Archive

Posts Tagged ‘raspberry pi’

SixFab Launches Raspberry Pi 3G-4G/LTE Base Shield V2 for $31.20

October 20th, 2017 16 comments

Development boards with 4G LTE are still quite expensive, at least compared to 2G or 3G solutions, with for example Wio LTE GPS Tracker board selling for around $100. So when I saw Sixfab introducing a 3G/4G shield for Raspberry Pi 3 for just $31.20 (pre-orders), I first thought it was an incredible deal.

But I soon realized I missed the “base” word in the name, as the shield just includes the SIM card slot, and mPCIe connector where you can connect Quectel’s UC20-G Mini PCle 3G module or EC25 Mini PCle 4G/LTE Module which adds respectively $59 or $89 to the price. That’s still an interesting HAT board, so let’s have a look.

Raspberry Pi 3 + 3G-4G/LTE Base Shield + Quectel EC25-E 4G Module

Raspberry Pi 3G-4G/LTE Base Shield V2 specifications:

  • Clip-in Mini PCIe socket for:
    • 4G/LTE Module (Quectel EC25) up to 150Mbps downlink and 50Mbps uplink data rates, GPS/GLONASS
    • 3G Module (Quectel UC20) up to 14.4Mbps downlink and 5.76Mbps uplink, GPS/GLONASS
  • Micro SIM card socket
  • USB – 1x micro USB port
  • Compatible with 40-pin Raspberry Pi header
  • Power Supply – 5V via micro USB port or external 5V source
  • Dimensions – 65 x 55 mm

The new version improves on the first model for the shield by reducing the area by 25%, removing the need for screws for the cellular module, using a micro SIM card socket on the top of the board, a more efficient power circuit, and removing the DC barrel jack.

While the board is mostly designed to be used with Raspberry Pi 3 board, it can also be used standalone with your computer, laptop, or another development board over the micro USB port. A blog post explains how to make a PPP Internet connection with the shield connected to RPi 3, and you can get supports in their forums.

Thanks to Nanik for the tip.

Telegea Smart Hub DIN Rail IoT Gateway is Powered by Raspberry Pi CM3 Module

October 17th, 2017 8 comments

DEK Italia has recently introduced Telegea Smart Hub, an IoT gateway based on Raspberry Pi Computer Module 3 (CM3) with Ethernet, WiFi, RS232/485 ports, and various other I/O ports, that can leverage Raspberry Pi software ecosystem.

The company explains the device is mainly targeted at DIY home automation applications as a smart home controller which runs open source smart home software like OpenHAB and Home Assistant, but it can also be used for many other IoT applications.

Click to Enlarge

Telegea Smart Hub R3B0 specifications:

  • SoC – Broadcom BCM2837 quad core Cortex A53 processor with VideoCore IV GPU
  • System Memory – 1GB LPDDR2 RAM
  • Storage – 4GB eMMC flash, 256 byte EEPROM
  • Connectivity – 10/100M Ethernet port, optional Wifi 802.11 b/g/n at 2.4 GHz
  • Serial – RS485 serial port, RS232 serial debug port
  • USB – 2x USB 2.0 host ports
  • Expansion
    • 6xdigital inputs via screw terminals (for dry contacts or S0 interface)
    • 4x analog inputs (0-5V) via screw terminals
    • Dallas 1-wire bus via screw terminals
    • 1x RJ14 connector for I2C bus peripherals
    • 1x XBee module compatible connector for ZigBee and other RF modules
    • 3x expansion headers with additional GPIO, SPI and I2C bus connections
  • Sensor –  SHT21 temperature and humidity sensor
  • Debugging / Programing – 1x micro USB OTG port
  • Misc – RTC with integrated battery, user button, user LED
  • Power supply – 5VDC via micro USB connector;  24V DC / 24V AC via screw terminals
  • Dimensions – 155 x 86 mm

The gateway supports a customized version of Raspbian Jessie Lite with Linux kernel 4.9.x and later. The changes to Raspbian include enablement of clock generation for integrated Ethernet bridge on GPIO pin, UART ports for RS485 connector and serial debug port, drivers for RTC/ADC/EEPROM/ I2C relay card,  configuration of the 1-wire bus on screw terminals, and installation of GPIO handling command line tools and Zulu Embedded OpenJDK VM. You’ll find source code, hardware and software documentation on Github, and get support on Telegea Google Groups.

