Archive

Posts Tagged ‘sigfox’

WizziKit is a DASH7, LoRa and Sigfox Wireless Sensor & Actuator Network Kit

September 13th, 2017 2 comments

Over the last few years, I’ve written several article about LoRaWAN, Cellular IoT, and Sigfox based long range low power IoT solutions. DASH7 is another LPWAN (Low Power Wide Area Network) standard that operates on the same 868 and 915 MHz ISM bands as LoRa and Sigfox, but has much lower power consumption, and the cost of a shorter range up to 500 meters, instead of the 5+km associated with LoRa or SigFox.

The DASH7 Alliance Protocol (D7A) is an Open Standard, and if you want more details you can download version 1.1 of the specifications on DASH7 Alliance website. I’m writing about DASH7 today thanks to an article on ST blog about Wizzilab’s Wizzikit, an evaluation kit and framework for DASH7 with a gateway, and several nodes that can also optionally support LoRaWAN and Sigfox protocols.

Click to Enlarge

The kit is comprised of the following items:

  • WizziGate GW2120 Ethernet/Wifi/Dash7 gateway – based on GL-iNet AR150 router –  with antenna for the selected band (868/915 MHz) and USB power cable.
  • 2x Nucleo-L432KC STM32 development board compatible with Arduino. mbed, and ST morpho
  • 2x D7A SH2050 Nucleo Shield with a multimode Murata Lora Module supporting LoRa, DASH7, and Sigfox, as well as four sensor chips: light sensor,  magnetometer & accelerometer, humidity and temperature sensor, and a pressure sensor.
  • 2x mini USB cable to power up and program the Nucleo boards

DA7 SH2050 Shield

You’ll also need to add you own USB power adapter for the gateway. The kit also comes with access to the company’s DASH7Board cloud service. The Wiki includes some information, including a quick start guide explaining how to register the gateway, and start loading the demo code using mbed. Since DASH7 is much more power efficient than LoRaWAN it can either be used to prolong battery life, or to send more frequent messages for example to control actuators. With LoRaWAN, downlink access can only be initiated by the end node, but DASH7 is bi-directional allowing for OTA firmware upgrades. The solution was showcased a few months ago at ST Techday with two demos: sending a message to a single node, and OTA code upgrade (actually picture upload) to multiple boards with a broadcast message.

Wizzilab’s Wizzikit is sold for 299.00 Euros with either 868 and 915 MHz band. Further details on be found on Wizzilab website.

Arduino MKRFOX1200 Board Combines Microchip SAM D21 MCU with Sigfox Module in MKRZero Form Factor

April 19th, 2017 3 comments

Arduino MKRFOX1200 is the first official Arduino board to feature LPWAN technology thanks to a Microchip ATA8520 Sigfox module combined with a Microchip SAMD21 ARM Cortex M0+ micro-controller, all that in the same form factor as MKRZero or MKR1000 boards.

Click to Enlarge

Arduino MKRFOX1200 specifications:

  • MCU – Microchip SAMD21 ARM Cortex-M0+  MCU @ 48 MHz with 256KB flash, 32KB SRAM
  • Connectivity – Microchip AT8520 Sigfox module operating @ 868 MHz with 2dB “GSM” antenna connected to u.FL connector
  • 2x 14-pin headers for I/Os:
    • 8x digital I/O
    • 8x external interrupts (0, 1, 4, 5, 6, 7, 8, A1 -or 16-, A2 – or 17)
    • 7x analog inputs (8/10/12-bit ADC)
    • 1x analog out (10-bit DAC)
    • 12x PWM pins ((0, 1, 2, 3, 4, 5, 6, 7, 8, 10, A3 – or 18 -, A4 -or 19)
    • 1x UART, 1x SPI, 1x I2C
    • 3.3V operating voltage
    • DC Current per I/O Pin 7 mA
  • USB – 1x full speed micro USB device and embedded host
  • Misc – Reset button, LED
  • Power Supply
    • 5V via USB or VIN pin
    • 2x AA or AAA batteries good for up to 6 months (connected via green screw terminals)
  • Dimensions – 67.64 x 25 mm
  • Weight – 32 grams

Since the Sigfox module is limited to 868 MHz, the board can only be used in Europe, Africa, and Middle East. You’ll get 2-year free subscription to Sigfox network with the board (for up to 140 messages per day), as well as free access to Spot’it geolocation service that allows you to track the board without GPS or any extra hardware. How well that works will depend on the coverage in your area, and I could not find no accuracy information allowing us to compare it to GPS. Just like other Arduino board, MKRFOX1200 is fully open source hardware, and can be programmed with the Arduino IDE. You’ll find the full documentation in the Getting Started Guide.

