Archive

Posts Tagged ‘Linux’

Axiomtek NA362 Network Appliance Features Intel Atom C3538/C3758 Processors, Up to 10 LAN Ports

August 19th, 2017 4 comments

We reported about GIGABYTE MA10-ST0 motherboard powered by a 16-core Intel C3958 Denverton processor earlier this week, but that also corresponded to the official launch of Intel Denverton family, and many companies made announcements for their Denverton boards, products, or COM Express modules including SuperMicro, Kontron, Portwell, and others, such as Axiomtek NA362 Network Appliance powered by Atom C3538 or C3758 processors, and offering up to 10 LAN ports with six GbE RJ-45 ports, and up to four SFP+ cages.

Axiomtek NA362 specifications:

  • SoC (one or the other)
    • Intel Atom C3538 quad core “Denverton” processor @ 2.10 GHz with 8MB cache; 15W TDP
    • Intel Atom C3758 octa core “Denverton” processor @ 2.2 GHz with 16MB cache; 25W TDP
  • System Memory – 2x or 4 x R-DIMM/U-DIMM non-buffer DDR4, up to 64/128GB
  • Storage – 1x 2.5″ SATA3 HDD; 1x mSATA
  • Ethernet
    • 6x 10/100/1000 Mbps RJ45 ports via Intel i210
    • 4x 10 GbE SFP+ cages for C3758 model only
    • One pair LAN Bypass
  • Expansion – 1x PCI Express Mini Card for optional Wi-Fi/3G/LTE
  • USB – 2x USB 2.0 port
  • Management – 1x RS-232 (RJ45) console port
  • Misc – Power & network Status LEDs, power switch
  • Power Supply – 1x 12V/5A or 1x 12V/7A power adapter (depends on CPU SKU)
  • Temperature Range – 0°C ~ +40°C
  • Dimensions –  231 x 197 x 44 mm (1U desktop form factor)
  • Weight – Net: 1.64 kg; gross: 2.54 kg with 12V/5A adapter,2.69 kg with 12V/7A adapter
  • Certifications – FCC class B, CE class B

Atom C3538 SoC is equipped with two 10 GbE interface, but Axiomtek decided not to provide any SFP+ cages on the model based on this processor with only the six RJ45 ports.

The appliance supports the Intel Data Plane Development Kit (Intel DPDK), the Yocto Project, as well as Linux, Windows Server 2012 R2, and Windows Server 2016 operating systems. The server is said to be suitable for VPN, network bandwidth controller, firewall and UTM (Unified Threat Management) applications.

Axiomtek NA362 will be available in October 2017 through two SKUs: NA362-DAMI-C3758-US (C3758, 4x DIMM, 10 LAN) and NA362-D6GI-C3538-U (C3538, 2x DIMM, 6 LAN). Check out the product page for further information.

Videostrong VS-RD-RK3399 Development Board Review – Part 1: Unboxing, Kit Assembly, SDK and Documentation

August 18th, 2017 6 comments

Videostrong VS-RD-RK3399 development board is a full-featured development based on Rockchip RK3399 hexa-core processor with up to 4GB RAM, and 32GB eMMC flash, and plenty of I/Os. The company has sent me a sample, and after getting some trouble going through customs with questions like “what is a development board?” and “is it a board for TV boxes or computers?”, I finally got hold of the parcel. Today, I’ll check out the board and its accessories, show how to assemble it, and since the company shared more info about documentation and software, quickly go over what’s available.

Videostrong VS-RD-RK3399 Development Kit Unboxing

The board was in a bland carton box, which is fine since it’s not a consumer product, with a stick showing I got the 4GB LPDDR3 / 32GB eMMC flash version. There’s also a board using 2GB/16GB configuration.


The package includes the board, bottom and top acrylic plates for the “case”, some spacers, WiFi and Bluetooth antenna, USB 3.0 type A to USB type C cable, a user’s manual detailing the board’s specifications and pinout diagram…

Click to Enlarge

… and a 12V/2A power adapter and EU, US, and UK plug adapters.

Click to Enlarge

I also took some closer photos of the development board, and it will only report new information that I have not already written in the announcement post.  First, the eMMC flash is Samsung KLMBG4WEBD-B031, the cheapest 32GB eMMC flash from the company, but still with acceptable performance: 246/46 MB/s R/W speed, and 6K/5K R/W IOPS.

Click to Enlarge

There are many USB ports in the board’s design, and this is done via Genesys Logic GL850G USB 2.0 hub chip, while the audio codec is Realtek ALC5640.

Click to Enlarge

The back of the board includes an mPCIe slot for a 4G LTE card, and a MIPI DSI connector.

VS-RD-RK3399 Kit Assembly

The assembly of the kit is mostly straightforward for may be a little confusing at the beginning. First, we’ll need to remove the protection on the acrylic plates, and use the bottom one with the 6 ventilation lines, and tighten the small and medium spacers around the base, with the small ones facing down. I thought it was a good idea to connect the u.FL to SMA cable for the antenna at this stage, but they come off those easily, it’s better to do it later.

Click to Enlarge

Then we’ll place the main board on top of the medium spacer, and tighten the longer spacers on top. Once it’s done we can remove nuts from the SMA connector, insert the antenna cables on the right and middle hole in the top acrylic, and screw the nuts back to keep the cables in place.

Click to Enlarge

We can now connect the antenna cables the ANT0 (for Bluetooth), and ANT1 (for WiFi) u.FL connectors on the board, place the top cover with the two opening aligned over the MIPI CSI connectors, and tighten it with the four remaining nuts we have, before completing the assembly by installing the two antennas.

Click to Enlarge

VS-RD-RK3399 Board SDK and Documentation

When I asked about Android/Linux software development kit, and documentation last week, the company had nothing to offer, saying the SDK will be provided via a link… Today, they gave me that link on MEGA with most of what is needed for development.

The download is too big for a free MEGA account, unless you are really patient, but you should be able to download everything using megaupload tools in a terminal.

I haven’t completed the download yet, and I’ll look into details during the next part of the review, but we can see 6 main directories:

  • VS-RD-RK3399-linuxSDK – The Linux SDK
  • VS-RD-android7.1-SDK – Android Nougat SDK
  • VS-RD Software image – Android firmware, apparently no Linux OS (yet)
  • VS-RD Software datasheet – Linux, Android, Dual OS documentation
  • VS-RD Hardware – Parts datasheet, RK3399 TRM, LCD datasheet (No schematics apparently)
  • DevelopmentTool – Various tools for development like AndroidTool, DriverAssistant, etc…

If you are interesting in the platform, you can purchase it by contacting Videostrong via Alibaba.

$14 Orange Pi R1 Allwinner H2+ Board Comes with Two Ethernet Ports, 256 MB RAM

August 18th, 2017 9 comments

Shenzhen Xunlong has introduced the new Orange Pi R1 board with Allwinner H2+ quad core Cortex A7 processor that’s a bit different from their other models, as it includes two 10/100M Ethernet port, and should be suitable for intelligent controllers, or simple IoT gateways.

Click to Enlarge

Orange Pi R1 board specifications:

  • SoC – Allwinner H2(+) quad core Cortex A7 processor @ 1.2 GHz with Mali-400MP2 GPU
  • System Memory – 256 DDR RAM
  • Storage – micro SD card slot, 16 MB SPI flash
  • Connectivity – 2x 10/100M Ethernet (including on via RTL8152B USB to Ethernet) + 802.11 b/g/n WiFi (Realtek RTL8189ETV) with u.FL antenna connector and external antenna
  • USB – 1x micro USB OTG port
  • Expansion headers
    • Unpopulated 26-pin “Raspberry Pi B+” header
    • 13-pin header with headphone, 2x USB 2.0, TV out, microphone and IR receiver signals
  • Debugging – 3-pin header for serial console
  • Power Supply – 5V via micro USB port
  • Dimensions – 60 x 45 mm

Since it’s based on the same Allwinner H2+ processor as on Orange Pi Zero board, the extra Ethernet port is implemented via USB, and the I/O headers looks to be the same, it should be possible to run Armbian images on the board without that many modifications. The board may not be the best solution for small router, as there are already many cheap OpenWrt compatible routers that should do the job just as well, but thanks to the expansion header, it may make a useful intelligent controller or ModBus gateway to manage relays, sensors, robots, etc…

Potential Use Case for Orange Pi R1 Boards – Source: MGate MB3170 Product Page

If you have the kind of cascaded setup above, the 16MB SPI flash could save you the use of micro SD card, with network boot either from the control PC (if it is always on), or one of the Orange Pi R1 fitted with a micro SD card.

Orange Pi R1 board is sold for $13.90 plus shipping ($17.29 in total here) on Aliexpress.

Thanks to Anton for the tip

Raspbian for Raspberry Pi Boards Gets Upgraded to Debian Stretch

August 17th, 2017 9 comments

While Raspberry Pi boards support many different operating systems, Raspbian is by far the most popular option, and in the last two years the distribution was based on Jessie (Debian 8), the Raspberry Pi foundation has just announced it was now replaced by an update to Stretch (Debian 9).

The Jessie version is completely gone from Raspbian Download page, and you’ll only be offered to download “Raspbian Stretch with Desktop” or “Raspbian Stretch Lite”.

So what has changed compared to Jessie? Debian 9 changelog will list the main differences compared to Debian 8, but some modifications have also been made in Raspbian itself:

  • Version 3.0.1 of Sonic Pi “Live Coding Music Synth” app – See changelog
  • Chrome 60 stable with improved memory usage and more efficient code
  • Bluetooth audio is supported by the bluez-alsa package by default instead of PulseAudio
  • Better handling of “non-pi users”, as previously many applications assumed to be run by pi user.
  • SenseHAT extension added to Scratch 2
  • BroadPwn exploit fix to close a vulnerability in the firmware of the BCM43xx wireless chipset
  • Other minor bug fixes and UI improvements

If you already have Raspbian Jessie running in your board, and would like to upgrade to Raspbian Stretch, you can try to do so at your own risk by changing all occurrences of ‘jessie’ to ‘stretch’ in /etc/apt/sources.list and /etc/apt/sources.list.d/raspi.list, and running:

The Raspberry Pi foundation however recommends to back up your micro SD card first, as upgrading that way is not guaranteed to work in every circumstance.

NutsBoard Pistachio 3.5″ Embedded SBC is Powered by NXP i.MX 6Dual/Quad Processor

August 17th, 2017 2 comments

I don’t write about i.MX6 solutions much anymore, since there are so many options available on the market, but Pistachio SBC has been designed by a company I had never heard of before: NutsBoard, and they’ve released documentation and software publicly, which does not always happen in the industrial/embedded space.

Click to Enlarge

Pistachio single board computer specifications:

  • SoC – NXP ARM Cortex-A9 IMX6 Quad/Dual @ 800MHz
  • System Memory –  Up to 2GB LPDDR3
  • Storage – 4GB eMMC flash, 1x SATA interface, 1x micro SD card slot
  • Display I/F / Video Output

