock driver updated for Samsung Exynos 5420 audio clocks, and converted code to clk_hw registration APIs
    • Pinctrl drivers split per ARMv7 and ARMv8 since there’s no need to compile everything on each of them
    • ARM DT updates:
      • Add HDMI CEC to Exynos5 SoCs + needed property for CEC on Odroid U3
      • Fix reset GPIO polarity on Rinato
      • Minor cleanups and readability improvements.
    • ARM64 DT updates:
      • Remove unneeded TE interrupt gpio property
    • Defconfig changes – Some cleanups, enabled Exynos PRNG along with user-space crypto API.
  • Qualcomm
    • Clock & pinctrl drivers for Qualcomm IPQ8074
    • Add debug UART addresses for IPQ4019
    • Improve QCOM SMSM error handling
    • Defconfig
      • Enable HWSPINLOCK & RPMSG_QCOM_SMD to get some Qualcomm boards to work out of the box/again
      • Enable IPQ4019 clock and pinctrl
    • Mailbox – New controller driver for Qualcomm’s APCS IPC
    • RPMsg – Qualcomm GLINK protocol driver and DeviceTree-based modalias support, as well as a number of smaller fixes
    • Qualcomm Device Tree Changes
      • Fix IPQ4019 i2c0 node
      •  Add GSBI7 on IPQ8064
      • Add misc APQ8060 devices
      • Fixup USB related devices on APQ8064 and MSM8974
    • Qualcomm ARM64 Updates for v4.12
      • Fix APQ8016 SBC WLAN LED
      • Add MSM8996 CPU node
      • Add MSM8992 SMEM and fixed regulator
      • Fixup MSM8916 USB support
  • Mediatek
    • CPU clks for Mediatek MT8173/MT2701/MT7623 SoCs
    • Pinctrl – Serious code size cut for MT7623
    • Mediatek “scpsys” system controller support for MT6797
    • Device tree
      • Added support for MT6797 (Helio X20) mobile SoC and evaluation board
      • Extended MT7623 support significantly
      • Added MT2701 i2c device & JPEG decoder nodes
  • Other new ARM hardware platforms and SoCs:
    • STM32 – stm32h743-disco, stm32f746-disco, and stm32f769-disco boards; Drivers for digital audio interfaces, S/PDIF receiver, digital camera interfaces, HDMI CEC, watchdog timer
    • NXP – Gateworks Ventana GW5600 SBC;  Technexion Pico i.MX7D board; i.MX5/6 image processing units & camera sensor interfaces
    • Realtek – Initial support for Realtek RTD1295 SoC and Zidoo X9S set-top-box
    • Actions Semi – Initial support for Actions Semi S900 / S500, and corresponding LeMaker Guitar & Bubblegum-96 SBCs
    • Renesas – Salvator-XS and H3ULCB automotive development systems; GR-Peach board, iWave G20D-Q7 System-on-Module plus
    • Socionext- Support for Uniphier board support for LD11-global and LD20-global
    • Broadcom – Stingray communication processor and two reference boards;
    • Marvell – Linksys WRT3200ACM router
    • Texas Instruments – BeagleBone Blue
    • Microchip / Atmel – MMU-less ARM Cortex-M7 SoCs (SAME70/V71/S70/V70)

Some of the changes specific to MIPS include:

  • Boston platform support – Document DT bindings; Add CLK driver for board clocks
  • CM – Avoid per-core locking with CM3 & higher; WARN on attempt to lock invalid VP, not BUG
  • CPS – Select CONFIG_SYS_SUPPORTS_SCHED_SMT for MIPSr6; Prevent multi-core with dcache aliasing; Handle cores not powering down more gracefully; Handle spurious VP starts more gracefully
  • DSP – Add lwx & lhx missaligned access support
  • eBPF – Add MIPS support along with many supporting change to add the required infrastructure
  • Generic arch code:
    • Misc sysmips MIPS_ATOMIC_SET fixes
    • Drop duplicate HAVE_SYSCALL_TRACEPOINTS
    • Negate error syscall return in trace
    • Correct forced syscall errors
    • Traced negative syscalls should return -ENOSYS
    • Allow samples/bpf/tracex5 to access syscall arguments for sane
      traces
    • Cleanup from old Kconfig options in defconfigs
    • Fix PREF instruction usage by memcpy for MIPS R6
    • Fix various special cases in the FPU eulation
    • Fix some special cases in MIPS16e2 support
    • Fix MIPS I ISA /proc/cpuinfo reporting
    • Sort MIPS Kconfig alphabetically
    • Fix minimum alignment requirement of IRQ stack as required by ABI / GCC
    • Fix special cases in the module loader
    • Perform post-DMA cache flushes on systems with MAARs
    • Probe the I6500 CPU
    • Cleanup cmpxchg and add support for 1 and 2 byte operations
    • Use queued read/write locks (qrwlock)
    • Use queued spinlocks (qspinlock)
    • Add CPU shared FTLB feature detection
    • Handle tlbex-tlbp race condition
    • Allow storing pgd in C0_CONTEXT for MIPSr6
    • Use current_cpu_type() in m4kc_tlbp_war()
    • Support Boston in the generic kernel
  • Generic platform:
    • yamon-dt: Pull YAMON DT shim code out of SEAD-3 board;  Support > 256MB of RAM;  Use serial* rather than uart* aliases
    • Abstract FDT fixup application
    • Set RTC_ALWAYS_BCD to 0
    • Add a MAINTAINERS entry
  • core kernel – qspinlock.c: include linux/prefetch.h
  • Add support for Loongson 3
  • Perf – Add I6500 support
  • SEAD-3 – Remove GIC timer from DT; set interrupt-parent per-device, not at root node; fix GIC interrupt specifiers
  • SMP – Skip IPI setup if we only have a single CPU
  • VDSO – Make comment match reality; improvements to time code in VDSO”
  • Various fixes:
    • compressed boot: Ignore a generated .c file
    • VDSO: Fix a register clobber list
    • DECstation: Fix an int-handler.S CPU_DADDI_WORKAROUNDS regression
    • Octeon: Fix recent cleanups that cleaned away a bit too much thus breaking the arch side of the EDAC and USB drivers.
    • uasm: Fix duplicate const in “const struct foo const bar[]” which GCC 7.1 no longer accepts.
    • Fix race on setting and getting cpu_online_mask
    • Fix preemption issue. To do so cleanly introduce macro to get the size of L3 cache line.
    • Revert include cleanup that sometimes results in build error
    • MicroMIPS uses bit 0 of the PC to indicate microMIPS mode. Make sure this bit is set for kernel entry as well.
    • Prevent configuring the kernel for both microMIPS and MT. There are no such CPUs currently and thus the combination is unsupported and results in build errors.
    • ralink: mt7620: Add missing header

You can read the full Linux 4.13 changelog – with comments only – generated using git log v4.12..v4.13 --stat for the full details, and eventually kernelnewsbies’s Linux 4.13 changelog will be updated with an extensive list of chances.

Pine64 SoPine Cluster Board Takes up to Seven SOPINE A64 Systems-on-Module

August 16th, 2017 17 comments

Pine64 launched SOPINE A64 system-on-module based on Allwinner A64 processor back in January, with such module normally being found in low volume products where companies do not want to spent too many resources developing complex multiple layers boards with CPU and RAM, and instead focus on developing a simpler baseboard and custom software for their product. Pine64 made something else with SOPINE A64 modules:  a cluster board.

Click to Enlarge

I don’t have the full details yet, but “PINE64 SoPine Cluster Board” comes with 7 SO-DIMM slot designed to take SOPINE64 modules with the board providing a micro USB OTG port, a USB host port, and Ethernet transceiver for each SoM, which are connected to a Gigabit Ethernet switch (initially Marvell 88E6185, but they appear to have now switched to a Realtek part), and accessible via a single Gigabit Ethernet port.

Click to Enlarge

Power can be provided by a 5V/10A power supply connected to a power barrel, or via the ATX connector.I also understand the board is based on mini-ITX form factor (170×170 mm), so you’d be able easily find a case for it.

The board and software are still being developed, and it’s unclear when/if it will launch publicly.

ROCK64 Board Review – Part 2: Quick Start Guide with Ubuntu 16.04.3 MATE, Multimedia Features, Some Benchmarks

August 7th, 2017 15 comments

Pine64 ROCK64 is the first maker board based on Rockchip RK3328 processor, and is potentially interesting for various applications including network storage thanks to USB 3.0 and Gigabit Ethernet, multimedia applications with 4K HDR video support, as well as other applications requiring I/Os. I’ve already tested Rock64 board with Android 7.1 operating system, so today I’ll report by finding and experience with Ubuntu 16.04.3 with MATE desktop.