Official Arduino boards are usually fairly expensive compared to the competition, but I find Arduino MKRFOX1200 to be pretty good value at 35 Euros (Select European website) considering you also get 2-year of Sigfox network access, and geolocation tracking.

SigFox Launches Spot’it Low Cost GPS-Free IoT Geolocation Service

February 17th, 2017 2 comments

Asset tracking was traditionally done using a combination of cellular and GPS technology, and LPWAN standards like LoRa & Sigfox promised to lower the cost of communication and hardware while still relying on GPS technology, but Sigfox has just announced Spot’it geolocation service, which will get rid of GPS all together, and instead use radio signal strength analysis and deep learning techniques in order to provide location information both outdoors and indoors.

Key benefits listed by the company include:

  • Lowest-cost IoT location service – Spot’it does not require any additional hardware or software upgrades, and the device does not have to transmit more messages, meaning there is no impact on the solution operating cost for customers.
  • Low energy – Spot’it does not rely on energy intensive GPS technology, nor require additional processing or any more energy than what Sigfox-enabled devices already consume.
  • Enabled through a planetary network – Spot’it is embedded in Sigfox’s global network footprint and represents the first global IoT geolocation offer. This allows the simplification of global supply chain management: once a device is registered into the Sigfox Cloud, the geolocation service is available in all territories where the network is present.
  • Unlike traditional GPS-tracking, Sigfox Spot’it works both indoors and outdoors.

For this to work, you’ll need to be covered by Sigfox’s network in one of the 31 countries currently covered, so coverage is not exactly “global” yet. The service does not need any new hardware, and you can use existing Sigfox modules, which you can get for as low as $2 (in quantities), and track them at low cost. Sigfox has not provided that much details on how they are doing it, but they still explained Spot’it was the first big data based Sigfox server, which relies on their Cloud service analyzing signal strength to determine the location.

So there are still unanswered questions, such as accuracy of the system, and how much the company charges for the geolocation service on top of the network access fee.

Categories: Uncategorized Tags: cloud, gps, IoT, lpwan, sigfox

Bttn is a Sigfox Connected IoT Button Going for $2 a month

January 7th, 2017 3 comments

The Button Corporation, a company specializing in… buttons as you may have guess, has introduced a new version of their bttn connected button with Sigfox connectivity in the US. It works a little like Amazon Dash, but mostly targets businesses, offers more features, and works anywhere with a Sigfox network.

sigfox-buttonbttn & bttn mini specifications:

  • Button functions – Short press, long press and “not pressed”
  • LED feedback – Green (positive), red (negative) and yellow (wait)
  • Connectivity – Mobile data (2G GPRS), SIGFOX (868 MHz ETSI / 915MHz for US), or Wi-Fi (2.4 GHz 802.11b/g/n)
  • USB – 1x micro USB port for charging
  • Power Supply
    • bttn mini – Rechargeable Li-Po battery
    • bttn – 4 x AA alkaline batteries
  • Dimensions – bttn mini: 69mm Ø x 40 mm; bttn: 100 mm Ø x 73 mm
  • Weight – bttn mini: 90 grams; bttn: 190 grams
bttn devices send data to bt.tn cloud server, or for WiFi bttns to a local server, and support HTTP(S), REST API, IFTTT, Zapier, email, SMS, social media, and more. my.bt.tn website allow for remote management,group configuration, and status monitoring, automatic alerts, usage statistics and analytics for your bttns. Companies can also ask the company to customize the bttns with their own logos.
Creating actions at my.bt.tn

Creating actions at my.bt.tn

Some use cases include pressing the button to re-order a product, for example a bttn provided by your heating oil supplier may allow you to press it to get a refill, or bttn could also be used to rate the service at government offices: short press service was good, long press service may need improvement, etc… The system will also monitor the battery level, and send an email once it’s below 15% so that the battery can be replaced or recharged. The battery lasts for about 2000 presses.

The company is now taking pre-order with the service launching in March for $1.99 per month in the US. The press release does not mention it, but bttn is also available in Europe for 1.99 Euros per month right now based on the specs, and information on bttn Sigfox page and the online shop, with more countries and regions to be supported as Sigfox coverage expands around the world. The initial costs is actually 69.00 Euros including a 2-year free subscription to the service.

