Embedded Linux Conference & IoT Summit 2018 Schedule

The Embedded Linux Conference 2018 and the OpenIoT Summit 2018 will jointly take place next month, on March 12 – 14, 2018 in Portland, Oregon, USA. The former is a “vendor-neutral technical conference for companies and developers using Linux in embedded products”, while the latter is a “technical conference for the developers and architects working on industrial IoT”. The Linux Foundation has already published the schedule, and it’s always useful to learn what will be discussed about even for people who won’t attend. With that in mind, here’s my own virtual schedule with some of the talks I find interesting / relevant to this blog. Monday, March 12 10:50 – 11:40 – Progress in the Embedded GPU Ecosystem by Robert Foss, Collabora Ltd. Ten years ago no one would have expected the embedded GPU ecosystem in Linux to be what it is now. Today, a large number of GPUs have Open Source support and for those that aren’t supported yet, …

Support CNX Software – Donate via PayPal or become a Patron on Patreon

SiFive Introduces HiFive Unleashed RISC-V Linux Development Board (Crowdfunding)

RISC-V free and open architecture has gained traction in the last couple of years. SiFive has been one of the most active companies with RISC-V architecture, introducing Freedom U500 and E500 open source RISC-V SoCs in the summer of 2016, before launching their own HiFive1 Arduino compatible board, and later the official Arduino Cinque board. That’s fine if you are happy with MCU class boards, but RISC-V is getting into more powerful processors, and recently got initial support o Linux 4.15, so it should come as no surprise the company has now launched HiFive Unleashed, the first RISC-V-based, Linux-capable development board. HiFive Unleashed key features and specifications: SoC – SiFive Freedom U540 with 4x U54 RV64GC application cores @ up to 1.5GHz with Sv39 virtual memory support, 1x E51 RV64IMAC Management Core, 2 MB L2 cache;  28 nm TSMC process System Memory – 8GB DDR4 with ECC Storage –  32MB Quad SPI Flash from ISSI, MicroSD card for removable storage …

Support CNX Software – Donate via PayPal or become a Patron on Patreon

SiFive U54-MC Coreplex is the First Linux Ready RISC-V based 64-bit Quad-Core Application Processor

We first covered SiFive when they unveiled their open source Freedom RISC-V SoCs. Since then, they moved away from open source for their customizable IP, since their customers did not require fully open source designs, but kept releasing more RISC-V cores such as 32-bit E31 Coreplex & 64-bit E51 Coreplex, as well as offering their one-time fee pricing without recurring royalties, contrary to what some competitors – such as Arm – are doing. The company has now just announced U54-MC Coreplex quad core real-time capable application processor with support for full featured operating systems such as Linux. U54-MC Coreplex main specifications / features: Fully compliant with the RISC-V ISA specification 4x RV64GC U54 Application Cores 32KB L1 I-cache with ECC, 32KB L1 D-cache with ECC 8x Region Physical Memory Protection 48x Local Interrupts per core Sv39 Virtual Memory support with 38 Physical Address bits 1x RV64IMAC E51 Monitor Core 4KB L1 I-Cache with ECC 8KB DTIM with ECC 8x Region …

Support CNX Software – Donate via PayPal or become a Patron on Patreon

LoFive is a Tiny Open Source Hardware Board based on SiFive FE310 RISC-V Open SoC

Do you remember HiFive1? It’s an Arduino compatible board based on the SiFive FE310 open source RISC-V SoC. Michael Welling has now started working on LoFive board using the same processor, but in a much smaller & breadboard friendly form factor. LoFive board specifications: MCU – SiFive Freedom E310 (FE310) 32-bit RV32IMAC processor @ up to 320+ MHz (1.61 DMIPS/MHz) Storage – 128-Mbit SPI flash (ISSI IS25LP128) Expansion – 2x 14-pin headers with JTAG, GPIO, PWM, SPI, UART, 5V, 3.3V and GND Misc – 1x reset button, 16 MHz crystal Power Supply – 5V via pin 1 on header; Operating Voltage: 3.3 V and 1.8 V Dimensions – 38 x 18 mm (estimated) The board will be programmable with Arduino IDE + Cinco just like HiFive1 board. The board is also open source hardware, so beside the aforelinked info on Hackster,io, you’ll also find the KiCAD schematics, PCB layout, and 3D renders, released under CERN Open Hardware License v1.2, on …

Support CNX Software – Donate via PayPal or become a Patron on Patreon

Arduino Cinque Combines SiFive RISC-V Freedom E310 MCU with ESP32 WiFi & Bluetooth SoC