    Click to Enlarge

    • 2x LVDS (6 or 8 bit)
    • 1x 24-bit VGA output
    • 1x HDMI port up to 1920×1080 (FHD)
    • 1x I2C AR1021 touch controller
  • Audio – SGTL5000 audio codec with class D amplifier; 1x audio header for speaker and microphone
  • Connectivity – Gigabit Ethernet (Qualcomm AR8035), industrial grade wireless module  (Jorjin WG7833) with dual band WiFi 802.11 a/b/g/n, Bluetooth 4.2
  • USB – 4x USB 2.0 host interfaces with two USB type A ports, and two internal headers
  • Serial – 1x RS232/422/485 DB9 port, 3x RS232 headers including one for debugging
  • Other I/Os
    • 1x CAN bus
    • 1x I2C, 1x GPIO’s (5 V)
    • 1x PWM
  • Expansion – 1x mPCIE, 1x SIM card slot
  • Misc – RTC with batter slot (no battery by default)
  • Power Supply – 9 to 36V DC input; PMIC NXP PFUZE100
  • Dimensions – 148 x 102mm (3.5″ embedded SBC form factor)
  • Temperature Range – -30 to 70°C
  • Certifications – CE, FCC, RoHS, EMI, ESD and Surge for pre-testing

The company provides Linux 4.1.15, and support for Debian, Buildroot, Yocto Project, and Android 7.1 Nougat. You’ll find source code on pistachio-android-7 github account, software development tools and Android 7.1 firmware for HDMI/VGA or LCD panel in the download page, and documentation such as product brief, hardware manual, and getting started guide in the product page.

Click to Enlarge

The board will officially launch tomorrow (Friday), with the quad core version selling for $164, and the dual core version for $153 for quantities less than 100 pieces, and Pistachio development toolkits with 7″ (1024×600) LVDS touchscreen display or 10″ (1024×600) LVDS touchscreen display for respectively $284 and $291. The company will accept orders by email for samples or larger quantities first, before listing the boards and kits in their online shop by the end of the month.

Pine64 SoPine Cluster Board Takes up to Seven SOPINE A64 Systems-on-Module

August 16th, 2017 16 comments

Pine64 launched SOPINE A64 system-on-module based on Allwinner A64 processor back in January, with such module normally being found in low volume products where companies do not want to spent too many resources developing complex multiple layers boards with CPU and RAM, and instead focus on developing a simpler baseboard and custom software for their product. Pine64 made something else with SOPINE A64 modules:  a cluster board.

Click to Enlarge

I don’t have the full details yet, but “PINE64 SoPine Cluster Board” comes with 7 SO-DIMM slot designed to take SOPINE64 modules with the board providing a micro USB OTG port, a USB host port, and Ethernet transceiver for each SoM, which are connected to a Gigabit Ethernet switch (initially Marvell 88E6185, but they appear to have now switched to a Realtek part), and accessible via a single Gigabit Ethernet port.

Click to Enlarge

Power can be provided by a 5V/10A power supply connected to a power barrel, or via the ATX connector.I also understand the board is based on mini-ITX form factor (170×170 mm), so you’d be able easily find a case for it.

The board and software are still being developed, and it’s unclear when/if it will launch publicly.

GIGABYTE MA10-ST0 Server Motherboard is Powered by Intel Atom C3958 “Denverton” 16-Core SoC

August 15th, 2017 27 comments

Last year, we wrote about Intel Atom C3000 series processor for micro-servers with the post also including some details about MA10-ST0 motherboard. GIGABYTE has finally launched the mini-ITX board with an unannounced Atom C3958 16-core Denverton processor.

Click to Enlarge

GIGABYTE MA10-ST0 server board specifications:

  • Processor –  Intel Atom C3958 16-core processor @ up to  2.0GHz with 16MB L2 cache (31W TDP)
  • System Memory – 4x DDR4 slots for dual channels memory @ 1866/2133/2400 MHz with up to 128GB ECC R-DIMM, up to 64GB for ECC/non-ECC UDIMM
  • Storage
    • 32GB eMMC flash
    • 4x Mini-SAS up to 16 x SATA 6Gb/s ports
    • 2x Mini-SAS ports are shared with PCIe x8 slot
  • Connectivity
    • 2x 10Gb/s SFP+ LAN ports
    • 2x 1Gb/s LAN ports (Intel I210-AT)
    • 1x 10/100/1000 management LAN
  • Video – VGA port up to 1920×[email protected] 32bpp; Aspeed AST2400 chipset with 2D Video Graphic Adapter with PCIe bus interface
  • USB – 2x USB 2.0 ports
  • Expansion Slots – 1x PCIe x8 (Gen3 x8 bus) slot; shared with Mini-SAS ports, Mini_CN2, Mini_CM3
  • Misc
    • 1x CPU fan header, 4x system fan headers
    • 1x TPM header with LPC interface
    • 1x Front panel header
    • 1x HDD back plane board header
    • 1x JTAG BMC header
    • 1x Clear CMOS jumper
    • 1x IPMB connector
    • 1x PMBus connector
    • 1x COM (RS-232)
    • Power and ID buttons with LEDs; status LED
  • Board Management – Aspeed AST2400 management controller; Avocent MergePoint IPMI 2.0 web interface
  • Power Supply – 1x 24-pin ATX main power connector; 1x 8-pin ATX 12V power connector
  • Dimensions –  170 x 170 mm (Mini-ITX form factor)
  • Temperature Range – 10 to 40°C
  • Relative Humidity – 8-80% (non-condensing)

The dual core Atom C3338 is the only processor listed on Intel’s formerly Denverton page, with now info about the 16-core Atom C3958 processor so far.

Click to Enlarge

The board is said to support Windows Server 2016, Red Hat Enterprise Linux Server 7.1, SuSE Linux Enterprise Server 12, Ubuntu 14.04.2 LTS, Fedora 22, and CentOS 7.1. The board is sold with an I/O shield and a quick start guide. There’s no word about pricing or availability on the product page, but Anandtech reports that the “board is essentially ready to go, and interested parties should get in contact with their local reps”. For reference, SuperMicro  A2SDI-H-TP4F-O board based on the same processor is sold for $820+ on Atacom.

Aspencore 2017 Embedded Markets Study – Programming Languages, Operating Systems, MCU Vendors, and More

August 15th, 2017 2 comments

Aspencore media group asked readers of their EE Times and Embedded.com websites to fill out an online survey about their embedded system projects. They got 1,234 respondents mostly from North America (56.3%), followed by Europe (25.2%), and Asia (10.6%). This resulted in a 102-page market study which you can download here. I’ve extracted a few slides to have a look at some of the trends.

My current embedded project is programmed mostly in:

C language is still the most used language in embedded systems, but other languages like C++, Python and even assembly language are gaining traction.

Please select ALL of the operating systems you are currently using.

Operating system is more spread with Linux being the most used via Embedded Linux distributions, Debian, and Ubuntu. FreeRTOS comes in second place, while Android registers fourth with 13%.

Which of the following Version Control software systems do you currently use?

Git has finally supplanted Subversion in 2017, with all other version control software losing ground.

Did you start your current embedded design with a development board?

Switching to some hardware slides, 44% used a development board to start their embedded design with ST Microelectronics, Texas Instruments and Xilinx at the top three.

Which form factor boards are you currently using, and considering using ?

Most used custom or proprietary form factors in their designs, and I’m actually surprised at the rather large number of designs using low cost boards form factors such as the ones used in Arduino, Raspberry Pi, or BeagleBone boards. The “considering using” for Raspberry Pi is particularly high. The question does not clearly states whether it’s for evaluation / prototyping only, or in the end product however.

Please select the processor vendors you are currently using.

The chart is a little confusion due to the recent M&A activity, but Texas Instruments, Freescale (now NXP) and Atmel (Now Microchip) take the top three spots. You cannot add Freescale (26%) and NXP (17%), or Atmel (26%) and Microchip (25%), since some respondents may have already selected both. Renesas is only at 9%, but it was only second to NXP (Freescale + NXP) in MCU market share in 2016, so maybe the apparent discrepancy is due to the sampling in the survey with the majority of respondents from the US & Canada, which may also explain why Greater China companies like Holtek, or CEC Huada Electronic Design do not register at all.

You’ll find many more interesting slides in the full study.