Categories: Hardware Tags: ces 2017, IoT, lpwan, sigfox

Pycom To Sell WiFi, BLE, LoRa and Sigfox OEM Modules for Your Own Hardware Projects

December 19th, 2016 5 comments

Pycom is the company making some relatively popular IoT boards programmable with Python such as WiPy, LoPy, SiPy, and soon FiPy, supporting respectively WiFi+BLE, LoRa+WiFi+BLE, Sigfox+WiFi+BLE, and for the latter all four plus LTE CAT M1/NB1. Those little boards are great for personal projects and/or to experiment, but for those of you who would like to integrated IoT connectivity into your own hardware projects, Pycom will soon launch three OEM module for corresponding to WiPy, SiPy and LoPy connectivity featues with respectively W01, S01 and L01 modules.

sigfox-lora-wifi-ble-oem-modulesKey features:

  • W01 WipY 2.0 OEM Module – Dual network BLE and WiFi – 7.95 Euros
  • L01 LoPy OEM module – LoRa, WiFi and Bluetooth – 14.95 Euros
  • S01 SiPy OEM module – Sigfox, WiFi and Bluetooth; Available in both 14dB (for Europe) and 22dB (outside Europe) version for respectively 14.95 and 19.95 Euros

All three models have basically the same functionality as the full board, but there are missing the voltage regulator, reverse power supply protection, antenna switch, smd antenna, u.fl connectors, reset switch, LED, headers, and a few passive components found on the development boards. The modules will come in an hermetically sealed trays, and are both CE and FCC certified.

The modules will officially launch in April 2017 with a minimum order quantity of 500 units, and a lead time expected to be 8 to 12 weeks. You can find all three modules on Pycom’s OEM products page.

NXP Modular IoT Gateway Supports Thread, Zigbee, NFC, Bluetooth and WiFi Connectivity

November 30th, 2016 3 comments

NXP has just announced a modular IoT gateway solution for large node networks (>= 250 nodes) based on Volansys i.MX6UL system-on-module, supporting wireless communications protocols such as Thread, ZigBee, NFC through add-on modules, on top of Wi-Fi and Bluetooth 4.1.

nxp-modular-iot-gatewayNXP Modular IoT Gateway specifications:

  • SoM – Volansys i.MX6UL 200-pin SO-DIMM module with:
    • SoC – NXP i.MX 6UL ARM Cortex A7 processor @ 528 MHz
    • System Memory – 256MB to 1GB DDR3L  RAM
    • Storage – 1GB to 4GB NAND flash, optional 4GB to 16GB eMMC flash, EEPROM for device info
    • PMIC, Mbit Ethernet PHY
  • Wireless Connectivity Expansion Modules:
    • PN7120 explorer board for NFC
    • Kinetis KW41 module for Thread support
    • JN5169 module for Zigbee support
    • 2x MikroBUS headers
  • Baseboard connectors / features:
    • Storage – 1x micro SD slot
    • Connectivity – 1x 10/100M Ethernet port, Murata WiFi 802.11 b/g/n & Bluetooth 4.1 + EDR module with external antenna connector
    • USB – 2x USB 2.0 host port, 1x micro USB OTG ports,
    • Debugging – 1x micro-USB port for debugging, JTAG connector
    • Misc – RTC, LEDs, user switch (for power on/off and NFC), and reset pinhole
  • Power Supply – 5V/3A
  • Dimensions & Weight – TBD
  • Certifications – FCC/CE/IC

nxp-iot-gateway-board

So you can select your own i.MX6UL module with the amount of memory and storage needed, and add wireless modules as needed to match your requirements. Volansys is also planning for LoRaWAN and Sigfox modules in the future. Beside the hardware, the gateway and modules all come with various software stack and documentation: A Yocto Linux BSP with drivers, an MQTT client library, a Thread Linux host software SDK, Thread and Zigbee device controller, registration with the cloud, and more. The companies also provide an Android app to manage the gateway, and firmware for Thread Kinetis KW4x end device. Alternative operating systems supported include OpenWRT and Brillo.

nxp-modular-iot-gateway-block-diagram

NXP Modular IoT Gateway is available now for $269 with the default configuration, and you’ll find more details with documentation and datasheets as well as a purchase link on NXP Modular Gateway product page and Volansys website.

