Archive

Posts Tagged ‘lora’

PingPong IoT Development Board Supports Cellular Connectivity, WiFi, Bluetooth, LoRa, Sigfox, and More

October 19th, 2017 No comments

Round Solutions, a supplier of products, services and concepts for industrial M2M and IoT markets, has introduced PingPong IoT development board with either Microchip PIC32MZ running an RTOS, or PIC32MZ DA running Linux, and equipped with a Telit modules for either 2G or 3G cellular + GNSS connectivity.

The board can also support WiFi, Bluetooth, ISM/RF, NFC/RFID, LoRa, Sigfox, Iridium satellite, and serial interface thanks to a range of expansion boards.

PingPong IoT board specifications:

  • MCU / Flash
    • RTOS version – Microchip PIC32MZ 32-bit Microcontroller @ 200 MHz, with 512 KB RAM and 2 MB Flash Memory + 4 MB external memory
    • Linux version – Microchip PIC32MZ DA  (Full specs TBA)
  • Connectivity
    • Cellular connectivity
      • Telit xE910 module with 2G, 3G and/or 4G LTE (coming soon)
      • Data
        • GSM/GPRS – Uplink/Downlink: 9.6 kbps
        • UMTS – Downlink: 384 kbps, Uplink: 384 kbps
        • HSPA+ – Downlink: 42.0 Mbps, Uplink: 5.75 Mbps
        • LTE – Download: 100 Mbps, Uplink: 50 Mbps
      • Frequency Bands (MHz) – 1800, 1900, 2100, 850, 900
      • 2x SIM card slots, SIM on chip
      • u.FL antenna connector
    • GNSS
      • Telit SL869 module for GPS, Glonass, and Galileo E1
      • u.FL antenna connector for GPS
    • 10/100M Ethernet (RJ45)
    • Connectivity stackable expansion boards for
      • Wi-Fi/Bluetooth: with webserver on board
      • Satellite communication: Iridium
      • ISM/RF:433MHz/868MHz/915MHz/2.4GHz
      • NFC/RFID: Protocol EPCglobal Gen 2 (ISO 18000-6C)
      • Sigfox/LoRa: Ultra low power transmitter
  • Other stackable expansion boards:
    • I/O & Serial Board: 10 digital/10 analog/4 frequencies, RS485, RS232
    • Still image and video camera
  • USB – 1x micro USB port
  • I/Os
    • 2x connectors for stackable extension boards with UART, SPI, CAN, I²C
    • 1x CAN interface, 2x analog inputs, 4x 3-state logic inputs, 4x NMOSFET outputs, 1-wire interface
    • 2x current measurement inputs (24-bit resolution)
  • Sensors – Magnetometer, accelerometer
  • Power Supply – 9 to 60V DC
  • Dimensions – 85 x 52 x 23 mm
  • Temperature Range – -40 C to +85 C (industrial grade)
  • Certification CE

 

The RTOS version uses C/C++ and Python and comes with a USB CDC bootloader, while the Linux version is more versatile with support for Open VPN, IPSEC tunnels for example for IoT gateway / router functionality. The source code is available for both operating system, and the company can also provide ready-made software packages for remote metering, asset tracking, Wi-Fi/Bluetooth gateway, MODbus over TCP, or MODbus RS485.

The board is also compatible with MPLAB Harmony, and can connect to Cumulocity IoT Cloud Platform or Telit m2mAIR Cloud out of the box.

The Linux & 4G versions of the board still appear to be in development, but PingPong IoT 3G/RTOS board is available now, starting at 197 Euros with the board only, and up to 445 Euros with the WiFi/Bluetooth, and RF/ISM add-on boards.

Gumstix Expands Raspberry Pi Support with Stepper Motor, Breakout Board, LoRa PoE, and Yocto Linux

October 14th, 2017 2 comments

Gumstix has recently released of three new expansion boards compatible with Raspberry Pi boards and Compute Modules:

  • Gumstix Pi Stepper HAT for 4-wire stepper motors
  • Gumstix Pi Newgate breakout boards exposing all I/Os of Raspberry Pi Compute Module and Compute Module 3
  • Gumstix Pi Conduit PoE adding PoE support to their LoRa gateway kit based on RisingHF RHF0M301 LoRa concentrator module.

The company also offers a custom Yocto 2.2 (Morty) Linux images with support for their Pi HATs and Compute Module carrier boards.

