Archive

Posts Tagged ‘development board’

Khadas Vim Amlogic S905X Development Board Gets Android 7.1 Firmware and SDK

March 22nd, 2017 No comments

Khadas Vim is a development board powered by Amlogic S905X quad core processor that officially supports Ubuntu 16.04, OpenELEC and Android 6.0. Shenzhen Wesion Technology , the maker of the board, has now released Android 7.1 firmware image and SDK for the board.

Click to Enlarge

As we’ve seen before Amlogic Android 7.1 SDK still relies on Linux 3.14.29, but Linux 4.4 is also in the works.

If you want to give it a try on your board, download Vim_Nougat_170321.7z directly, or from the firmware download page. The current image installs to the eMMC flash via USB or a bootable micro SD card (Windows methods only), so it will wipe whatever OS you have already on the board.

The firmware is based on the features of their Android 6.0.1 image, but upgraded to Android 7.1.1 with Chrome and Gapps (for Google Play Store support).

Source code for the Android 7.1 SDK can be found via several repositories on Khadas Github account. Once the manifest file is updated, you should be able to follow the instructions to build Android for Khadas Vim board in order to build your own Android 7.1 image from source.

AAEON RICO-3288 Pico-ITX Board is Powered by Rockchip RK3288 Processor

March 21st, 2017 4 comments

When Rockchip RK3288 was launched in 2014 we got a few development boards like Firefly-RK3288, PopMetal, and Radxa Rock 2, and later on MiQi board. ASUS Tinker board made the processor popular again in 2017, and now AAEON, an industrial embedded company of ASUS group, has just unveiled RICO-3288 Pico-ITX Board based on the processor, and targeting OEMs instead of hobbyists & makers.

RICO-3288 board specifications with RICO-3288F & RICO-3288V models adding wireless connectivity & battery options, as well as CAN and an extra RS-232 port for for the latter:

  • SoC – Rockchip RK3288 quad core Cortex A17 processor @ 1.8GHz with ARM Mali-T760 GPU
  • System Memory – 2GB DDR3L RAM
  • Storage – 16GB eMMC flash, micro SD slot up to 64GB
  • Video Output / Display IF
  • Audio – Via HDMI, interfaces for microphone, earphone and speakers (2.5W / 4 Ohm)
  • Connectivity – Gigabit Ethernet; V & F models: WiFi 802.11b/g/n/ac, Bluetooth 4.0,Nano-SIM card slot, optional GPS
  • USB – 2x USB 2.0 host ports, 1x micro-USB 2.0 OTG port, 1x USB 2.0 header
  • Serial – RS-232/422/485 port, RS-232 header, V model optional features: 2x RS-232 ports, CAN bus
  • Expansion
    • 8-bit DIO connector (4-in , 4-out)
    • Full-size mini-PCIe slot for 3G/4G card (USB signals only)
  • Misc – Watchdog, RTC with battery
  • Power Supply
    • 12V DC via 2-pin header; [email protected] full load power consumption
    • Optional 7.4V battery for V and F models only
  • Dimensions – 100 x 72mm ( Pico-ITX form factor)
  • Weight – 400 grams
  • Temperature Range – Standard: 0°C ~ 60°C;  WiTAS 1: -20°C ~ 70°C
  • Certifications – CE/FCC

RICO-3288 single board computer comes preloaded with Android 6.0, but there’s no mention of Linux support.

Block Diagram – Click to Enlarge

Pricing and availability information is not available yet, except the board is “coming soon”. You may want to visit Aaeon RICO-3288 product page for more details.

Via LinuxGizmos

UP Core is a Low Cost & Compact Intel Maker Board Powered by an Atom x5-Z8350 SoC (Crowdfunding)

March 18th, 2017 19 comments

The UP community has already launched Intel Cherry Trail and Apollo Lake boards in the past with UP Board and UP2 (squared) boards, and they are now about to launch a cheaper and smaller board called UP Core powered by Intel Atom x5-Z8350 processor with to 1 to 4GB memory, up to 64GB eMMC flash, HDMI, USB 3.0, … and I/O expansion connectors.