Via HackerBoards

39 Euros FiPy Board Supports Sigfox, LoRa, LTE Cat M1/NB1, Bluetooth 4.2, and WiFi (Crowdfunding)

November 24th, 2016 1 comment

Long range LPWAN solutions have just started to hit the market, and there are so many standards such as Sigfox and LoRa that it’s difficult to know who will eventually be the winner, or if different standards will co-exist over the long term, and in a general sense it might not be so easy to decide which one is best suited to your project without experimenting first. Pycom has a solution to this problem, as they’ve made a board similar to LoPy with WiFi, Bluetooth, and LoRa, but instead included 5 long and short range IoT protocols: Sigfox, LoRa, LTE Cat M1 & Cat NB1, Bluetooth, and WiFi.

pycom-fipy-boardPycom FiPy board specifications:

  • SoC – Espressif ESP32 dual core Tensilica L108 processors @ up to 160 MHz with BT 4.2 and WiFi
  • System Memory – 4MB RAM
  • Storage – 8MB flash memory
  • Connectivity
    • WiFi 802.11 b/g/n @ 16 Mbps up to 1 km range & Bluetooth 4.2 with common u.FL antenna connector and chip antenna
    • LoRa and Sigfox transceiver
      • common u.FL antenna connector, RF switch
      • Lora
        • 868 MHz (Europe) at +14dBm maximum
        • 915 MHz (North and South America, Australia and New Zealand) at +20dBm maximum
        • Node range up to 40 km, nano-gateway range up to 22 km (max 100 nodes).
        • Power Consumption – 10mA Rx, 28mA Tx
      • Sigfox
        • Maximum Tx power – +14dBm (Europe), +22dBm (America), +22dBm (Australia and New Zealand)
        • Node range up to 50km
        • Operating Frequencies
          • RCZ1 – 868MHz (Europe)
          • RCZ2 – 902MHz (US, Canada and Mexico)
          • RCZ3 – (Japan and Korea)
          • RCZ4 – 920 – 922MHz (ANZ, Latin America and S-E Asia)
        • Power Consumption
          • Sigfox (Europe) – 17mA in Rx mode, 47mA in Tx mode and 0.5uA in standby
          • Sigfox (Australia, New Zealand and South America) – 24mA in Rx mode, 257 mA in Tx mode and 0.5uA in standby
    • Cellular LTE CAT M1/NB1 transceiver
      • u.FL antenna connector and nano SIM socket
      • Operating frequencies – 34 bands supported from 699 to 2690MHz
      • 3GPP Release 13 LTE Advanced Pro
      • Peak power estimations – Tx current = 420mA peak @ 1.5Watt Rx current = 330mA peak @ 1.2Watt
  • Expansion – 2x 14 pin headers with UART, 2x SPI, 2x I2C, I2S, SDIO, 8x 12-bit ADC, 2x 8-bit DACs, up to 16 PWMs, up to 22 GPIOs
  • Misc – WS2812 RGB LED, reset switch, 32 KHz RTC (in SoC)
  • Dimensions – 55 x 20 x 3.5 mm
  • Temperature Range – -40 to 85 degrees Celsius
  • Certifications – CE, FCC,  Sigfox network certification, LoRa Alliance certification, LTE-M CAT M1/NB1 cellular –  global networks

fipy-lte-cat-module-sim-card

FiPy name is most probably derived from Five IoT protocols, and microPython support. As the board is compatible with WiPy, LoPy and SiPy you can use the usual Pymakr IDE and Pymate Mobile app to write your program and control the board. The company has also introduced two new add-on boards:

  • PySense board with an ambient light sensor, a barometric pressure sensor, a humidity sensor, a 3-axis 12-bit accelerometer, and a temperature sensor, as well as a micro SD card, a micro USB port, and a LiPo battery charger
  • PyTrack board with a GNSS + Glonass GPS and a 3-axis accelerometer, as well as a micro SD card, a micro USB port, and a LiPo battery charger. This can be very useful to track moving assets such as cars or bicycles.
sigfox-lora-wifi-bluetooth-board-lte

FiPy and PyTrack

The project has just launched on Kickstarter as already surpassed its 25,000 Euros funding target. Most early bird rewards are gone, but you can pledge 39 Euros for FiPy board,  59 Euros (Early bird) for PySense Kit, 65 Euros (Early bird) for PyTrack kit, optionally adding 7 Euros for a Sigfox/Lora antenna, and 7 Euros more for an LTE-M cellular antenna. Shipping adds 8 to 25 Euros depending on the selected rewards, and delivery is scheduled for April 2017. Just a warning for users who are not based in the US or Europe: please make sure you comply with your country regulations, especially in terms of frequency used, as such nodes will have multiple kilometers range, and you may not want to break the law, and possibly get a visit from your local police or military…