Selecting and Flashing a Linux Image

You’ll find several operating systems in the Wiki, but you’ll also find more cutting edge images in ayufan’s github. But first let me explain some vocabulary used for Pine64 firmware files:

  1. Engineering version – Becomes with release build based on the stock build develop by Pine64 and the SoC vendor. It’s supposed to be more stable, but get less updates
  2. Community versions (currently managed via ayufan) are more frequently updates, and comes with more recent features. You’ll find two categories
    1. Release builds – The current stable version released by the community
    2. Pre-release builds – Version under test to eventually become the release build

Currently, documentation is still work in progress for the board, so I spent some time on IRC #Rock64 chatting with the helpful community there, and I noticed most of them used the community builds. I’ve also been told there has not been that much work on the Desktop version right now, with most people focusing on NAS support with images such as Debian + OpenMediaVault. But since I wanted to test a desktop image I was recommended the Ubuntu Mate image, and download the pre-release 64-bit version: xenial-mate-rock64-0.4.17-85-arm64.img.xz.

If you’ve read the WIki, you’ll notice all those are “micro SD” images, so since I had a eMMC flash module, I was a little confused at the beginning, but since I have Hardkernel’s micro SD to  eMMC flash module adapter, installation was just the same as on a micro SD card with Etcher.

Top to Bottom: ROCK64’s 16GB eMMC flash Module, Hardkernel adapter, and micro SD card reader

But Pine64 does not sell such adapter, so how are you supposed to do with you bought an eMMC flash module? I’ve been explained you first need to flash a micro SD card with the image, and then interrupt the boot in u-boot (USB to TTL debug board required), remove the eMMC jumper, and continue the boot by typing “boot”. This has be to be done, or you won’t see the eMMC flash module, while booting from a micro SD card.

Now you can download, and flash the firmware to the eMMC flash module with curl:

Not the most user-friendly method, but it should work. If you don’t have a USB to TTL board, first you should really buy one, but for this specific case, you could remove the eMMC jumper about two seconds after applying power. In that case, your mileage may vary though… Pine64 is working on an easier method of installation to the eMMC flash module.

Rock64’s Ubuntu 16.04.3 MATE Boot, System Info, and Initial Setup

Since I want to get the boot log, I connected the USB to TTL board. There’s no dedicated UART connected on the board, so I download the GPIO pinout charts for Pi 2 Bus and Pi 5+ Bus from the Wiki, amd we’ll use it to test GPIOs later on.

Pi 2 Bus – Click to Enlarge

 

Pi 5+ Bus – Click to Enlarge

UART Tx and Rx can be found on respectively pin 8 and 10 of Pi 2 Bus header, so I connect the debug board accordingly, together with USB keyboard and mouse, a USB harddrive, Ethernet and HDMI cables.

Click to Enlarge

Finally I put the micro SD card into the board, applied powered, and after a few seconds, I got to the Ubuntu MATE desktop. however, I only got ribberish in the serial console, which was set to 115,200 8N1, the most common settings “in the universive”. There’s currently no info about serial console setting in the Wiki, but a web search lead me to the right settings: 1,500,000 8N1, which apparently is the default in Rockchip SDK.

This high bitrate may cause troubles with some serial adapter, but after changing minicom settings accordingly, I had no trouble with the serial console. That’s the complete boot log after a reboot:

We can now login with rock64/rock64 credentials in the desktop or the serial console:

I checkout some infor about CPU, storage, memory usage, and Linux & Ubuntu versions:

I have the 1GB version of the board, and the firmware is based on the latest Ubuntu 16.04.3 LTS release with a fairly recent Linux 4.4.70 kernel. However, we can see that with just 4.8GB capacity the rootfs partition has not been automatically resized during the first boot. So let’s run the relevant script, and check again:

All good, as we now have a 14GB rootfs partition. It’s worth noting the other scripts in /usr/local/sbin too:

Modules and GPIOs on Rock64

The next step was to check pre-loaded modules and GPIOs:

Only uas and usb_storage modules are loaded, which shows people are truly focusing on the NAS part right now, or some other drivers are directly built-into the kernel. GPIOs need to be exported manually, and a quick search lead me to that forum post (again no info in the Wiki right now).

