Archive

Posts Tagged ‘IoT’

Inforce 6309L Board is Powered by Qualcomm Snapdragon 410E Processor with 10-year Availability

January 22nd, 2017 2 comments

Inforce Computing launched 6309 micro single board computer powered by Snapdragon 410 processor, and compatible with 96Boards Dragon 410c board, a little over a year ago. The company has sent a newsletter promoting the launch of cost-down version with long term support equipped with Snapdragon 410E processor, and named Inforce 6309L.

Comparison table between Inforce 6309L board and DragonBoard 410C provided by the company:

Inforce 6309L
Dragonboard 410C
SoC
Qualcomm Snapdragon 410E quad core ARM Cortex A53 processor with Adreno 306 GPU
Dimensions
54mm x 85mm
Memory
Storage
1GB LPDDR3
8GB eMMC
Micro SD
Connectivity
Wi-Fi/BT/GPS
Video
1080p HD video
720p HEVC playback
Camera
Dual cameras 13MP on MIPI-CSI
Interfaces
Micro USB, USB, Micro HDMI, MIPI-CSI, expansion header
Micro USB, USB, HDMI, expansion header
Operating System
Android Lollipop 5.1
Linux (Debian)
Win10 IoT core

Both boards are pretty similar, except Inforce 6901L replaced the HDMI port with a mico HDMI port, and adds a MIPI CSI header. Cost down have been achieved by removing Ethernet, the PoE header, LVDS, and the optional interface for RS-485, as well as offering the SBC with  commercial temperature grade (0 to 70 °C) by default. Some of the specifications not mentioned in the table include the supported voltage range (7-24V DC input), the presence of an RTC, and the signal on the expansion header: 1x I2C, 1x SPI, 1x I2S, 2x UART, and 20x GPIOs.

Inforce 6309L Block Diagram – Click to Enlarge

The board is available now starting at the price of $85 for a minimum order quantity of 100 units. More details can be found on Inforce 6309L product page. Note that while the page indicated the board comes with a “quad-core Snapdragon 410E processor which has a 10-year supply commitment from Qualcomm”, Inforce did not make any explicit commitment for the board.

How to use Sonoff POW with ESPurna Firmware and Domoticz Home Automation System

January 21st, 2017 10 comments

Sonoff POW is an ESP8266 based wireless switch with a power meter that comes pre-loaded with a closed-source firmware that works with eWelink app for Android or iOS by default. But we’ve also seen Sonoff POW, and other Sonoff wireless switches from the same family, can be flash with open source firmware supporting MQTT (Message Queuing Telemetry Transport) lightweight messaging protocol such as ESPurna, and I initially sent data from Sonoff POW to ThingSpeak via an MQTT broker (mosquitto) to draw some pretty charts. I did that with the switch connected to a lightbulb, but I’ve since installed Sonoff POW in my office to measure the room’s power consumption minus the ceiling light and aircon as shown below.

Wall Mounted Sonoff POW WiFi Switch – Click to Enlarge

Sonoff cable mechanism is really a pain for hard copper wires, as they are hard to push inside the mechanism, and something come out. I finally managed by it took longer than expected to install. I had to cut the mains cable, and rewire the gang box too. The good thing is that I did not need to drill a hole in my wall, as the device is very light.

I could see the power value updated in ESPurna web interface, depending on the load on my computer, and whether I turned on or off other devices. That’s all good, but instead of using ThingSpeak, whose open source implementation is not updated, I decided to try Domoticz, and already wrote a short guide showing how install Domoticz in NanoPi NEO ARM Linux development board. I had not gone through the setup yet, as I had to study a little more, and upgrade Sonoff POW firmware first. I also planned to use vThings CO2 monitor with Domoticz, but canceled since it can’t be configured remotely, and a USB connection is needed.

ESPurna OTA Firmware Update

So I’ll focus only on Sonoff POW in this post, and first we need to update the firmware since Domoticz support is only recent. I’ll assume you have already followed the post entitled How to Build and Flash ESPurna Open Source Firmware to Sonoff POW Wireless Switch.

First we need to update platformio and ESP8266 development platform to the latest version otherwise we’ll get some build issues:

I updated the source code with git pull, but for whatever reasons the build failed, even after cleaning the code. So I did what any developer with enough experience would do in that case: start with a fresh check out ;), and rebuild the OTA firmware from there:

In order to update the firmware over the network, you’ll need to change sonoff-pow-debug-ota section in platformio.ini with your own IP address (upload_port) and password (in upload_flags) used in ESPurna web interface:

Once it’s done, you can upgrade the firmware, and then the file system as follows:

The Sonoff POW will reboot, and cut the power for about 2 seconds after both updates. My Sonoff POW is controlling my computer power, but that’s OK since I’m behind a UPS. Now I can access the web interface, and one of the improvement is that you’re being asked to setup a new password right after the update.

Click to Enlarge

I was then redirected to the Status page showing power, voltage (a bit low?), current, and power factor.

Click to Enlarge

I then jumped to MQTT menu to set the IP address to my NanoPi NEO board, and clicked Update.

Click to Enlarge

There’s a new DOMOTICZ menu which we’ll check out a little later.

Installing and Configuring MQTT in Domoticz

ESPurna communicates with Domoticz via MQTT, so the first task was to follow and adapt Domoticz MQTT wiki.

First login to your Domoticz server (NanoPi NEO) and access a terminal window to update the packages, install npm, node.js, Node RED, and mosquitto:

We then need to go to the Hardware page in Domoticz and configure a new “MQTT Client Gateway with LAN Interface” as shown in the screenshot below.

Click to Enlarge

We can test whether it works or not by creating a new Dummy device in the same Hardware section

Then click on Create Virtual Sensors, to add a new Temperature sensor which we’ll call Fictive Temp.

Now go to the list of Devices (Setup->Devices) to check the idx value (1 in our case), and a publish a MQTT message to update the temperature value of our virtual sensor:

The temperature switch from 0 to 25°C. Our installation is working. Great!

Using Sonoff POW with Domoticz

In theory, we should be able to get two type of data for Sonoff POW: relay status and power levels. However, after looking at ESPurna source code, domoticz.ino only seems to handle the relay status that can be changed from Domoticz web interface, but the power values are only send in pow.ino to the MQTT server, with data not directly compatible with Domoticz. Maybe I missed something as Tinkerman – ESPurna developer – can use Sonoff SC to send temperature data to Domoticz. Alternatively, it might be possible to convert that data somehow with Node RED, but that’s something I’ll try later. So today, I’ll only try to control the switch from Domoticz.

To do so, I created another Dummy device called Sonoff POW Switch, and from there, another Virtual Sensor of Switch type.

Click to Enlarge

Click to Enlarge

We’ve already configured MQTT in ESPurna web interface, and from the screenshot above,we can see that “Sonoff POW Switch” Idx is 3, a value we need to update in the DOMOTICZ section of ESPurna web interface.

Now I can go Domoticz interface in my phone, and not my computer since my office’s Ethernet switch will be turned off, click on the Switch tab, and turn on and off Sonoff POW by clicking on the lightbulb as shown below.

Click to Enlarge

It works fine, however note that the initial switch status was wrong (off instead on on), despite the switch sending regular updates to the MQTT server.

NanoPi NEO Power Adjustments and Installation

Normally, at this stage, it should be easy simply install NanoPi NEO outside the office close to my router in the living room. But I’ve come across a few issues doing so, which I’m going to report.

First I decided to make a very short Ethernet cable to connect NanoPi NEO directly to my router. I have done a couple of Ethernet cables in the past a few meters long, and they all work. I tested my ultra short straight Ethernet cable connections with a multimeter, and the 8 wires were properly connected, however, when I connected NanoPi NEO to the router with that cable it failed to get a link. Maybe there was aonther issue with the cable, so I made another one just as short… Another fail. It turns out very short Ethernet cables may cause issues, which are normally solved by twister pairs, but with such short cables the length of the twisted pairs is also extremely short, maybe 2 to 3 cm which may not be sufficient. So I ended up using a “normal” 1.5 meter cable, not as neat but it works.

The power strip close to my router was full, and since I did not want to add another, I decided to use the spare USB port on my modem router in order to power NanoPi NEO board. A USB 2.0 port can only deliver 2.5W max, so I was clearly looking for problems here. In order to avoid an issues, I made use of h3consumption script to adjust the behavior of CPU cores and disable unused peripherals.

Let’s check NanoPi NEO current settings in a terminal:

h3consumption allows us to change the following settings:

So I decided to disable USB, and use two CPU cores at most in order to limit the board’s power consumption, and avoid random reboots:

The changes were properly applied after a reboot.

I powered the board with my modem router, and could use it without issue. I’ll monitor NanoPi NEO’s uptime to check if this works.

RTL8710 Ameba Arduino Development Board and Ameba Arduino v2.0.0 SDK Released

January 20th, 2017 1 comment

We’ve already seen a NodeMCU lookalike board called RTLDuino based on Realtek RTL8710AF ARM Cortex M3 WiSoC earlier this month, that can be programmed with a community supported Arduino port also called rtlduino via a JLink SWD debugger, but now Realtek has just launched Ameba RTL8710 Arduino board, and released Ameba Arduino v2.0.0 SDK which brings official Arduino support to RTL8710AF platforms.

Click to Enlarge

There appears to be two versions of the development kit: RTLDUINO_PRO_V1.0 and REALTEK-AMEBA_RTL8710_V2.0, but based on the user manual they seem to be identical, and as you can see from the above picture, it includes a baseboard and the aforementioned RTLDuino board.

RTL8710 Ameba Arduino HDK key features:

  • SoC – Realtek RTL8710AF ARM Cortex-M3 MCU @ 83 MHz with 802.11 b/g/n WiFi, hardware SSL engine connected to the baseboard via:
    1. RTLDuino board through female header
    2. B&T RTL-00 module soldered on module footprint
  • USB – 2x micro USB ports, CON2 used for power and Arduino programming, CON1 used for DAP programming (TBC)
  • Expansion – Arduino UNO headers with GPIOs, power signals, 2x UART, SPI, I2C, and 4x PWM
  • Debug Headers – 4-pin Mbed connector, 10-pin Jlink connector, 4-pin for serial console
  • Misc – T/R & n/R buttons maybe to select programming mode?, reset and test buttons

Pinout Diagram – Click to Enlarge

The documentation in English is still work in progress, but Realtek already released a getting started guide to program the board with Arduino IDE 1.6.5 or later. The guide only mentions Windows, so it’s unclear whether Linux is supported for now, but the steps are pretty simple:

  1. Install mbed serial drivers
  2. Install Ameba board packages in Arduino IDE
  3. Connect the board via USB to your computer, and select Ameba RTL8710 board in Arduino IDE
  4. Use Blink program to blink an LED connected to GPIO 13.
  5. Profit!

Ameba RTL8710 & Arduino IDE – Click to Enlarge

I understand you may not even need to use RTL8710 Ameba Arduino SDK for this if you have a board with the latest firmware. If not, you may need to update the firmware, but there’s no documentation about this, and it’s unclear whether this can be done via the RTLDUINO / AMEBA_RTL8710 baseboard, or a separate JLINK SWD debugger is needed.

The SDK has been released on Ameba IoT China website, and will soon be on Ameba IoT (English) website. The hardware development kit can be purchased for NT$ 630.0 in Taiwan, and 150 CNY (~$22) on Taobao. If you live outside of China, you could use a Taobao agent to ship to your country, or probably better, wait until Realtek gets a worldwide distributor.

$30 BakeBit Starter Kit Adds Sensors & Buttons to Your NanoPi NEO & NEO Air Boards

January 20th, 2017 1 comment

FriendlyElec (previously FriendlyARM) launched NanoPi NEO and then NanoPi NEO Air board as respectively Ethernet and WiFi/Bluetooth connected boards for IoT applications. But so far, there was no ecosystem around the board, you had to use your own sensor modules, and write your own software to control them. This has now changed with the launch a BakeBit Starter Kit with twelve sensor modules, a NanoHat Hub add-on board designed for NanoPi boards, as well as BakeBit Library to control the hardware.

NanoPi NEO with NanoHat and Two Modules

The NanoHat Hub plugs into the two NanoPi NEO headers and provide 12 headers with 3x I2C interfaces, 3x analog interfaces, 2x UART interfaces, and 4x digital interfaces among which D3 and D5 support PWM, compatible with SeeedStudio Grove modules. You then have a choice of 12 modules to connect to the NanoHat Hub:

  • OLED Module
  • Ultrasonic Module
  • Green LED Module
  • Red LED Module
  • LED Bar Module
  • Rotary Angle Sensor Module
  • Joystick Module
  • Sound Sensor Module
  • Button Module
  • Light Sensor Module
  • Buzzer Module
  • Servo Module

BakeBit Starter Kit – Click to Enlarge

But now that you have your hardware setup with multiple module, you still need to program the thing, and that’s where BitBake library, based on Grove Pi, comes into play, as it allows you to program the module easily with Python programming. More details can be found in the Wiki for BakeBit NanoHat and modules.

BakeBit Starter Kit is now sold for $29.99 (promotion), but if you already have Grove modules, you could also simply purchase NanoHat Hub for $12.99. Bear in mind that Chinese New Year is around the corner, so any order passed after January 24th and beyond, will be processed after the holidays around February 6th. [Update: The company has also released a $9.99 NanoHat PCM5102A audio board for NanoPi Boards]

How to Install Domoticz Home Automation System in NanoPi NEO and Other ARM Linux Boards

January 19th, 2017 7 comments

I’ve recently started experimenting with IoT projects, and the first hurdle is to select the hardware and software for your projects are there are simply so many options. For the hardware your first have to choose the communication protocols for your sensors and actuators, and if you are going to go with WiFi, ESP8266 is the obvious solution, used together with your favorite low cost Linux development board such as Raspberry Pi or Orange Pi to run some IoT server software locally or leveraging the cloud. But the most difficult & confusing part for me was to select the server software / cloud services as there are just so many options. I prefer having a local server than something running only in the cloud, as my Internet goes a few hours a month, so I started with a solution combining ThingSpeak with MQTT gathering data from Sonoff power switches running ESPurna firmware and vThings CO2 monitor. This works OK, but while ThingSpeak.com cloud service is continuously update, its open source version has not been updated since mid 2015. Among the many service and software framework available, one seems to have come more often than other, is supported by vThings air monitoring platforms, and recently been added to ESPurna. I’m talking about Domoticz described as:

a Home Automation system that lets you monitor and configure various device like lights, switches, various sensors/meters like temperature, rain, wind, UV, Electra, gas, water and much more. Notifications/Alerts can be sent to any mobile device.

The system can run on Linux, Mac OS, Windows on x86 platform, but also on 32-bit and 64-bit ARM Linux boards such as Raspberry Pi and Cubieboard with just 256MB memory recommended, and 200MB free hard disk space. It can also generate charts from the data like the ones below.

Click to Enlarge

On top of that, the forums appear to be very active, and the last stable version was released in November 2016, and the last beta release yesterday according the download page.

I’m going to take it slow, so today I’ve just tried to install it on NanoPi NEO since it’s compact and runs Linux. However, it does not appear to be officially supported by Domoticz, so we’ll have to see whether it’s possible to install it on the board.

Domoticz is not a Linux distributions but a framework, so first we need to install a Linux distributions on the board, and the obvious choice for NanoPi NEO is to use the latest Armbian release either Debian Jessie or Ubuntu Xenial.

I downloaded Debian, extracted the image, and flashed it to a micro SD card on a Ubuntu computer:

Replace /dev/sdX with your own SD card device, which you can find with lsblk command.  If you are a Windows user, you can flash the firmware like you’d do for a Raspberry Pi using Win32DiskImager after uncompress Armbian firmware.

Now we can insert the micro SD card into the board, and connect the power to start the board. If you have not connected the serial console to your board, please be patient for the first boot as the system may take around 3 to 4 minutes to boot before you can login to it, as it expands the micro SD card to full capacity, and creates a 128MB emergency SWAP file.

Once it’s done we can login through the serial console or SSH using root / 1234 credentials. The first time, you’ll be asked to go through the first setup, changing the root password, and creating a new user with sudo privileges.

So now that we have Linux running on the board, and after login again as the new user, we can follow the instructions for Raspberry Pi board and other ARM boards to install domoticz with a single command line that works on systems running Debian/Ubuntu:

After a minute or two, as the system update the packages, and download domoticz, the setup wizard should start.

At some points we’ll need a fixed IP address, either by configuring Linux with static IP, or setting a permanent IP linked to the board MAC address in the router. The second option is usually my favorite option. Nevertheless, let’s click on OK to proceed.

You’ll be asked whether you want to enabled HTTP or/and HTTPS access. I selected both for now, but it’s probably a good idea to only select HTTPS for better security.Next is the HTTP port number set to 8080 by default, followed by the HTTPS port number to 443 by default (no screenshot), and finally the installation folder which defaults to ~/domoticz. You should now have reached the Installation Complete! window, and you can click Ok to exit the installation wizard.
Wow.. That was easy, and no errors. But does it work? Let’s access https://192.168.0.110:443 from a web browser.

We have a “Your Connection is not secure” error, but it’s expected as Domoticz simply generated a self-certificate, you can safely add exception to your browser to avoid this issue next time. Your data will still be encrypted, but if you plan to access your Domoticz setup from the Internet, you should probably install an other certificate using Let’s Encrypt certificate authority for example.
Once we have added an exception to the web browser we can indeed access Domoticz web interface, so the installation worked, but it will only show “No favorite devices defined…” Again that’s normal, because we need to configure it for example by clicking on the Hardware link.

Adding Hardware to Domoticz – Click to Enlarge

This will allow you to configure the system with MQTT, local I2C sensors, all sort of gateways, and even Kodi Media Center.  I’m pretty sure all devices working over the network or USB should work, but things like “Local I2C Sensors” which may be connected directly to the board may or may not work. Anyway, that looks promising, but I’ll stop here for today, as I have a lot more to study before going further, including upgrading Sonoff firmware, and configuring vThings CO2 monitor for Domoticz.

Getting Started with Onion Omega2+ LEDE WiFi IoT Board and Expansion Dock

January 16th, 2017 49 comments

Onion Omega2 LEDE (OpenWrt fork) WiFi board is powered by Mediatek MT7688 MIPS SoC, targets IoT projects, and sells for as low as $5. There are actually two versions: Omega2 with 64MB RAM, 16MB flash, and Omega2+ with 128MB RAM, 32MB flash and a micro SD slot. Onion sent me the latter for review, together with an expansion dock that allows powering up the board though USB , and adds a USB host port, an RGB LED, buttons, and access to GPIO via a female header. In this quick start guide, I’ll start by taking some unboxing pictures, and then report my experience following the documentation to configure the board, blink the RGB LED, and control a LED on a breadboard using a GPIO from the header.

Onion Omega2+ Unboxing

I received the two boards in their respective package, and which are both stored in anti-static bags.

Click to Enlarge

Click to Enlarge

Let’s check Onion Omega2+ board first. The top includes a chip antenna and an u.FL connector for an external antenna, as well as the main components covered by a shield with some info like FCC ID, and the MAC address with the last four digits (hexits?) in bold since they are used to access the board. The bottom of the board are two rows of headers, and a micro SD card slot. There’s also a footprint for another header or connector, but I could not find out the details.

Click to Enlarge

Click to Enlarge

Next up is the dock. We have a 2x 15-pin female header with clear marking for the pins that include power signals, GPIOs, I2C, UART, and USB.

Click to Enlarge

Click to Enlarge

The button on the top is for power, the one at 45 angle is the reset button, and we also have a micro USB port for power, a USB port for storage, an RGB LED, and the header for Onion Omega2 board.

Click to Enlarge

Click to Enlarge

Plugging Omega2 into the dock is very easy, and the only thing you have to check is that it is inserted correctly.

Onion-Omega2-vs-LinkIt-Smart-7688Onion Omega2+ is not my first Mediatek MT7688 board, as I’ve reviewed LinkIt Smart 7688 too, and took side-by-side picture of both boards for comparison. Omega2+ is smaller, but LinkIt Smart board already include a micro USB port for power.

Initial Setup for Onion Omega2 and Expansion Dock

I normally test the documentation as much as I test the board, and after a web search, I ended up on that Getting Started page. However, it was for Onion Omega, the first version of the board introduced in 2015, and while the instructions are similar, they are not quite the same. Finally, I found the actual Omega2 Wiki, and could successful complete the setup with some efforts.

I’ll be using a computer running Ubuntu 16.04 to access the board, but it also works with Windows with Bonjour Service, and Mac OS X.

The Zeroconf services is needed to play with the board unless you access the board directly with its IP, but it’s normally already installed in Linux distriutions, so we are good to go. First we need to connect a micro USB to USB cable to a power source like the USB port of your computer, and turn on the board with the power switch.

Click to Enlarge

Click to Enlarge

At first both the RGB LED on the dock and Omega2+ LED will turn on for a short time, after which the RGB LED will turn off, and Omega2 LED will blink for a few seconds, and once the LED stops blinking and remains solid the boot is done.

Omega-Onion2-Access-Point

You should then see an new “Omega-XXXX” access point in your WiFi networks, where XXXX is the last digits of your MAC address shown on bold on the board. We now need to connect to the access point using password: 12345678

Omega2 Web Configuration

One it’s done, open a web browser and go ti http://192.168.3.1 or http://omega-XXXX.local/ to access Omega2 Setup Wizard.

Omega-Onion2-Setup-Wizard

Click Start to login with the default credentials (username: root ; password:onioneer), and the next page will let you connect the board to your WiFi router.Omega-Onion2-WiFi-Configuration

Selection you ESSID, input you WiFi password. and clikc on “Configure WiFi“. Omega-Onion2-Cloud

The wizard offers you to register your board to the cloud, but this is completely optional, and you could simply select Skip Step to go to the next step (firmware update). But I tried to registered the device to the cloud for this review.Onion-Cloud-RegistrationYou’ll need to provide your name, an email address and a password to register an account first.Onion-Omega2-Cloud-NameYou’ll then be asked for a device name and a description to confirm the registration.Onion-Cloud-Connection-failedSadly this step failed and I got the window above. Clicking on the red cross button did nothing. If I login to the cloud service, I can see the board listed, but detected as offline. I’m not the only one to have this issue, and Onion developers are looking into it.

Onion-Omega2+-Firmware-Update-ConsoleSo instead I went to the next step to upgrade the firmware and install Console web-based virtual desktop.Onion-Omega2-Firmware-Download-StuckThis also failed as the progress bar did not move at all, and I waited for around 20 minutes. I could also see my router’s DHCP server gave an IP address to the board, so it should have been able to connect to the Internet.

Omega2 Command Line Configuration

So I used to backup configuration method, using the command line as explained in the documentation. You just need to SSH the board as root with the same password as in the web configuration (onioneer):

Note Ω-ware firmware version is 0.1.5 b130.

wifisetup allows you to scan the network, and connect the board to your router:

Good. Firmware update failed in the web setup wizard, but we can retry it with oupgrade command line:

The firmware could be downloaded, and it looked like the system rebooted as I lost access to SSH terminal. The LED was still on for a while after it happened, then the LED went off (forever), at least longer than the 15 seconds listed in the documentation, and in that case they explain you need to power cycle the board. I used the power switch on the expansion dock to do so.

The board LED blinked for a pretty long time (maybe 2 minutes), but eventually it stopped and remained solid, and I could login to the board:

The firmware was updated to version 0.1.7 b139, so all good even though the whole setup did not go 100% smoothly. In case something goes really wrong and you can’t access the board at all, you could try to do a Factory Restore by pressing and holding the reset button for 10 seconds then releasing it.

Omega2 LEDE System Info

Since we’re done with the configuration, let’s quickly check some system info:

So we have a relatively recent kernel (Linux 4.4), 24.4MB space available to the user, 125664 KB total memory, and a MIPS 24KEc processor…

Controlling Omega2’s Dock RGB LED (via PWM)

We can start playing with the GPIO on the board starting with the RGB LED on the dock  that should be connected to pin 15, 16 and 17. The documentation explains expled sample can be used for this and we can see the R, G, B hexadecimal values. I want to show red color only, and I set blue and green to zero:

Oops, segfault. Let’s try something else like a pinkish color:

It runs, but the RGB LED remains off. It’s not an hardware problem since the RGB LED turns on at boot time. expled is actually a bash script that can be found in /usr/bin/expled and calls “fast-gpio“program which access GPIOs directly without using sysfs. Maybe it’s another firmware issue.

Controlling Omega2 GPIOs – LED example

In order to play with the expansion header, I connected a 5V LED to a breadboard together with two resistors and a transistor (for 3.3 to 5V conversion), and connected it to pin 1 on the header.

Click to Enlarge

We’ve already seen fast-gpio tools in expled script, but I used another GPIO tools for the LED, namely gpioctl that relies on sysfs.

We first need to set the GPIO pin as an output pin using the dirout command (dirin would set it as an input):

We can now turn the LED on by setting GPIO 1 to HIGH with dirout-high option:

The get command above will check the value of the pin. The LED did turn on as it should, and we can turn it off with dirout-low option:

Success.

If you want to use multiplexed pin with I2C, SPI, UART, PWM, I2S… you’ll need to check out omega2-ctrl program. I have not tried it for this guide to keep it short.

Onion Omega2 and BreadBoards

Many similar small IoT board are designed to fit on a breadboard, but Onion Omega2 board’s header pins are using 2 mm pitch, not 2.5 mm pitch, so they can’t be used with a breadboard directly. Instead, you’d have run wires from the board to the breadboard or purchase a BreadBoard Dock as pictured below.

If you do not have a dock, or breadboard expansion board, you can still power the Omega2 module/board using a 3.3V power source for example with a regulator such as LD1117, or something like YwRobot MB102 breadboard power supply.

If you are interested in getting a board, you may have to wait as while Omega Expansion Dock sells for $14.99 on Onion store, Omega2 boards are not listed yet. For reference, Omega2 board went for $5, and Omega2+ board for $9 on Kickstarter. [Update: While the Kickstarter campaign is now finished, you can still get on Indiegogo for the same price, and that includes shipping].

Bttn is a Sigfox Connected IoT Button Going for $2 a month

January 7th, 2017 2 comments

The Button Corporation, a company specializing in… buttons as you may have guess, has introduced a new version of their bttn connected button with Sigfox connectivity in the US. It works a little like Amazon Dash, but mostly targets businesses, offers more features, and works anywhere with a Sigfox network.

sigfox-buttonbttn & bttn mini specifications:

  • Button functions – Short press, long press and “not pressed”
  • LED feedback – Green (positive), red (negative) and yellow (wait)
  • Connectivity – Mobile data (2G GPRS), SIGFOX (868 MHz ETSI / 915MHz for US), or Wi-Fi (2.4 GHz 802.11b/g/n)
  • USB – 1x miro USB port for charging
  • Power Supply
    • bttn mini – Rechargeable Li-Po battery
    • bttn – 4 x AA alkaline batteries
  • Dimensions – bttn mini: 69mm Ø x 40 mm; bttn: 100 mm Ø x 73 mm
  • Weight – bttn mini: 90 grams; bttn: 190 grams
bttn devices send data to bt.tn cloud server, or for WiFi bttns to a local server, and support HTTP(S), REST API, IFTTT, Zapier, email, SMS, social media, and more. my.bt.tn website allow for remote management,group configuration, and status monitoring, automatic alerts, usage statistics and analytics for your bttns. Companies can also ask the company to customize the bttns with their own logos.
Creating actions at my.bt.tn

Creating actions at my.bt.tn

Some use cases include pressing the button to re-order a product, for example a bttn provided by your heating oil supplier may allow you to press it to get a refill, or bttn could also be used to rate the service at government offices: short press service was good, long press service may need improvement, etc… The system will also monitor the battery level, and send an email once it’s below 15% so that the battery can be replaced or recharged. The battery lasts for about 2000 presses.

The company is now taking pre-order with the service launching in March for $1.99 per month in the US. The press release does not mention it, but bttn is also available in Europe for 1.99 Euros per month right now based on the specs, and information on bttn Sigfox page and the online shop, with more countries and regions to be supported as Sigfox coverage expands around the world. The initial costs is actually 69.00 Euros including a 2-year free subscription to the service.

Categories: Hardware Tags: ces 2017, IoT, lpwan, sigfox

Intel Compute Card is a Business Card Sized Platform for Modular & Upgradeable Computers & Devices

January 6th, 2017 5 comments

Intel has just introduced their Compute Card, the name likely originating from their Compute Stick & Module series, integrating all main components you’d find in a computer such as a processor, memory, storage, and wireless connectivity into an standardized ultra thin business card sized module that can be used in compatible devices from smart kiosks to security cameras and IoT gateways, as well as computers and laptops.

intel-compute-cardIntel has some demos at CES 2017, but has not announced any specific models yet. We still have some of the key features for the Compute Cards:

  • Processor up to 7th Gen Intel Core, memory, storage and wireless connectivity are all included in the card
  • Intel Compute Card-based device will provide the power, cooling and the optimized user I/O for that particularly solution
  • Connection to devices will be done via an Intel Compute Card slot with a new standard connector (USB-C plus extension)
  • USB-C plus extension connector will provide USB, PCIe, HDMI, DP and additional signals between the card and the device
  • Dimensions – 94.5 mm x 55 mm x 5 mm

It’s not the first time company have created compute module for upgradeability and modularity, as with, for example, EOMA68 CPU card going into a mini computer and laptop, just like BBC demo of Intel Compute Card below featuring Core-M processor.

Intel is now working with early partners such as Dell, HP, Lenovo, Sharp, and InFocus to develop products taking Compute Card. More details, including pricing, will be made available in Q2 2017 just before the Compute Card and compatible devices should start to hit the shelves around the middle of the year. You’ll find a few more details on Intel’s Compute Card product page and press release.