A Closer Look at Ingenu RPMA Alternative to LoRa or Sigfox LPWAN Standards & RPMA Development Kit

November 20th, 2016 6 comments

I’ve recently started to write a bit more about long range LPWAN standards for IoT applications, especially LoRa and Sigfox, as commercial networks are being launched, and relatively low cost hardware platforms are being introduced to the market. There are also other highly expected standards such as Weightless and LTE Cat M that will bring more competition to the market. Ingenu RPMA (Random Phase Multiple Access) is another available standard that’s been in deployment for a while, and based on an earlier comparison of  long range LPWAN standards, it comes with long range, supports up to 384,000 nodes per “sector”, operates in the unlicensed 2.4 GHz ISM band, and offers high combined uplink and downlink bandwidth than competitors. Ingenu recently contacted me and provided some more details and information about their technology and development kit.

One of the documents includes an “independent analysis completed by ABI Research, Inc.” comparing features of Sigfox, LoRa, EC-GSM-IoT, MB-IoT, LTE Cat-M1,  and RPMA.

Click to Enlarge

Click to Enlarge

All standards can have node powered by a battery for over 10 years, but based on that table RPMA does seems to have some advantages in terms of coverage, capacity, throughput, security level, scalability, and mobility support.

Click to Enlarge

Click to Enlarge

Those charts are extracted from the Ingenu’s marketing documents, so they’ll obviously show RPMA in a positive light. However it does seems that if you have lots of nodes, and bandwidth requirements higher than what can be delivered by LoRa or Sigfox, RPMA appears to be a potentially better solution. The 2.4 GHz band is normally quite busy, so I wonder if there could be some limitations here, and some countries may also have restrictions on the emitted power. RPMA deployments started in 2011, so they already have an installed base on several continents for industrial, agricultural, and security applications, which includes 38 Private Networks as well as the “Machine Network” in North & South America, EMEA, and APAC regions.

ingenu-rpma-networksSupport in the Asia Pacific regions is certainly a plus, as this week a French company wanted to send me their Sigfox & LoRa sensors kits for evaluation, but they had nothing working in South East Asia, so it will be for a little later.

The company can provide RPMA devkit to their customers in order to get started and evaluate the technology.

Click to Enlarge

Click to Enlarge

Ingenu RPMA development kit key features and specifications:

  • MCU – NXP Kinetis K20 ARM Cortex-M4 MCU @ 50 MHz
  • Connectivity
    • nanoNode RPMA radio module (NODE103)
      • Wireless Frequency – 2.4 GHZ ISM
      • Bandwidth – 1 MHz
      • Modulation – Dynamic Direct Sequence Spread Spectrum (D-DSSS)
      • Access Point Capacity – Up to 64,000 nodes in star topology
      • Typical Power – Tx: 800 mW; Rx: 250 mW
    • u-Blox GPS module
  • Expansion – Header with analog & digital GPIOs and UART
  • Debugging – JTAG header, UART for serial debugging
  • Battery Life – Up to 20+ years
  • Power Supply – 5V/1A power supply to DC jack (J204), 2.2 to 3.6V DC batteries to J201 header
  • Dimensions – 107 x 68 x 13 mm
  • Temperature Range – 0°C to 85°C
  • Certifications – FCC, IC, ETSI, and others (pending) for some specific countries

The rACM (reference Application Communication Module) tools are used to control the kit, and since they are written in Python it will work on Windows, Mac OS X or Linux. Communication occurs over a REST API or Advanced Message Queuing Protocol (AMQP) open standard messaging protocol, and devices can be managed through a platform called Intellect. Quick Start Guides are also provided to customers to show how to set up pulse meters, UART, GPIO, and more…

rpma-intellect

You’d use the devkit with RPMA networks such as the Machine Network. You can check network coverage on Ingenu to find out if it is available in your location. If there’s no network in your location, but a network is expected soon, you can still evaluate RPMA technology by getting an Exploration Kit with two RPMA devkits and a rental RPMA access point. The latter gives some clue about about the use cases for RPMA, as while you can get one or two ~50 Euros LoRa nodes connected it to a LoRaWAN network or setup P2P communication, RPMA apparently requires an access point that expensive enough that it has to be rented. So RPMA is likely most suitable and cost effective for larger scale IoT deployments, and not for smaller or hobbyist’s projects.

You’ll get some more details about the hardware and software, as well as interesting case studies about existing implementations, on the Get Started page, or by directly downloading the Starter Pack with hardware design files, software tools, REST & AMQP source code examples, and documentation.