Gumstix Pi Stepper HAT

The expansion board is designed with the 40-pin header for Raspberry Pi products, and includes Texas Instruments DRV8846, a 4 – 18V, 1.4A stepper motor driver with 1/32 microstepping providing rotational accuracy below a tenth of a degree, and 6,400 distinct positions. The board supports 6 to 36V batteries via a 3-pin headers, includes 256 kbit serial EEPROM, and can be used for printers, scanners, video security cameras, projectors, and other automated equipment.

You’ll find technical documentation and software on the product page, where you can also purchase the board for $35.

Gumstix Pi Newgate

Click to Enlarge

The Gumstix Pi Newgate is a breakout board for RPi Compute Module and Compute Module 3 that exposes all I/Os of their 200-pin SO-DIMM connector via 2.54mm pitch headers with 3 terminals for each pin. The board is also equipped with a micro USB console port, and level shifters to accommodate 3.3 and 1.8 volt logic levels for peripheral devices.

The breakout board goes for $85 on Gumstix website.

Gumstix Pi Conduit PoE

Pi Conduit PoE is an update of their earlier board with added Gigabit Ethernet and PoE support, and removal of cellular support:

  • 200-pin SO-DIMM connector for Raspberry Pi Compute Module / Raspberry Pi 3 Compute Module (CM3 / CM3L)
  • Headers for RisingRF RHF0M301 LoRa gateway/concentrator module
  • NimbeLink Skywire 2G/3G/4G cellular modem connector
  • Gigabit Ethernet jack with PoE support implemented via ASIX AX88179 SuperSpeed USB 3.0 to Gigabit Ethernet Controller
  • USB – 1x micro USB port for debugging via an FTDI USB to TTL chip
  • Misc – User (GPIO5) and reset buttons
  • Power Supply – 5V via power barrel

If you’re using any of the Raspberry Pi modules, you’ll however be limited to the USB 2.0 interface (480 Mbps) for Gigabit Ethernet, but that’s still an improvement of the 10/100M Ethernet often used with the modules.

The board sells for $150, excluding RisinRF and RPi CM(3) modules.

Yocto Linux and Hardware Customization

Gumstix does not rely on Raspbian anymore, as the company provides custom Yocto Linux disk images (Morty) with support for Gumstix Pi HATs, Compute Module carrier boards, relevant drivers, and systemd services. The company also offers a “Smart repository” with a variety of packages for easier installation. For all the three products listed above you’ll find two Yocto images, one with XFCE environment, one headless with access to the command line.

All three boards have also been designed with Geppeto, the company’s web platform for hardware design, and can be customized to your needs and ordered right in your web browser.

This TTGO Board Combines ESP32, LoRa Radio, and OLED Display for just $10

October 13th, 2017 12 comments

Just one year ago, it would cost around $15 to $20+ to get an ESP32 board, that is if you were lucky/fast enough to order one one before it went out of stock. Since then, availability is no longer an issue, and you now can get an ESP32 development board for as low as about $7, or even around $4 during promotions.

Today, I was made aware of another board sold under the “TTGO” brand, that includes not only ESP32 WiFi and Bluetooth SoC, but also a (433 MHz) LoRa radio, and an OLED display. Price? Just $10 plus shipping ($1.75 here).

Battery not Included – Click to Enlarge

TTGO ESP32/LoRa board specifications:

  • WiSoC – Espressif ESP32
  • Storage – 32MB on-board flash (or maybe just 16MB?)
  • LoRa
    • Semtech SX1278 with u.FL connector + 433MHz antenna (N.B.: Antenna must be connected during use or the Semtech chip could be damaged)
    • Sensitivity” ~ -148dBm; output power: +20dBm
  • Display – 0.96″ blue OLED display
  • USB – 1x micro USB port for debugging (CP2102) and power
  • Expansion – 2x 18-pin headers with GPIOs, UART, ADC, Touch, SPI, power signals… (See pinout diagram)
  • Misc – Charging Status LED
  • Power Supply – 5V via micro USB port, 2-pin battery header, 5V Pin. (Operating voltage: 3.3V to 7V)

The board can be programmed with the Arduino IDE after downloading and installing the TTGO folder in arduino/hardware. After selecting “WiFi_LoRa_32” board, you should be able to load various samples to play with the board.

Click to Enlarge

The board is sold with a 433MHz antenna, and two male headers. You’ll save a little bit on shipping if you purchase two kits instead.  The board can also be found on eBay and Banggood.

Thanks to Mpampis for the tip.

TECHBASE Moduino X Series Industrial IoT Modules / Endpoints are Based on ESP32 WiSoC

September 27th, 2017 3 comments

We’ve previously covered TECHBASE ModBerry industrial IoT gateways leveraging Raspberry Pi 3, FriendlyELEC NanoPi M1 Plus, or AAEON’s UP Linux boards. The company has now launched Moduino X series modules powered by Espressif ESP32 WiFi + Bluetooth SoC to be used as end points together with their ModBerry gateways.

Moduino X1

Two models have been developed so far, namely Moduino X1 and X2, with the following specifications:

  • Wireless Module – ESP32-WROVER with ESP32 dual-core Tensilica LX6 processor @ 240 MHz, 4MB pSRAM (512KB as option), 4MB SPI flash;
  • External Storage – X2 only: micro SD card slot
  • Connectivity
    • 802.11 b/g/n WiFi up to 16 Mbps + Bluetooth 4.2 LE with u.FL antenna connector
    • X2 only: 10/100M Ethernet
    • Options: LoRa (Semtech SX1272); Sigfox (TI CC1125); LTE Cat M1/NB1; Zigbee
  • Serial – 2x RS-232/485
  • Display – Optional 0.96″ OLED display with 128×64 resolution
  • Expansion I/Os
    • 4x Digital I/O (0 ~ 3V)
    • 2x Analog Input:
    • A2 Only: 2x analog output (optional)
    • A2 only: support for Techbase ExCard add-on modules for extr RS-232/485 ports, Ethernet ports, PCIe slots, analog input and output, digital I/Os, relays, M-Bus interface, etc…
  • Battery – Optional battery power support (A1 only); optional UPS function with LiPo battery or Supercapacitor
  • Power Supply -5V DC
  • Dimensions
    • A1 – ABS: 90 x 36 x 32 mm (LxWxH); Aluminum: 95 x 35 x 41 mm (LxWxH)
    • A2 – ABS: 90 x 71 x 32 mm (LxWxH); Aluminum: 95 x 71 x 41 mm (LxWxH)

Moduino A1 consumes less than A2, and can be powered by batteries only, but both models can use battery as UPS. The modules support Espressif ESP-IDF SDK, Zephyr Project, Arduino programming, MicroPython, Mongoose OS, and more, and would typically be used as meters & sensor nodes capable of reporting temperature, humidity, pressure, acceleration, & light with attached sensors. More sensors are being developed by the company.

Moduino X2 (right)

Moduino X1 & X2 appear to be available now, but you’d need to contact the company to get price information. Visit Moduino X series product page for more details.

Arduino MKR WAN 1300 & MKR GSM 1400 Boards Launched with LoRaWAN and 3G Connectivity

September 25th, 2017 4 comments

Arduino has introduced two new boards right in time for Maker Faire New York: MKR WAN 1300 with a LoRa radio, and MKR GSM 1400 with a “3.75G” cellular module, both software compatible with Arduino Zero, and in Arduino MKRZero board form factor.

MKR WAN 1300 Board

 

Click to Enlarge

Arduino MKR WAN 1300 specifications:

  • MCU – Microchip Atmel SAMD21 32-bit ARM Cortex M0+ MCU @ 48 MHz with 32 KB SRAM, 256 KB flash (8KB for bootloader)
  • Digital I/O Pins – 8x digital I/Os, 12x PWM, UART, SPI, and I2C, 8x external interrupts
  • Analog Pins – 7x analog inputs (8/10/12-bit ADC), and 1x analog output (10-bit DAC)
  • DC Current per I/O Pin – 7 mA
  • LPWAN connectivity
    • Murata CMWZ1ZZABZ LoRa module based on Semtech SX1276 and STMicro STM32L
    • Antenna power – 2dB
    • Carrier frequency – 433/868/915 MHz
    • Working regions – EU/US
  • USB – 1x micro USB port for power and programming
  • Misc – Reset button, 6x LEDs, 32.768 kHz RTC
  • Power
    • 5V via micro USB port or Vin pin
    • 2x AA or AAA batteries support
    • I/O Operating Voltage – 3.3V
  • Dimensions – 67.64 x 25 mm
  • Weight – 32 grams

It’s interesting to note that the Murata module includes an STM32L MCU, and exposes ADC/DAC, GPIOs, SPI, I2C.. pins, so in theory it would be possible to create a similar board without the Microchip/Atmel chip, but Arduino IDE compatibility may have suffered despite work on Arduino STM32, and the exposed I/Os could not be the same (e.g. only 4x ADC).

MKR GSM 1400

 

Click to Enlarge

Arduino MKR GSM 1400 board has very similar specifications, except it replaces the LoRa radio with a u-blox cellular module, and supports LiPo batteries:

  • MCU – Microchip Atmel SAMD21 32-bit ARM Cortex M0+ MCU @ 48 MHz with 32 KB SRAM, 256 KB flash (8KB for bootloader)
  • Digital I/O Pins – 8x digital I/Os, 12x PWM, UART, SPI, and I2C, 8x external interrupts
  • Analog Pins – 7x analog inputs (8/10/12-bit ADC), and 1x analog output (10-bit DAC)
  • DC Current per I/O Pin – 7 mA
  • Cellular Connectivity
    • u-blox SARAU201 cellular module supporting 3.75G UMTS/HSPA with 2G GSM/(E)GPRS fallback
    • NanoSIM card slot
    • u.FL connector for external antenna
    • Working regions – Global
  • USB – 1x micro USB port for power and programming
  • Misc – Reset button, 6x LEDs, 32.768 kHz RTC
  • Power
    • 5V via micro USB port
    • 5V to 12V Vin pin
    • 3.7V LiPo battery support
    • I/O Operating Voltage – 3.3V
  • Dimensions – 67.64 x 25 mm
  • Weight – 32 grams

Both boards are up for pre-order with shipping expected for November 15th with MKR WAN 1300 going for $39 / 35 Euros excluding VAT, and MKR GSM 1400 selling for $69.00 / 59.90 Euros excluding VAT. Further documentation is accessible through the store links.

LimeSDR Mini is a $135 Open Source Hardware, Full Duplex USB SDR Board (Crowdfunding)

September 18th, 2017 13 comments

LimeSDR open source hardware software defined radio was launched last year with the promise of integration with Ubuntu Snap Store allowing to easily download and install various radio implementations such as LTE, WiFi, Bluetooth, LoRa, etc… It was offered for $200 and up as part of a crowdfunding campaign, but Lime Microsystems is back on CrowdSupply with a cheaper and low end version aptly called LimeSDR Mini.LimeSDR mini specifications:

  • FPGA – Intel Altera Max 10 (10M16SAU169C8G) with 16K Logic gates, 549 KB M9K memory, 2,368 KB user flash memory
  • Storage –  4 MB flash memory for data; 2x128KB EEPROM for RF transceiver MCU firmware and data
  • RF
    • Lime Microsystems LMS7002M RF transceiver
    • Tx & Rx SMA connectors
    • Frequency range – 10 MHz to 3.5 GHz
    • RF bandwidth – 30.72 Mhz
    • Sample Rate – 30.72 MSps with 12-bit sample depth
    • Power Output (CW): up to 10 dBm
  • USB – 1x USB 3.0 port via FTDI FT601 controller chip
  • Expansion – 8-pin FPGA GPIO header
  • Misc – 2x  dual color LEDs, JTAG
  • Power – USB or external power supply
  • Dimensions – 69 mm x 31.4 mm

The company also put together a table to compare LimeSDR to LimeSDR Mini and other product on the markers from the dirty cheap RTL-SDR stick to more expensive and advanced solutions like Ettus B210.

The new LimeSDR Mini board will support the same development tools such as LimeSuite, and Snappy Ubuntu Core apps as its old brother, although I’m not quite sure about the status about the app store, as they did not provide that many details. The board will also be open source hardware, with hardware design files that should be released on MyriadRF’s Github account shortly before or after shipping. The company will also offer some accessories for the board such as an acrylic enclosure, and three SMA antennas optimized for 800-960 MHz, 1710-2170 MHz, and 2400-2700 MHz.

LimeSDR Mini Prototype (no SMA connectors) in Acrylic Case

The goal is to raise at least $100,000 for mass production, and after a few days they’re off to a good start with over $76,000 pledged. All 500 $99 early bird rewards are gone, but you can still pledge $139 for the board with delivery planned for December 31, 2017. Shipping is free to the US, and $10 to the rest of the world.

WizziKit is a DASH7, LoRa and Sigfox Wireless Sensor & Actuator Network Kit

September 13th, 2017 2 comments

Over the last few years, I’ve written several article about LoRaWAN, Cellular IoT, and Sigfox based long range low power IoT solutions. DASH7 is another LPWAN (Low Power Wide Area Network) standard that operates on the same 868 and 915 MHz ISM bands as LoRa and Sigfox, but has much lower power consumption, and the cost of a shorter range up to 500 meters, instead of the 5+km associated with LoRa or SigFox.

The DASH7 Alliance Protocol (D7A) is an Open Standard, and if you want more details you can download version 1.1 of the specifications on DASH7 Alliance website. I’m writing about DASH7 today thanks to an article on ST blog about Wizzilab’s Wizzikit, an evaluation kit and framework for DASH7 with a gateway, and several nodes that can also optionally support LoRaWAN and Sigfox protocols.

Click to Enlarge

The kit is comprised of the following items:

  • WizziGate GW2120 Ethernet/Wifi/Dash7 gateway – based on GL-iNet AR150 router –  with antenna for the selected band (868/915 MHz) and USB power cable.
  • 2x Nucleo-L432KC STM32 development board compatible with Arduino. mbed, and ST morpho
  • 2x D7A SH2050 Nucleo Shield with a multimode Murata Lora Module supporting LoRa, DASH7, and Sigfox, as well as four sensor chips: light sensor,  magnetometer & accelerometer, humidity and temperature sensor, and a pressure sensor.
  • 2x mini USB cable to power up and program the Nucleo boards

DA7 SH2050 Shield

You’ll also need to add you own USB power adapter for the gateway. The kit also comes with access to the company’s DASH7Board cloud service. The Wiki includes some information, including a quick start guide explaining how to register the gateway, and start loading the demo code using mbed. Since DASH7 is much more power efficient than LoRaWAN it can either be used to prolong battery life, or to send more frequent messages for example to control actuators. With LoRaWAN, downlink access can only be initiated by the end node, but DASH7 is bi-directional allowing for OTA firmware upgrades. The solution was showcased a few months ago at ST Techday with two demos: sending a message to a single node, and OTA code upgrade (actually picture upload) to multiple boards with a broadcast message.

Wizzilab’s Wizzikit is sold for 299.00 Euros with either 868 and 915 MHz band. Further details on be found on Wizzilab website.

RadioShuttle Network Protocol is an Efficient, Fast & Secure Alternative to LoRaWAN Protocol

September 6th, 2017 5 comments

LoRaWAN protocol is one of the most popular LPWAN standards used for the Internet of Things today, but some people found it “lacked efficiency, did not support direct node-to-node communication, and was too costly and far too complicated for many applications”, so they developed their own LoRa wireless protocol software called RadioShuttle, which they claim is “capable of efficiently sending messages in a fast and secure way between simple LoRa modules”.

Some of the key features of the protocol include:

  • Support for secure or insecure (less time/energy) message transmission, multiple messages transmission in parallel
  • Unique 32-bit device ID (device number) per LoRa member, unique 16-bit app ID (program number for the communication)
  • Security – Login with SHA-256 encrypt password; AES-128 message encryption
  • Air Traffic Control – Nodes only send if no LoRa signal is active on that channel.
  • Optimized protocol –  Message delivery within 110 ms (SF7, 125 kHz, free channel provided); default LoRa bandwidth 125 kHz (125/250/500 kHz adjustable), as narrow bandwidths allow for a longer range; Automatic transmitting power adjustment
  • Operating modes
    • Station, constant power supply recommended –  12 mA in receiving mode, transmitting mode (20 to 100 mA)
    • Node Online (permanently receiving), constant power supply recommended – 12 mA in receiving mode, transmitting mode (20 to 100 mA)
    • Wireless sensor (Node Offline checking) – Node reports back regularly. 1 µA in standby mode, battery operation for years.
    • Wireless sensor (Node Offline) – Node only active if events are reported. 1 µA in standby mode, battery operation for years.

The Radioshuttle library has a low memory and storage footprint with current requirements of

  • 100 kB Flash for RadioShuttle library with SHA256 & AES
  • 10 kB RAM for Node Offline/Checking/Online mode
  • 10 kB RAM for Station Basic mode (RAM depends on the number of nodes)
  • 1 MB RAM for Station Server mode (Raspberry Pi, 10,000 LoRa nodes)

The solution supports various Arduino boards, some ARM Mbed boards (e,g, STM32L0, STM32L4), and Linux capable boards like Raspberry Pi or Orange Pi (planned). Semtech SX1276MB1MAS and SX1276MB1LAS (SX1276-based), MURATA CMWX1ZZABZ-078/091 (found in STM32 Discovery kit for LoRaWAN), and HopeRF RFM95 transceivers are supported.

LonRa Board – Click to Enlarge

The developers have also designed their own LongRa board, compatible with Arduino Zero, based on Semtech SX1276 LoRa radio chip with a 168 dB link budget and support for 868 MHz & 915 MHz frequency. The board can be powered by its micro USB port, or by two AA batteries if you’re going to use the board as a wireless sensor node.

RadioShuttle protocol is not open source for now, and while it support multiple devices as stated previsouly, if you are not using LongRa board, a 25 Euros license is required per device.