SiFive introduced the first Arduino compatible board based on RISC-V processor late last year with HiFive1 development board powered by Freedom E310 MCU, but  the company has been working with Arduino directly on Arduino Cinque board equipped with SiFive Freedom E310 processor, ESP32 for WiFi and Bluetooth, and an STM32 ARM MCU to handle programming. Few other technical details have been provided for the new board, but since it looks so similar to HiFive1, I’ve come with up with preliminary/tentative Arduino Cinque specifications: MCU – SiFive Freedom E310 (FE310) 32-bit RV32IMAC processor @ up to 320+ MHz (1.61 DMIPS/MHz) WiSoC – Espressif ESP32 for WiFi and Bluetooth 4.2 LE Storage – 32-Mbit SPI flash I/Os 19x Digital I/O Pins 19x external interrupt pins 1x external wakeup pin 9x PWM pins 1/3 SPI Controllers/HW CS Pins I/O Voltages –  3.3V or 5V supported USB – 1x micro USB port for power, programming and debugging Misc – 6-pin ICSP header, 2x buttons …

Support CNX Software – Donate via PayPal or become a Patron on Patreon

SiFive Launches 32-bit E31 Coreplex & 64-bit E51 Coreplex RISC-V Processors, Reveals Pricing

SiFive unveiled their Freedom U500 and E500 open source RISC-V SoCs last year, and a little layer launched HiFive1 Arduino compatible development board based on SiFive Freedom E310 processor. The company has now launched their non-open source Coreplex IP also based on RISC-V ISA with the 32-bit E31 Coreplex and 64-bit E51 Coreplex, and explained details about pricing. Some of the key features of the processors are listed below: E31 Coreplex 32-bit RV32IMAC core @ 900 to 1.5 GHz (with 28nm process) Advanced Memory Subsystem – 16KB, 2-way Instruction Cache, Instruction Tightly Integrated Memory (ITIM) option, up to 64KB Data Tightly Integrated Memory (DTIM) support Up to 16 local interrupts with vectored addresses Performance – 1.61 DMIPS/MHz  ; 2.73 Coremark/MHz Power Consumption 28nm HPC process – Core only: 150 DMIPS/mW ; Coreplex: 41 DMIPS/mW 55nm LP process – Core only: 95 DMIPS/mW; Coreplex: 16 DMIPS/mW Applications: Edge Computing, Smart IoT or Wearables. Suited to replace the Cortex-M3 and Cortex-M4, but …

Support CNX Software – Donate via PayPal or become a Patron on Patreon

$59 HiFive1 Arduino Compatible Board is Powered by Sifive Open Source RISC-V MCU (Crowdfunding)

Royalty-free RISC-V instruction sets has been getting in the news in the last few years with various MMU designs from companies or projects like lowRISC, PULPino, and SiFive, and recently there are been rumors that Samsung may use RISC-V in their future IoT SoCs. Many projects are still in progress, and while you can get involved in OnChip Open-V MCU crowdfunding campaign to their get the MCU or a development board, the cost for the MCU ($49) and development board ($99) is a little on the high side, and delivery is expected in 2018 for most rewards. SiFive appears to have a more interesting open source RISC-V solution with HiFive1 Arduino compatible board going for $59 and slated to ship between December 2016 and February 2017. HiFive1 development board specifications: MCU – SiFive Freedom E310 (FE310) 32-bit RV32IMAC processor @ up to 320+ MHz (1.61 DMIPS/MHz) Storage – 128 Mbit SPI flash I/Os 19x Digital I/O Pins 19x external interrupt …

Support CNX Software – Donate via PayPal or become a Patron on Patreon

OnChip Open-V Open Source 32-bit RISC-V Processor Launched on CrowdSupply

Open source hardware gives mostly full control over software and hardware, but there are different levels of openess, with some companies wrongly claiming their product to be open source hardware – with a nice accompanying logo – once they dump some source code somewhere and publish the PDF schematics, while others are doing it right with the release of schematics and PCB layout in source format, as well as software and proper documentation. However even for the latter group, the actual chips are closed source bought directly from silicon vendors or their distributors. So the good news is that you now have the opportunity to bring the meaning of open source hardware to a whole new level thanks to OnChip Open-V 32-bit  processor that is open source, and getting launched on Crowd Supply crowdfunding platform. OnChip Open-V is based on RISC-V (pronounced “risk-five”), comes with peripherals, and should be competitive against ARM Cortex M0 based micro-controllers. The MCU would also …

Support CNX Software – Donate via PayPal or become a Patron on Patreon