You need to convert the gpio pin name as shown in the pinout diagram (e.g. GPIO3_A5) into a raw number using a formula combining bank number (3), pad name (A) and pad number (5). marcushh777, who is also a helpful member on IRC, wrote a Python script to do just that, and you may want to create that script in /usr/local/sbin/name2gpio.sh:

The file is also on Github so you could use wget or curl instead:

We can now run the script with the GPIO we want to use…

… switch to root, then use sysfs to export the gpio number and set the direction, and switch the GPIO to high and low levels:

I connected a 5V LED to GPIO3_A5 pin via a transistor and could turn it on and off with the last two commands above.

Eventually, a PDF document will be uploaded to the Wiki, but it does not appear to be ready yet. I was unable to find info to use I2C or SPI at this stage.

GPU (OpenGL ES) and VPU (Video Decoding) Testing

GPU and VPU support are often problems in Linux on ARM, and while I had low expectation, I still tried those by installing the usual OpenGL ES demo to test Mali GPU support:

I ran es2info first, and Mali-450MP GPU support is indeed enabled:

That command ended in a segfault however. Not too reassuring.

So I ran es2gears demo, but could not take a screenshot, as all screenshots were black with only the mouse pointer showing up, so instead I some photos, and it works, but the transparent window is unlikely to be normal.

Performance does not appear to be optimal right now however with just around 35 fps.
glmark2-es2 demo started well too…

Click to Enlarge

… but some features are not supported (maybe normal), and it crashed at the end as shown in full log below:

The results are actually better than I expected, but there’s still some work.

I tried to play 1080p60 H.264 Big Buck Bunny video with VideoLAN (VLC) first, and all I got was the first frame with changing artifacts around the bufferfly, and I had somewhat better luck in SMPlayer with the video playing almost smoothly in windowed mode, and some saturated and accelerated audio. Switching to full screen mode would just show a black screen, until I was asked to signing again a few seconds later…

So video playback is basically unusable at this stage in the Ubuntu MATE image, and you’d better go with Android, or potentially LibreELEC currently released as alpha for ROCK64 board.  LongChair also told me in IRC that “we have ffmpeg / mpv working on rock64 … we need to do more testing and get a few bugs fixed by rockchip before I finally upstream that to ffmpeg / mpv”, so video support is definitely coming. It’s just not ready yet. Another person informed me that contrary to Amlogic, Rockchip does not use AFBC (ARM Frame Buffer Compression) natively, and the memory bandwidth is critical, 4K H.265 HDR videos may not always play that well in RK3328. I’ve been told it may take one to two more months for 4K support in Linux, and that 1080p is now supported but not released just yet in the Ubuntu image.

Storage and Networking Benchmarks

I’ll skip the Phoronix benchmarks in this review, as we’ve had so many ARM Cortex A53 platform the results won’t be much better, unless there’s a bug, which would eventually be fixed. Instead, I’ll focus on storage and network performance on Rock64, since it may vary between boards.

Those are the results for the 16GB eMMC flash module:

Up to ~115 MB/s read speed, and ~69 MB/s write speed, and good random I/O too. For reference, Ubuntu boots in 17 seconds from power on to the login screen.

I then tried to create the iozone test on the NTFS partition of my hardware, but it failed because NTFS is read-only.

That can happen because of file system error, or because the image using the NTFS kernel module that provides read-only access only. So I installed ntfs-3g instead:

and remounted the drive inside the file manager in the desktop.

You can see the type is now “fuseblk” instead of “ntfs” – meaning the userspace ntfs-3g driver is used – , and the partition mounted as read/write.  So I could run iozone on the NTFS partition:

Something is clearly wrong with the read speed: up 271 MB/S is not right, as it’s much higher than what my USB drive is capable of (~115 MB/s) on my main PC. That means caching must be involved here, so I’ve increased the file size to 500 MB in the test:

and the results are much more realistic, except for the random read with 16384 reclen. It shows up to 119 MB/s reads, and up to 92 MB/s writes, which means everything is working as expected. So I repeated the test with the EXT-4 partition: