Archive

Posts Tagged ‘windows’

NComputing RX300 Thin Client Review – Part 2: Hardware Setup, Windows Server 2016

October 8th, 2017 8 comments

Ncomputing RX300 is a thin client based on Raspberry Pi 3 board, allowing to run Windows operating systems on a powerful server with the Raspberry Pi 3 handling the display, audio, and keyboard/mouse inputs.

The company sent me a sample for review, and I checked out the hardware and accessories in the first part entitled “NComputing RX300 Thin Client Review – Part 1: Unboxing and Teardown“, so in the post I’ve started the thin client, and connected it to vSpace Pro server.

Hardware Setup

RX300 uses the same peripherals as any mini PC, so I connected USB keyboard and mouse, an Ethernet cable (WiFi is also possible), and the power adapter. You could also connect other devices, and I added a USB flash drive which, as we’ll see later, will be properly recognized by the server. I was also sent a USB to VGA adapter that you can connect to the remaining USB port to add a secondary display, but it would never work with through my TV, maybe because VGA is limited to 1600×1050, and the resolution confused the adapter.

Server Options

You’ll also need to setup a server, and you have two main option here:

  • Download vSpace Pro 10 to install and manage a self-hosted server. I did not do this in this review, because my main PC is running Ubuntu 16.04, and the program only support Windows operating systems, and server virtualization infrastructure solutions from VMWare, Citrix and Microsoft.
  • So instead I used a vSpace Pro server hosted in Singapore using AWS (Amazon Web Services) with a demo account prepared by the company for the review

If you’re interested in the first solution, you may want to read to Quick Installation Guide to find out more.

Ncomputing RX300 and Windows Server 2016 AWS instance

Once the thin clients are installed, and the server is configured, you can start your RX300 devices. About an animated boot logo, you should soon (around 15 to 20 seconds total boot) time see vSpace Pro client interface as shown below. Please ignore the vertical lines in the photos and video below, it’s just a problem with my TV.
You’ll see two sections with a list of auto-detected servers if you have setup any local vSpace Pro 10 machine, and/or server groups with other vSpace Pro servers. I’m located in the north of Thailand, and Thailand->Thailand was already setup, so I had nothing to do except click on Connect, and within a few short second, I was asked to login into Windows.

I typed the credentials provided by the demo, and I ended up in Windows right away, and could use it normally. A few times later however, I was automatically disconnected during the login process: I would type the user name and password to login, Windows desktop will appear, only go to back to vSpace Pro client interface. Trying again once or twice usually did the trick.

As soon as I entered into the server, I wanted to find out what kind of hardware the virtual machine was running on. Intel Xeon CPU E5-2676 v3 @ 2.40 GHz running Windows Server 2016 64-bit with 4 GB RAM, and a 39.9 GB Windows partition.

Click to Enlarge

Quite a powerful machine so we should expect good performance that may be affected by the Internet connection between my ISP’s modem router and the server. You’ll also notice “Ubuntu 16.10” D: drive. That’s my own flash drive connected to one of the USB port of the Raspberry Pi 3 board.

The company had install several programs such as Chrome and LibreOffice, as well as demo files.  I also tried to install my own program (Gimp), and I could do that, and persistent storage mean even after I disconnect the client, or reboot the server, my programs and files were still present in the system.

So I went on to use it like I would for a desktop machine in a business setting, browsing the web, and loading multiple programs.

Click to Enlarge

More specifically, I ran the following tests:

  • Launching Chrome, LibreOffice Calc (excel spreadsheet), LibreOffice Impress (powerpoint presentation), LibreOffice Writer (word doc), and Gimp in succession to demonstrate the speed to launch apps
  • Multi-tab browsing in Chrome and Octane 2.0 benchmarks
  • Playing 1080p YouTube video in embedded and full screen modes
  • Playing local 1080p video with VLC

Overall the performance is impressive for a remote system, and in many cases, it’s hard to know we are not using a “normal” computer. The fonts may not be as sharp as on a normal PC, but it’s hardly noticeable, and the screen updates while scrolling up or down web pages are slower than on my main computer. However, I did not feel either issues were a big problem, and they will likely depend on your network performance, in my case “low to moderate”. It feels much better than the few times I used VNC in the past.

The first time however, YouTube video playback was very choppy, but then I saw Chrome complaining about “vCAST feature not available”. vCast streaming technology is a premium feature allowing you to watch videos smoothly on thin clients. After the company enable vCAST in the server, I could streaming 1080p YouTube videos, and play local video in VLC smoothly.

You can watch the video below to have an idea of the performance, and a look at the client settings.

Once you are done, you can click on the power icon and select Disconnect to go back to vSpace Pro client user interface.

vSpace Pro client configuration options and Going back to Raspbian

If you’ve watched the video above, you’ll know that the gear icon on the bottom right brings use to the configuration menu.

Click to Enlarge

The menu has eight sub-menus:

  • General to select between Thin client mode and Raspbian Desktop mode
  • Connections to select servers manually or automatically
  • Server Groups to manage servers
  • Kiosk Mode to automatically login and/or launch a program when connecting to the vSpace server
  • Display to change HDMI resolution, or manage dual display setups.
  • Audio to select audio output and input priority
  • Network to configure Ethernet or WiFi
  • Support for firmware update option
  • About with some information about the thin client.

I tried the Raspbian desktop mode, and sure enough it will be into Raspbian, and you could potentially use it as a normal Raspberry Pi 3 board too.

Once you’ve selected this mode, it will boot to Raspbian by default. If you want to use it as a thin client again, the Switch to Thin Client Mode icon will reboot RX300 to vSpace client user interface.

Recycling older Windows computer with vSpace Pro Client

If your organization owns some older Windows PCs or laptops that lack the performance or memory to run recent programs, you could download vSpace Pro client for Windows to put them to good use. Just to the the Software Downloads page, register or/and login, and select vSpace Pro Client for WIndows 7, 8.1 or 10 as needed. Linux clients are not available for download.

You could then have a “fleet” a thin clients mixing older hardware and NComputing RX300. You’d have to consider electricity charges while calculating your TCO, as RX300 only consumes around 3.0 to 3.4 Watts, and older hardware may consume much more than that.

The Costs

Larger organizations should probably contact the company to find out the best way to match their requirements. But if you have smaller needs, or just want to evaluate the system, you could purchase Ncomputing RX300 for $99 MSRP with a 1-year license, or $174.99 with a 3-year license. I understand vCAST streaming is included for free for 6 months, but after you’d have to pay extra for the feature. What I could not find is public pricing for the various licenses. The company however has a cost calculator allowing you to check how much you’d save with thin clients compared to having PCs, but again premium features license costs such as vCAST or dual display are not included. You’d also have to consider Windows server license requirements.

IkaScope WiFi Oscilloscope Probe Works with Windows, Linux, Mac OS X, Android and iOS

September 13th, 2017 11 comments

Last year, I wrote about Aeroscope, a portable Bluetooth oscilloscope that looks somewhat like a Stabilo Boss highlighter pen, and sends measurements over the air directly to your Android and iOS tablet or smartphone. It was introduced through a crowdfunding campaign which eventually failed, but Aeroscope can now be purchased for $199 on Amazon US or their own website. If you’d prefer WiFi over Bluetooth, and would like something that also works on Windows, Linux, and/or Mac OS X, IKALOGIC has just launched IkaScope WiFi oscilloscope probe compatible with all popular mobile and desktop operating systems.

IkaScope WS200 specifications:

  • Analog Bandwidth  – 30 MHz @ -3dB
  • Sample Rate – 200 MSps
  • Connectivity – 802.11 b/g/n/e/i WiFi @ 2.4 GHz configurable as access point or station
  • Input Range – +/-40 V range CAT1
  • Offset Range – +/- 20V to +/- 40V offset
  • Input Impedance – 10MΩ || 14pF
  • Input Contact – ProbeClick intelligent probe tip that will only start measurements upon contact
  • Voltage Resolution – 100 mV/division to 10 V/division
  • Sample Resolution – 8-bit
  • Max Refresh Rate – 250 fps
  • Memory Depth – 4K points (4x 1000 points for burst buffers)
  • Protection Input Level – 253 VAC 1min
  • USB – Isolated micro USB port for charging only
  • Misc – Power/Charging and WiFi status LEDs
  • Battery – 420 mAh battery good for about 1 week battery life with daily regular use.
  • Dimensions – 161mm long

IkaScope specifications are slightly better than the ones of Aeroscope when it comes with analog bandwidth and sample rate for example, but the battery capacity is lower. However,  the latter is likely more than compensated by ProbeClick technology that will only measure when a contact is detected, hence saving power during idle times. One advantage of WiFi over Bluetooth is that it allows for a higher refresh rate up to 250 fps.

The probe ships with a ground clip and a USB charging cable. OS support will be brought step by step starting with Windows, but Linux, Mac OS X, iOS, and Android will all be supported by November 9th if the schedule’s deadlines can be met, and all desktop OK will be supported by the end of September before shipping. More details about the software can be found in IkaScope knowledge base.

IKALOGIC has started taking pre-order for IkaScope for 299 Euros excluding VAT and shipping scheduled by the end of the year. “EARLYBIRD” coupon valid until the 20th of September will power the price by 10%.. Some more information, and the purchase link are available on the product page.

Axiomtek NA362 Network Appliance Features Intel Atom C3538/C3758 Processors, Up to 10 LAN Ports

August 19th, 2017 4 comments

We reported about GIGABYTE MA10-ST0 motherboard powered by a 16-core Intel C3958 Denverton processor earlier this week, but that also corresponded to the official launch of Intel Denverton family, and many companies made announcements for their Denverton boards, products, or COM Express modules including SuperMicro, Kontron, Portwell, and others, such as Axiomtek NA362 Network Appliance powered by Atom C3538 or C3758 processors, and offering up to 10 LAN ports with six GbE RJ-45 ports, and up to four SFP+ cages.

Axiomtek NA362 specifications:

  • SoC (one or the other)
    • Intel Atom C3538 quad core “Denverton” processor @ 2.10 GHz with 8MB cache; 15W TDP
    • Intel Atom C3758 octa core “Denverton” processor @ 2.2 GHz with 16MB cache; 25W TDP
  • System Memory – 2x or 4 x R-DIMM/U-DIMM non-buffer DDR4, up to 64/128GB
  • Storage – 1x 2.5″ SATA3 HDD; 1x mSATA
  • Ethernet
    • 6x 10/100/1000 Mbps RJ45 ports via Intel i210
    • 4x 10 GbE SFP+ cages for C3758 model only
    • One pair LAN Bypass
  • Expansion – 1x PCI Express Mini Card for optional Wi-Fi/3G/LTE
  • USB – 2x USB 2.0 port
  • Management – 1x RS-232 (RJ45) console port
  • Misc – Power & network Status LEDs, power switch
  • Power Supply – 1x 12V/5A or 1x 12V/7A power adapter (depends on CPU SKU)
  • Temperature Range – 0°C ~ +40°C
  • Dimensions –  231 x 197 x 44 mm (1U desktop form factor)
  • Weight – Net: 1.64 kg; gross: 2.54 kg with 12V/5A adapter,2.69 kg with 12V/7A adapter
  • Certifications – FCC class B, CE class B

Atom C3538 SoC is equipped with two 10 GbE interface, but Axiomtek decided not to provide any SFP+ cages on the model based on this processor with only the six RJ45 ports.

The appliance supports the Intel Data Plane Development Kit (Intel DPDK), the Yocto Project, as well as Linux, Windows Server 2012 R2, and Windows Server 2016 operating systems. The server is said to be suitable for VPN, network bandwidth controller, firewall and UTM (Unified Threat Management) applications.

Axiomtek NA362 will be available in October 2017 through two SKUs: NA362-DAMI-C3758-US (C3758, 4x DIMM, 10 LAN) and NA362-D6GI-C3538-U (C3538, 2x DIMM, 6 LAN). Check out the product page for further information.

GIGABYTE MA10-ST0 Server Motherboard is Powered by Intel Atom C3958 “Denverton” 16-Core SoC

August 15th, 2017 27 comments

Last year, we wrote about Intel Atom C3000 series processor for micro-servers with the post also including some details about MA10-ST0 motherboard. GIGABYTE has finally launched the mini-ITX board with an unannounced Atom C3958 16-core Denverton processor.

Click to Enlarge

GIGABYTE MA10-ST0 server board specifications:

  • Processor –  Intel Atom C3958 16-core processor @ up to  2.0GHz with 16MB L2 cache (31W TDP)
  • System Memory – 4x DDR4 slots for dual channels memory @ 1866/2133/2400 MHz with up to 128GB ECC R-DIMM, up to 64GB for ECC/non-ECC UDIMM
  • Storage
    • 32GB eMMC flash
    • 4x Mini-SAS up to 16 x SATA 6Gb/s ports
    • 2x Mini-SAS ports are shared with PCIe x8 slot
  • Connectivity
    • 2x 10Gb/s SFP+ LAN ports
    • 2x 1Gb/s LAN ports (Intel I210-AT)
    • 1x 10/100/1000 management LAN
  • Video – VGA port up to 1920×[email protected] 32bpp; Aspeed AST2400 chipset with 2D Video Graphic Adapter with PCIe bus interface
  • USB – 2x USB 2.0 ports
  • Expansion Slots – 1x PCIe x8 (Gen3 x8 bus) slot; shared with Mini-SAS ports, Mini_CN2, Mini_CM3
  • Misc
    • 1x CPU fan header, 4x system fan headers
    • 1x TPM header with LPC interface
    • 1x Front panel header
    • 1x HDD back plane board header
    • 1x JTAG BMC header
    • 1x Clear CMOS jumper
    • 1x IPMB connector
    • 1x PMBus connector
    • 1x COM (RS-232)
    • Power and ID buttons with LEDs; status LED
  • Board Management – Aspeed AST2400 management controller; Avocent MergePoint IPMI 2.0 web interface
  • Power Supply – 1x 24-pin ATX main power connector; 1x 8-pin ATX 12V power connector
  • Dimensions –  170 x 170 mm (Mini-ITX form factor)
  • Temperature Range – 10 to 40°C
  • Relative Humidity – 8-80% (non-condensing)

The dual core Atom C3338 is the only processor listed on Intel’s formerly Denverton page, with now info about the 16-core Atom C3958 processor so far.

Click to Enlarge

The board is said to support Windows Server 2016, Red Hat Enterprise Linux Server 7.1, SuSE Linux Enterprise Server 12, Ubuntu 14.04.2 LTS, Fedora 22, and CentOS 7.1. The board is sold with an I/O shield and a quick start guide. There’s no word about pricing or availability on the product page, but Anandtech reports that the “board is essentially ready to go, and interested parties should get in contact with their local reps”. For reference, SuperMicro  A2SDI-H-TP4F-O board based on the same processor is sold for $820+ on Atacom.

Intel Apollo Lake HDMI TV Sticks Are Starting to Sell for $100

July 28th, 2017 9 comments

Last April, we discovered an early prototype of BBen mini computer, an HDMI TV Stick based on Intel Celeron N3450 Apollo Lake processor that was supposed to start selling in July. It may have been delayed a little, but MeeGoPad T11 model is already listed on Alibaba, and ECDREAM A9 model on both Alibaba and Amazon US, where it is sold for $189 with free shipping (from China). Still no news from Intel’s own Apollo Lake Compute Sticks however, maybe they’ve canceled them… [Update: I’ve just found ECDREAM A9 for $99.99 on GeekBuying]

ECDREAM A9 “Chocolate Windows” PC stick specifications:

  • SoC
    • Intel Celeron N3350 dual core processor @ 1.1 GHz / 2.4 GHz, 12 EU Intel HD graphics 500 @ 200 MHz / 650 MHz; 6W TDP OR
    • Intel Celeron N3450 quad core processor @ 1.1 GHz / 2.2 GHz, 12 EU Intel HD graphics 500 @ 200 MHz / 700 MHz; 6W TDP
  • System Memory – 2, 4, or 8 GB DDR3
  • Storage – 32 or 64 GB eMMC flash + micro SD slot
  • Video & Audio Output – HDMI 1.4 male port
  • Connectivity – Dual band 802.11 b/g/n/ac WiFi, and Bluetooth 4.0 (Intel AC3165)
  • USB – 2x USB 3.0 ports
  • Misc – Ventilation holes, LED, power button
  • Power Supply – 5V/3A via micro USB port…
  • Dimensions & Weight – 128 x 58 x 16 mm;

The device comes with Windows 10, and ships with a 5V/3 power adapter, and a user’s manual. The product sold for $189 model on Amazon is the entry level model with Celeron N3350, 2GB RAM, 32GB flash. In case, you wonder whether such stick is fanless, the photo below should give a clue…

You’ll also find some more details on the product page, which strangely only show N3450 processor, not N3350.

Via AndroidPC.es

Mini Review of Nextion Enhanced NX8048K070 7″ Display with Enclosure for HMI Applications

June 21st, 2017 3 comments

I reviewed some Nextion touchscreen a while ago. Those were 2.4″ and 5″ serial TFT displays with optional resistive touch support that could be used in standalone mode, or connected to an MCU board over UART to control external hardware. The user interface could be designed and emulated in Windows based Nextion Editor program before uploading it to the display via UART or micro SD card. ITEAD Studio has recently launched Nextion Enhanced NX8048K070 family of 7″ displays with resistive or capacitive touch panels, and support for GPIOs. The company sent me the capacitive model with enclosure for evaluation, so I’ll have a quick look at the hardware and Nextion Editor in this mini review.

Nextion Enhanced NX8048K070_011C Unboxing

I received it in a package from “ITEAD intelligent solutions” with basic description with

  • Model: NX8048L070_011C with enclosure
  • Outside dimensions : 275 x 170 x 50 mm (That’s the package dimensions)
  • Product size: 218 x 150 x 22.5 mm
  • Gross weight: 0.598kg

Click to Enlarge

The display comes with a UART cable, or small micro USB power board, and a wall mounting kit.

Click to Enlarge

If we check the other side of the display, we’ll find the UART connector on the left, a micro USB slot on the bottom right, and the GPIO connector that inconveniently requires a flat cable, so you’d have to make your own board to connect external hardware, or purchase the company’s $5 expansion board, which is not included in the kit by default. There’s also the almost-compulsory typo found on many devices made in China: “Human Mechine Interface”.

Click to Enlarge

The thickness is indeed 22 mm, but if you fully embed the display into a wall, the visible thickness will be 6 mm.

You may have to open the bottom cover, as you’ll need to add a battery in case you want to use the RTC function.

Click to Enlarge

Let’s have a look an the main IC while we have the case open:

I close the case back, and power the display via the micro USB power supply board, and a USB power adapter.

Click to Enlarge

It’s a simple demo with a background image, some text, a slider, and 4 different pages, which I’ll demonstrate below after doing some simple modifications.

Nextion Editor and NX8048K070 Demo Sample

Nextion Editor is a Windows program, but a while ago, I was told it also worked with Wine in Ubuntu. So I downloaded the latest version (v0.47), and while the installation started, it eventually failed in Ubuntu 16.04. So I reverted to using Windows 7 in VirtualBox. I also downloaded and extracted Enhanced_Nextion_5.0-7.0_Demo.zip found at the bottom of Wiki page, which I then opened from Nextion Editor.

Click to Enlarge

The user interface will allow you to add various items from the Toolbox including text, scrolling text, numbers, buttons, pictures, progress bars, gauges, check boxes, and so on. As with the previous version, you’ll also need to import and convert font with a fixed size. The demo already has four of those defined. You can also add and link several pages with 4 pages used in the demo, and the Attributes section is used to defined parameters for the selected item

Click to Enlarge

I just added text. It should have been easy, but I was very confused at the beginning, since nothing would show up when I clicked on “Text” in toolbox. I could change the attributes, but the text would not be displayed. I went back to check the old review, and I used “Add Component” menu in Nextion v0.30 at the time, but that menu does not exist anymore. Finally, I noticed the 800×480 display was not shown completely, on the text was located on the top left of the UI. I delete the dozen text items I had created, and added “CNXSoft was here!” at the end of the list. The user interface is not really intuitive, so I’d still recommend to read the user guide, even some of the parts are outdated, as it should help getting started, and they have examples with Arduino. To control GPIOs on the display, you’d need to use cfgpio code.  In case, you run into troubles because the documentation is not quite as good as expected, you can always try your luck in the forums.

You can click on Compile to check for errors in your user interface, and then Debug to launch the simulator.

This will allow you to test the UI as if it was running in the display itself. You can even send keyboard or MCU commands. Once you are happy with the results, click on Operation->Upload to Nextion to upload the UI to the display. I had some troubles getting the display work when I connected it through my serial debug board via USB hub (the display would blink), but the problem was solved by connecting it directly to the USB power from my computer. The upload still failed as the demo is configured for the 5.0″ board, and it correctly detected a 7.0″ board. The fix was easy, as I just had to select Device ID, and change NX8048K050_011 to NX8048K070_011.

Click to Enlarge

After that the upload could start with the Nextion display properly detected.

It took 6 minutes and 35 seconds to upload the ~4MB user interface to the display, so it’s not really fast. That mean if you have  ~32MB UI, it would take close to 50 minutes. In that case, it would be much faster load the UI from the micro SD card. In that case, you need to copy the .tft file found via Nextion->File->Open build folder.

Here’s a quick overview and demo.

Nextion Enhanced 7″ display can be purchased for $88 with resistive touch and $108 with capacitive touch.

Axiomtek tBOX100-838-FL Fanless Transportation Computer Features BNC Video & Audio Inputs for DVR Function

June 16th, 2017 No comments

Axiomtel tBOX100-838-FL is a fanless Bay Trail rugged embedded computer powered by an Intel Bay Trail-I E3845 processor with 5 BNC input ports for video and audio, and targeting vehicle, railway and marine markets.

Axiomtek tBOX100-838-FL rugged mini PC’s specifications:

  • SoC –  Intel Atom E3845 quad core Bay Trail-I processor @ up to 1.91 GHz with Intel HD graphics
  • System Memory – 4 GB DDR3L-1333
  • Storage – 1x 2.5” SATA slot up to 9.5mm, 1x mSATA connector, flash for AMI BIOS
  • Video Output – 1x VGA port
  • Video / Audio Input – 4x video in BNC connector, 1x audio in BNC connector
  • Connectivity – 2x M12 A-coded GbE LAN or 2x RJ-45 GbE LAN (via Intel i210)
  • Serial – 1x RS-232/422/485 (DB9)
  • USB – 2x USB 2.0 port
  • Expansion – 1x Full-size PCIe Mini Card with mSATA; 1x SIM card slot
  • Misc – 1x remote switch; 1x reset button; watchdog timer; 6x status LEDs
  • Power Supply – 9 to 36 VDC via 1x M12 DC power input or 1x Phoenix DC power input; typical: 12/24VDC
  • Enclosure
    • Dimensions – 163.8 x 108 x 44 mm
    • Aluminum extrusion and heavy-duty steel
    • 4x antenna opening
  • Weight – 770 grams
  • Temperature Range
    • -40°C ~ +70°C with SSD
    • -25°C ~ +55°C with HDD
  • Relative Humidity – 5% ~ 95%, non-condensing
  • Vibration
    • 3 Grms w/ SSD (5-500Hz, X, Y, Z direction; random)
    • 1 Grms w/ HDD (5-500Hz, X, Y, Z direction; random)
  • Shock – Complies with EN 61373 section 10 table 3 category 1 class A and class B up to 5 Grms (30ms, ±X/Y/Z direction)
  • Certifications – CE (Class A), E-Mark, ISO 7637 certified; EN 50155, EN 50121, and DNV 2.4, IEC 60945 compliance

The mini PC supports Windows 10, WE8S, WES 7, Linux, and VxWorks7 operating systems, and can be mounted to a wall or a DIN rail.

The picture above shows Ethernet and power connector option with waterproof M12 connectors (option 1) better suited for marine application, or in any situation where you’d need some waterproofness. The company also mentions a mini PCIe DVR capture card without much details likely to be used with the BNC connectors.

The computer is expected to become available in mid August 2017. More details may be found in the product page.

MinnowBoard Turbot Quad Core Open Source Hardware Board is now Shipping for $190

May 24th, 2017 2 comments

MinnowBoard Turbot Quad Core board was announced last autumn, with shipping expected in December 2016, but there may have been delays as the MinnowBoard foundation has just announced that the Intel open source hardware board is now shipping.

Click to Enlarge

MinnowBoard Turbot Quad “MBT-4220” board specifications:

  • SoC – Intel Atom E3845 quad core Bay Trail-I processor @ up to 1.92 GHz with Intel HD graphics @ 542 / 792 MHz (10W TDP)
  • System Memory – 2GB DDR3L 1067 MT/s (Soldered)
  • Storage – 1x SATA2 3Gbps, 1x micro SD card slot, 8 MB SPI Flash for firmware (Tianocore UEFI, Coreboot, SeaBIOS)
  • Video & Audio Output – 1x micro HDMI connector
  • Connectivity – 10/100/1000M Ethernet RJ-45 connector (with Intel i211 instead of Realtek NIC on dual core MinnowBoard)
  • USB – 1x USB 3.0 host, 1x USB 2.0 host
  • Debugging – Serial debug header
  • Expansion headers
    • Low-speed expansion (LSE) port – 2×13 (26-pin) male 0.1″ pin header with access to SPI, I2C, I2S Audio, 2x UARTs (TTL-level), 8x GPIO (including 2x supporting PWM), +5V, and GND
    • High-speed expansion (HSE) port –  60-pin high-density connector with access to 1x PCIe Gen 2.0 Lane, 1x SATA2, 1x USB 2.0 host, I2C, GPIO, JTAG, +5V, and GND
  • Power Supply – 5V/4A DC input via 2.5mm center pin positive power jack; 5V DC output via  2-pin header
  • Dimensions – 99 x 74mm
  • Temperature Range –  0 to 40 °C; wider range possible with larger heatsink.
  • Certifications – FCC Part 15 Class A, CE Class A, IEC-60950, RoHS/WEEE

Click to Enlarge

 

The board can run Debian GNU/Linux, Windows 10 IoT, Windows 8.1, Android 4.4, Ubuntu, and Yocto Project Custom Linux with source, firmware image, documentation, and hard design files available via the tutorials and github.

The board can be purchase for around $190 on Mouser or Netgate.