Click to Enlarge

UP Core specifications:

  • SoC – Intel Atom x5-Z8350 “Cherry Trail” quad core processor @ 1.44 GHz / 1.92 GHz (Burst frequency) with Intel HD 400 graphics @ 200 / 500 MHz
  • System Memory –  1, 2 or 4 GB DDR3L-1600 (soldered on board)
  • Storage – 16, 32, or 64 GB eMMC flash, SPI flash ROM
  • Video Output / Display – HDMI 1.4 port, full eDP (embedded DisplayPort) connector
  • Audio I/O – Via HDMI, and I2S
  • Connectivity – 802.11 b/g/n WiFi  @ 2.4 GHz, Bluetooth 4.0 LE (AP614A)
  • USB – 1x USB 3.0 host port, 2x USB 2.0 via header
  • Camera I/F – 1x 2-lane MIPI CSI, 1x 4-lane MIPI CSI
  • Expansion
    • 100-pin docking connector with power signals, GPIOs, UART, SPI, I2C, PWM, SDIO, I2S, HDMI SMBUS, PMC signals, 2x USB HSIC, CSI, and PCIe Gen 2
    • 10-pin connector with 2x USB 2.0, 1x UART
  • Misc – Power & reset buttons, RTC battery header, fan connector, BIOS reflash connector
  • Power Supply – 5V/4A via 5.5/2.1mm power barrel
  • Dimensions – 66 x 56.50 mm
  • Temperature Range – Operating: 0 to 60 °C

The board will support Microsoft Windows 10, Windows 10 IoT Core, Linux including Ubilinux, Ubuntu, and the Yocto Project, as well as Android 6.0 Marshmallow.

Block Diagram – Click to Enlarge

If you look at the bottom right connector of the diagram above, we can see an extension HAT for the 100-pin docking port will be offered, as well as an IO board, both of which should be compatible with Raspberry Pi HATs with 40-pin connectors. But so far, I could not find details about the extension HAT, nor the IO board.

The UP core is coming soon to Kickstarter with price starting at 69 Euros with 1GB RAM, 16GB eMMC flash, and WiFi and Bluetooth. Other part of the documentation show a $89 price for the 1GB/16GB board, so maybe it’s the expected retail price out of the crowdfunding campaign. You’ll find a few more information on UP Core page, but we’ll probably have to wait for the Kickstarter campaign to launch to get the full details, especially with regards to add-on boards, and pricing for various options.

Thanks to Freire for the tip.

$18.9 Orange Pi Zero Plus 2 Board: Allwinner H3, WiFi + Bluetooth LE, HDMI and 8GB eMMC Flash

March 17th, 2017 22 comments

When will they ever stop? Shenzhen Xunlong has launched yet another Allwinner H3 board called Orange Pi Zero Plus 2, that has not that much in common with Orange Pi Zero, since it uses a different processor (H3 vs H2+), adds HDMI, and implements WiFi and BLE via an Ampak AP6212 module.Orange Pi Zero Plus 2:

  • SoC – Allwinner H3 quad core Cortex A7 processor @ 1.2 GHz with Mali-400MP2 GPU @ 600 MHz
  • System Memory – 512 MB DDR3 SDRAM
  • Storage – 8GB eMMC flash + micro SD card slot
  • Video Output – HDMI port with CEC support
  • Connectivity – 802.11 b/g/n WiFi + Bluetooth 4.0 LE (Ampak AP6212) with u.FL antenna connector and external antenna
  • USB – 1x micro USB OTG port
  • Camera – MIPI CSI port
  • Expansion headers – Unpopulated 26-pin “Raspberry Pi B+” header + 13-pin header with headphone, 2x USB 2.0, TV out, microphone and IR receiver signals
  • Debugging – 3-pin serial console header
  • Misc – 2x LEDs for power and status
  • Power Supply – 5V via micro USB port
  • Dimensions – 48 x 46 mm
  • Weight – 20 grams

So the board is slightly smaller than Orange Pi Zero, and won’t have some of the WiFi issues with Orange Pi Zero with many re-transmit packets leading to a lower throughput. It still works through contrary to what some people claim. Software support for Orange Pi Zero Plus 2 should be the same as with other H3 boards including Android, Ubuntu, and Armbian builds.

Orange Pi Zero Plus 2 has started selling for $18.90 + shipping on Aliexpress.

Thanks to Aleksey for the tip.

Shenzhen Xunlong Software & Canonical Launch Orange Pi App Store for Ubuntu Snaps

March 17th, 2017 3 comments

The maker of Orange Pi boards, Shenzhen Xunlong Software, has partnered with Canonical to launch Orange Pi app store, allowing developers to gain a simple mechanism to share their applications, projects and scripts with the Orange Pi community.

Click to Enlarge

The store relies on snaps instead of deb packages, with snaps allowing a secure distributions of apps bundled with all their dependencies, which according to Canonical can decreased the time for an half an hour installation process to just a few seconds.

The community has already contributed hundreds of snaps in the Ubuntu snap store, including openHAB for home automation, Rocket.chat self-hosted chat platform, NextCloud for cloud storage, and wifi-ap for networking.

You can get them from the App store, but installing a snap from the command line is easy, for example:

However, I cannot find any Ubuntu Core image for Orange Pi Boards yet on Ubuntu Core Getting Started page. It would also work on other operating systems like Arch Linux ARM, Gentoo, Ubuntu (not Core), Debian, etc… by installing snapd.

You can also learn how to create your own branded app store for your board or community on Ubuntu website.

MYiR Tech MYC-JA5D2X System-on-Module is Powered by Microchip ATSAMA5D2 Cortex A5 Processor

March 16th, 2017 No comments

MYIR Tech has released MYC-JA5D2X system-on-module powered by a Microchip Atmel SAMA5D2 ARM Cortex A5 processor with 256MB flash, and 256 MB DDR3. The module relies on a SO-DIMM edge connector to expose the camera interface, Ethernet, USB, camera, and other I/O signals.

MYC-JA5D2X CPU module specifications:

  • SoC – Atmel SAMA5D26 or SAMA5D27 ARM Cortex A5 processor @ up to 500 MHz with 128KB L2 cache
  • System Memory – 256MB DDR3 SDRAM
  • Storage – 256MB NAND flash, 4MB data flash, 64KB EEPROM
  • Connectivity – On-board 10/100M Ethernet PHY
  • 200-pin SO-DIMM edge connector with:
    • 1x Ethernet
    • 1x USB Host, 1x USB Device, 1x USB HSIC (HSIC is only for SAMA5D27)
    • Up to 10x serial ports, up to 2 x CAN (only for SAMA5D27)
    • Up to 7 x I2C, up to 7 x SPI
    • Up to 2 x QSPI
    • 12 x 12-bit ADC (enhanced resolution up to 14 bits)
    • 4x PWM
    • 1x 4-bit SDIO
    • 1x 24-bit LCD
    • Up to 2x SSC, compatible with I2S
    • 1x 12-bit Camera Interface
    • 1x SMC (Supports parallel external memory interface)
    • Up to 97x GPIOs
  • Misc – Power and user LEDs
  • Power supply – 3.3V/0.5A
  • Dimensions – 67.6 mm x 45mm (8-layer PCB)
  • Temperature Range – -40 ~ 85 °C (industrial grade)

The company provides Linux 4.1 for the module. MYC-JA5D2X SoM is very similar to the company’s MYC-JAD5D4X module launched early las year, except it’s using the more power efficient SAMA5D2 processor instead of a SAMA5D4 processor clocked at 600 MHz, and they have reduced costs by lowering the default amount of storage and memory.

MYIR also offers MYD-JA5D2X development board combining a baseboard with MYC-JA5D2X CPU module, and bring out various interfaces, headers, and connectors such as serial ports, USB Host and Device ports, a CAN & RS485 terminals, an Ethernet port, RS485, audio in/out, LCD and camera connectors, etc…

MYC-JA5D2X system-on-module sells for $49 with ATSAMA5D27 processor, while MYD-JA5D2X development board goes for $129 as part of kit that also adds a power adapter and various cables. More information about both products can be found on MYiR Tech website.

NXP Introduces Kinetis K27/K28 MCU, QorIQ Layerscape LS1028A Industrial SoC, and i.MX 8X Cortex A35 SoC Family

March 15th, 2017 3 comments

NXP pushed out several press releases with the start of Embedded World 2017 in Germany, including three new micro-controllers/processors addressing different market segments: Kinetis K27/K28 MCU Cortex M4 MCU family, QorIQ Layerscape LS1028A industrial applications processor, and i.MX 8X SoC family for display and audio applications, 3D graphic display clusters, telematics and V2X (Vehicle to everything).

NXP Kinetis K27/K28 MCU

Click to Enlarge

NXP Kinetis K27/K28 MCU family is based on an ARM Cortex-M4 core clocked at up to 150 MHz with FPU,and includes up to 1MB embedded SRAM, 2MB flash, and especially target portable display applications.

Kinetis K27/K28 MCUs share the following main features:

  • 2x I2S interfaces, 2x USB Controllers (High-Speed with integrated High-Speed PHY and Full-Speed) and mainstream analog peripherals
  • 32-bit SDRAM memory controller and QuadSPI interface supporting eXecution-In-Place (XiP)
  • True Random Number Generator, Cyclic Redundancy Check, Memory Mapped Cryptographic Acceleration Unit

K28 supports 3 input supply voltage rails (1.2V, 1.8V and 3V) + separate VBAT domain, implements a Power Management Controller supporting Core Voltage Bypass and can be powered by an external PMIC, and is available in 169 MAPBGA (9x9mm2, 0.65mm pitch) and 210 WLCSP (6.9×6.9mm2, 0.4 mm pitch) packages.

K27 supports 1.71V to 3.6V input voltage + separate VBAT domain, and is offered in 169 MAPBGA (9x9mm, 0.65mm pitch) package only.

Click to Enlarge

FRDM-K28F development board will allow you to play with the new MCUs’ capabilities. It features a Kinetis K28F microconroller, on-board discrete power management, accelerometer, QuadSPI serial flash, USB high-speed connector and full-speed USB OpenSDA. Optional add-on boards allows for USB-Type C, Bluetooth low energy (BLE) connectivity, and a 5” LCD display board with capacitive touch.

Software development can be done through MCUXpresso SDK with system startup code, peripheral drivers, USB and connectivity stacks, middleware, and real-time operating system (RTOS) kernels.

Kinetis K27/K28 MCU family will be start selling in April 2017. Visit NXP K2x USB page for more information.

QorIQ Layerscape LS1028A

LS1028A Block Diagram

NXP QorIQ Layerscape LS1028A SoC comes with two 64-bit ARMv8 core, support real-time processing for industrial control, as well as virtual machines for edge computing in the IoT. It also integrates a GPU and LCD controller enable Human Machine Interface (HMI) systems, and Time-Sensitive Networking (TSN) capabilities based on the IEEE 802.1 standards with a four-port TSN switch and two separate TSN Ethernet controllers.

The processor especially targets “Factory 4.0” automation, process automation, programmable logic controllers, motion controllers, industrial IoT gateway, and Human Machine Interface (HMI).

OEMs can start developing TSN-enabled systems using LS1021ATSN reference design platform based on the previous LS1021A processor in order to quickens time-to-market.The reference design provides four switched Gigabit Ethernet TSN ports, and ships with an open-source, industrial Linux SDK with real-time performance. Applications written for LS1021ATSN will be compatible with the LS1028A SoC since the API calls won’t change.

It’s unclear when LS1028A will become available, but it will be available for 15 years after launch, and you’ll find a few more details on the product page. You could also visit NXP’s booth (4A-220) at Embedded World 2017 to the reference design in action.

NXP i.MX 8X ARM Cortex-A35 Processors

Block Diagram of NXP i.MX 8X family

The last announcement will not really be news to regular readers of CNX Software, since we covered i.MX 8X processors last year using an NXP presentation. As previously known, i.MX 8X family comes with two to four 64-bit ARMv8-A Cortex-A35 cores, as well as a Cortex-M4F core, a Tensilica HiFi 4 DSP, Vivante hardware accelerated graphics and video engines, advanced image processing, advanced SafeAssure display controller, LPDDR4 and DDR3L memory support, and set of peripherals. The processor have been designed to drive up to three simultaneous displays (2x 1080p screens and one parallel WVGA display), and three models have been announced:

  • i.MX 8QuadXPlus with four Cortex-A35 cores, a Cortex-M4F core, a 4-shader GPU, a multi-format VPU and a HiFi 4 DSP
  • i.MX 8DualXPlus with two Cortex-A35 cores, a Cortex-M4F core, a 4-shader GPU, a multi-format VPU and a HiFi 4 DSP
  • i.MX 8DualX with two Cortex-A35 cores, a Cortex-M4F core, a 2-shader GPU, a multi-format VPU and a HiFi 4 DSP

The processors are expected to be used in automotive applications such as  infotainment and cluster, industrial control and vehicles, robotics, healthcare, mobile payments, handheld devices, and so on.

The i.MX 8QuadXPlus and 8DualXPlus application processors will sample in Q3 2017 to selected partners. More details may be found on NXP i.MX8X product page.

NanoPi NEO2 Development Board Powered by Allwinner H5 64-bit ARM Processor Sells for $15

March 14th, 2017 42 comments

NanoPi NEO is a cool little board, and I’ve been using it with Armbian as a 24/7  MQTT + Domoticz server for several weeks without any issues so far. FriendlyElec has now an update with NanoPi NEO2 featuring Allwinner H5 quad core Cortex A53 processor instead of Allwinner H3 Cortex A7 processor, a faster Gigabit Ethernet connection, and a new audio header.

NanoPi NEO2 specifications:

  • SoC – Allwinner H5 quad core Cortex A53 processor with an ARM Mali-450MP GPU
  • System Memory – 512 MB DDR3
  • Storage – micro SD card slot
  • Connectivity – Gigabit Ethernet (via RTL8211E-VB-CG chip)
  • USB – 1x USB 2.0 host ports, 1x micro USB OTG port, 2x USB via headers
  • Expansion headers
    • 24-pin header with I2C, 2x UART, SPI, PWM, and power signals
    • 12-pin header with 2x USB, IR pin, I2S
    • 5-pin audio header with microphone and LINE out signals
  • Debugging – 4-pin header for serial console
  • Misc – Power and status LEDs
  • Power Supply – 5V via micro USB port or VDD pin on headers.
  • Dimensions – 40 x 40 mm

One of my reader (Willy) also noticed they included a low-profile Ethernet jack that was asked by some. The company provides an image based on U-boot + Ubuntu Core, as well as hardware and software documentation on their Wiki. That’s not the first Allwinner H5 board we’ve seen, as Shenzhen Xunlong introduced Orange Pi PC 2 at the end of last year, but NEO2 is the first H5 board in such as small form factor.

Software support for H5 was not quite that good last November, but now Armbian community has released nightly builds for Orange Pi PC 2 based on Linux 4.10, which do seem to work fine for headless operation, but there’s little hope to have Mali drivers, hardware video decoding, and HDMI audio output support any time soon. None of those should matter for NanoPi NEO2 since it does not come with any video output ports, and I’d expect Armbian images to be released for the board soon.

NanoPi NEO2 is sold for $14.99 + shipping together with 2×12 and 1×12 headers directly on FriendlyARM website. Note that the heatsink is not included by default, and depending on your target application you may want to spend the extra $2.97 to add the heatsink + thermal pad to your order.