Click to Enlarge

The boards has been designed to fit into a commercial Camdenboss CNMB/9 DIN rail enclosure as shown above, in which case the model is called TSH-CM R3B0.

Telegea Smart Hub R3B0 board is sold on eBay without the Raspberry Pi module for 179.00 Euros, while the TSH-CM R3B0 modle with DIN rail enclosure and RPi CM3 module goes for 219.00 Euros. The complete kit is also sold on Tindie for $249.99. Visit the product page for more information.

Gumstix Expands Raspberry Pi Support with Stepper Motor, Breakout Board, LoRa PoE, and Yocto Linux

October 14th, 2017 2 comments

Gumstix has recently released of three new expansion boards compatible with Raspberry Pi boards and Compute Modules:

  • Gumstix Pi Stepper HAT for 4-wire stepper motors
  • Gumstix Pi Newgate breakout boards exposing all I/Os of Raspberry Pi Compute Module and Compute Module 3
  • Gumstix Pi Conduit PoE adding PoE support to their LoRa gateway kit based on RisingHF RHF0M301 LoRa concentrator module.

The company also offers a custom Yocto 2.2 (Morty) Linux images with support for their Pi HATs and Compute Module carrier boards.

Gumstix Pi Stepper HAT

The expansion board is designed with the 40-pin header for Raspberry Pi products, and includes Texas Instruments DRV8846, a 4 – 18V, 1.4A stepper motor driver with 1/32 microstepping providing rotational accuracy below a tenth of a degree, and 6,400 distinct positions. The board supports 6 to 36V batteries via a 3-pin headers, includes 256 kbit serial EEPROM, and can be used for printers, scanners, video security cameras, projectors, and other automated equipment.

You’ll find technical documentation and software on the product page, where you can also purchase the board for $35.

Gumstix Pi Newgate

Click to Enlarge

The Gumstix Pi Newgate is a breakout board for RPi Compute Module and Compute Module 3 that exposes all I/Os of their 200-pin SO-DIMM connector via 2.54mm pitch headers with 3 terminals for each pin. The board is also equipped with a micro USB console port, and level shifters to accommodate 3.3 and 1.8 volt logic levels for peripheral devices.

The breakout board goes for $85 on Gumstix website.

Gumstix Pi Conduit PoE

Pi Conduit PoE is an update of their earlier board with added Gigabit Ethernet and PoE support, and removal of cellular support:

  • 200-pin SO-DIMM connector for Raspberry Pi Compute Module / Raspberry Pi 3 Compute Module (CM3 / CM3L)
  • Headers for RisingRF RHF0M301 LoRa gateway/concentrator module
  • NimbeLink Skywire 2G/3G/4G cellular modem connector
  • Gigabit Ethernet jack with PoE support implemented via ASIX AX88179 SuperSpeed USB 3.0 to Gigabit Ethernet Controller
  • USB – 1x micro USB port for debugging via an FTDI USB to TTL chip
  • Misc – User (GPIO5) and reset buttons
  • Power Supply – 5V via power barrel

If you’re using any of the Raspberry Pi modules, you’ll however be limited to the USB 2.0 interface (480 Mbps) for Gigabit Ethernet, but that’s still an improvement of the 10/100M Ethernet often used with the modules.

The board sells for $150, excluding RisinRF and RPi CM(3) modules.

Yocto Linux and Hardware Customization

Gumstix does not rely on Raspbian anymore, as the company provides custom Yocto Linux disk images (Morty) with support for Gumstix Pi HATs, Compute Module carrier boards, relevant drivers, and systemd services. The company also offers a “Smart repository” with a variety of packages for easier installation. For all the three products listed above you’ll find two Yocto images, one with XFCE environment, one headless with access to the command line.

All three boards have also been designed with Geppeto, the company’s web platform for hardware design, and can be customized to your needs and ordered right in your web browser.

STEGO BOARD Enables Neat Prototypes with Development Boards and Accessories (Crowdfunding)

October 13th, 2017 1 comment

If you’ve ever created a quick prototype for your own use, or for your company, you may have based it on a development board, and added some extra modules or add-on modules, as well as potentially accessories such as hard drives or power supply. Software is complete and it works, but it may look like a mess, and transporting it may cause cables to disconnect or other problems.

STEGO BOARD should help in this case. It’s some kind of mounting systems compatible with the most common boards like Raspberry Pi 3, Rock64, or ASUS Tinkerboard, mini-ITX motherboards, mini PCs with VESA mounts, 2.5″ and 3.5″ drives, and so on. So you can create prototypes like the ones below.

Six different products are available:

  • STEGO BOARD 102 – 2 layers of the smaller board with 106 parts (stands, screws, zip ties). Can be used with mini PC, development board, up to 2 SATA drives
  • STEGO BOARD 103 – 3 layers of the smaller board with 144 parts. Up to 3 SATA drives
  • STEGO BOARD 104 – 4 layers of the smaller board with 206 parts. Up to 4 SATA drives
  • STEGO BOARD 105 – 5 layers of the smaller board with 246 parts. Up to 5 SATA drives
  • STEGO BOARD 400 – Larger board with 220 parts can be be used for up to 4 SATA drives, mini ITX motherboard, graphics card, etc…
  • STEGO BOARD 400+ – BOARD 400 and 102 together

They also have 3D printers accessories to create prisms and cubes with the STEGO BOARDs, as well as hard drive caddies, power supply brackets, and cable guard. The developers also released a Windows based simulator to create a virtual prototype.

The STEGO BOARD has been launched on Kickstarter and almost reached its $8,850 CAD target. A $39 CAD pledge (~$31 US) should get you a STEGO BOARD 102 kit, while at the other end of the scale, STEGO BOARD 400+ requires a $105 CAD pledge (~$84 US). Shipping adds $17 CAD to $56 CAD, and sadly the company has decided to limit shipping to USA, Canada, and the United Kingdom only. Delivery is planned for December 2017. The 3D printed accessories are available on a separate website.

The New Pi-Top Modular Laptop includes a 14″ Display, Sliding Keyboard, and Better Cooling

October 13th, 2017 6 comments

Pi-Top was first launched in late 2014 via an Indiegogo crowdfunding campaign, as a modular DIY laptop powered by a Raspberry Pi board. It’s equipped with a 13.3” LCD screen with 1366×768 resolution, and uses a sliding top cover placed between the display and the keyboard where you could insert your Raspberry Pi with enough space for extra hardware.

This is a good week for DIY ARM laptops, as after the launch of Olimex TERES-I laptop yesterday, Pi-Top team has announced a new version of Pi-Top modular laptop with an larger 14″ display with 1920×1080 resolution, a sliding keyboard, and better cooling with a passive cooling unit for the Raspberry Pi 3 board.

Pi-Top 2017 laptop specifications:

  • Display  – 14” full HD LCD screen with 1920 x 1080 resolution, 180° screen angle range
  • Keyboard – 105mm sliding keyboard for internal access (US layout)
  • Touchpad – 104x75mm trackpad with Gesture Control
  • Officially Supported Board – Raspberry Pi 3 with Broadcom BCM2837 SoC, HDMI, Ethernet, 802.11 b/g/n WiFi, Bluetooth 4.1, Audio jack, micro SD slot, camera and display interface
  • Modular Rail for pi-top accessories
  • Power Supply – 18V, 2.5A charger with AU, EU, UK and US adapters
  • Battery – Good for 6-8 hour battery life

Click to Enlarge

The kit also includes an 8GB class 10 SD CARD with pi-topOS and an SD Card Removal Tool. pi-topOS is a firmware image specifically designed for Raspberry Pi 3 and Pi-Top with components such as pi-topCLASSROOM online classroom management software, pi-topCODER intuitive coding environment, CEEDuniverse educational space exploration game, and pi-topDASHBOARD interface.

While the company only officially supports Raspberry Pi 3, it should be possible to use other boards that are electrically and mechanically compatible to Raspberry Pi 3 board such as ODROID-C2 or ROCK64, but you may have to work on the software side. The most adventurous could also try other boards, as Bero (Linaro) used a 96Boards compliant DragonBoard 820c board in the older version of Pi-Top with some custom cabling.

The new Pi-Top can be purchased for $319.99 including shipping with a Raspberry Pi 3, or $284.99 without. A free Inventor Kit with a breadboard, and various modules and components to get started with DIY electronics.

OpenBSD 6.2 Adds Support for Orange Pi PC 2, Firefly-RK3399

October 10th, 2017 No comments

OpenBSD has been supporting 32-bit (ARMv7) and 64-bit (ARM64) ARM targets, but the just released OpenBSD 6.2 adds support for two more ARM64 boards: Orange Pi PC 2 and Firefly-RK3399.

Those two add to the ARM64 list comprised of Raspberry Pi 3, Pine A64/A64+, and AMD Opteron A1100 based development board and SoftIron OverDrive 1000 servers.

Other platforms based on Allwinner A64 & H5, and Rockchip RK3399 could likely also be supported. If you want to try it on your board, visit OpenBSD 6.2 ARM64 page to download the files:

  • INSTALL.arm64 – Installation notes
  • SHA256 – Output of the cksum(1) program using the option -a sha256, usable for verification of the correctness of downloaded files.
  • SHA256.sig – The above file, signed with the OpenBSD signing key for the 6.2 release, usable for verification of the integrity of the above file, and thus of the downloaded files.
  • miniroot62.fs – A miniroot filesystem image to be used if you for some reason can’t or don’t want to use the ramdisk installation method.
  • *.tgz arm64 binary distribution sets
  • bsd – A stock GENERIC arm64 kernel which will be installed on your system during the install.
  • bsd.rd A compressed RAMDISK kernel; the embedded filesystem contains the installation tools. Used for simple installation from a pre-existing system.

The binary distributions sets include:

  • base62 – The OpenBSD/arm64 6.2 base binary distribution. You MUST install this distribution set. It contains the base OpenBSD utilities that are necessary for the system to run and be minimally functional.
  • comp62 – The OpenBSD/arm64 Compiler tools. All of the tools relating to C, C++ and Objective-C are supported.
  • game62 – This set includes the games and their manual pages.
  • man62-  This set includes all of the manual pages for the binaries and other software contained in the base set.
  • xbase62 – This set includes the base X distribution. This includes programs, headers and libraries.
  • xfont62 – This set includes all of the X fonts.
  • xserv62 – This set includes all of the X servers.
  • xshare62 – This set includes all text files equivalent between all architectures.

You’ll need to follow the instructions in INSTALL.arm64 to try it with a micro SD on your board. I understand it;s a two step process on supported boards

  1. Flash miniroot62.fs to your micro SD card with dd, Win32DiskImager or Etcher
  2. Connect the board to the serial console, and follow the instructions in the installer to handle binary distributions sets

Good luck.

Via Orange Pi Forums

Industrial Shields Industrial Panel PCs are Based on Raspberry Pi, Banana Pi, or HummingBoard

October 10th, 2017 4 comments

Boot&Work Corp., S.L. is a company based in Catalonia that sells industrial automation electronic devices under “Industrial Shields” brand. What makes their product noticeable is that they all appear to be based on maker boards such as Arduino or Raspberry Pi.

The company offers various Arduino based PLC modules with or without Ethernet that can be controlled with 10.1″ industrial grade panel PCs based on ARM Linux development boards.

Click to Enlarge

Currently three sub-families are available:

  • HummTOUCH powered by Solidrun HummingBoard-i2 NXP i.MX 6Dual Lite board
  • BANANATOUCH with either Banana Pi M64 (Allwinner A64 quad core Cortex A53) or Banana Pi M3 (Allwinner A83T octa core Cortex A7)
  • TOUCHBERRY with Raspberry Pi model B or Raspberry Pi 3 model B

Beside the different processors, the 10.1″ Panel PCs share some of the same specifications:

Industrial Shields Arduino PLC – Click to Enlarge

  • Display – 10.1″ resistive multitouch LVDS, 315 nits, 170° viewing angle, 1280×720 resolution
  • Video Input – MIPI CSI connector (HummTouch only)
  • System Memory – 512MB to
    • HummTOUCH – 1 GB RAM
    • BANANATOUCH – 2GB RAM
    • BERRYTOUCH – 512MB RAM or 1GB LPDDR2
  • Storage
    • All – micro SD slot
    • BANANATOUCH – 8GB eMMC flash (16, 32, 64 GB optional)
  • Connectivity
    • Fast or Gigabit Ethernet depending on model
    • BANANATOUCH and BERRYTOUCH 3 – 802.11 b/g/n WiFi, Bluetooth 4.0
  • USB – 2x to 3x USB ports
  • I/O Expansion – 8x GPIO, SPI, I2C, UART
  • Power Supply – 12V DC; supports 7 – 18V DC input up to 1.5A
  • Dimensions – 325.5 x 195.6 x 95 mm
  • Compliance – CE

The user manual lists further details about environmental conditions, for example for HummTOUCH models:

  • Temperature Range – Operating: 0 to 45°C; storage: -20 to 60 C
  • Humidity – 10% to 90% (no condensation)
  • Ambient Environment – With no corrosive gas
  • Shock resistance – 80m/s2 in the X, Y and Z direction 2 times each.

There’s no information about Ingress Protection (IP) ratings, so it’s safe to assume those have not been tested for dust- and waterproofness.

Back of BANANATOUCH M3 Panel PC

The company also have smaller 3.5″ and 3.7″ model based on Raspberry Pi 3 board only. HummTOUCH models are available with either Linux or Android, BANANATOUCH and BERRYTOUCH models are only sold with Linux (Raspbian),  but Ubuntu, Android and Windows 10 IoT are options if they are supported by the respective board.

The 10.1″ panel PCs are sold for 375 to 460 Euros, and the Arduino based PLCs start at 135 Euros. Documentation and purchase links can all be found on Industrial Shields website.

NComputing RX300 Thin Client Review – Part 2: Hardware Setup, Windows Server 2016

October 8th, 2017 8 comments

Ncomputing RX300 is a thin client based on Raspberry Pi 3 board, allowing to run Windows operating systems on a powerful server with the Raspberry Pi 3 handling the display, audio, and keyboard/mouse inputs.

The company sent me a sample for review, and I checked out the hardware and accessories in the first part entitled “NComputing RX300 Thin Client Review – Part 1: Unboxing and Teardown“, so in the post I’ve started the thin client, and connected it to vSpace Pro server.

Hardware Setup

RX300 uses the same peripherals as any mini PC, so I connected USB keyboard and mouse, an Ethernet cable (WiFi is also possible), and the power adapter. You could also connect other devices, and I added a USB flash drive which, as we’ll see later, will be properly recognized by the server. I was also sent a USB to VGA adapter that you can connect to the remaining USB port to add a secondary display, but it would never work with through my TV, maybe because VGA is limited to 1600×1050, and the resolution confused the adapter.

Server Options

You’ll also need to setup a server, and you have two main option here:

  • Download vSpace Pro 10 to install and manage a self-hosted server. I did not do this in this review, because my main PC is running Ubuntu 16.04, and the program only support Windows operating systems, and server virtualization infrastructure solutions from VMWare, Citrix and Microsoft.
  • So instead I used a vSpace Pro server hosted in Singapore using AWS (Amazon Web Services) with a demo account prepared by the company for the review

If you’re interested in the first solution, you may want to read to Quick Installation Guide to find out more.

Ncomputing RX300 and Windows Server 2016 AWS instance

Once the thin clients are installed, and the server is configured, you can start your RX300 devices. About an animated boot logo, you should soon (around 15 to 20 seconds total boot) time see vSpace Pro client interface as shown below. Please ignore the vertical lines in the photos and video below, it’s just a problem with my TV.
You’ll see two sections with a list of auto-detected servers if you have setup any local vSpace Pro 10 machine, and/or server groups with other vSpace Pro servers. I’m located in the north of Thailand, and Thailand->Thailand was already setup, so I had nothing to do except click on Connect, and within a few short second, I was asked to login into Windows.

I typed the credentials provided by the demo, and I ended up in Windows right away, and could use it normally. A few times later however, I was automatically disconnected during the login process: I would type the user name and password to login, Windows desktop will appear, only go to back to vSpace Pro client interface. Trying again once or twice usually did the trick.

As soon as I entered into the server, I wanted to find out what kind of hardware the virtual machine was running on. Intel Xeon CPU E5-2676 v3 @ 2.40 GHz running Windows Server 2016 64-bit with 4 GB RAM, and a 39.9 GB Windows partition.

Click to Enlarge

Quite a powerful machine so we should expect good performance that may be affected by the Internet connection between my ISP’s modem router and the server. You’ll also notice “Ubuntu 16.10” D: drive. That’s my own flash drive connected to one of the USB port of the Raspberry Pi 3 board.

The company had install several programs such as Chrome and LibreOffice, as well as demo files.  I also tried to install my own program (Gimp), and I could do that, and persistent storage mean even after I disconnect the client, or reboot the server, my programs and files were still present in the system.

So I went on to use it like I would for a desktop machine in a business setting, browsing the web, and loading multiple programs.

Click to Enlarge

More specifically, I ran the following tests:

  • Launching Chrome, LibreOffice Calc (excel spreadsheet), LibreOffice Impress (powerpoint presentation), LibreOffice Writer (word doc), and Gimp in succession to demonstrate the speed to launch apps
  • Multi-tab browsing in Chrome and Octane 2.0 benchmarks
  • Playing 1080p YouTube video in embedded and full screen modes
  • Playing local 1080p video with VLC

Overall the performance is impressive for a remote system, and in many cases, it’s hard to know we are not using a “normal” computer. The fonts may not be as sharp as on a normal PC, but it’s hardly noticeable, and the screen updates while scrolling up or down web pages are slower than on my main computer. However, I did not feel either issues were a big problem, and they will likely depend on your network performance, in my case “low to moderate”. It feels much better than the few times I used VNC in the past.

The first time however, YouTube video playback was very choppy, but then I saw Chrome complaining about “vCAST feature not available”. vCast streaming technology is a premium feature allowing you to watch videos smoothly on thin clients. After the company enable vCAST in the server, I could streaming 1080p YouTube videos, and play local video in VLC smoothly.

You can watch the video below to have an idea of the performance, and a look at the client settings.

Once you are done, you can click on the power icon and select Disconnect to go back to vSpace Pro client user interface.

vSpace Pro client configuration options and Going back to Raspbian

If you’ve watched the video above, you’ll know that the gear icon on the bottom right brings use to the configuration menu.

Click to Enlarge

The menu has eight sub-menus:

  • General to select between Thin client mode and Raspbian Desktop mode
  • Connections to select servers manually or automatically
  • Server Groups to manage servers
  • Kiosk Mode to automatically login and/or launch a program when connecting to the vSpace server
  • Display to change HDMI resolution, or manage dual display setups.
  • Audio to select audio output and input priority
  • Network to configure Ethernet or WiFi
  • Support for firmware update option
  • About with some information about the thin client.

I tried the Raspbian desktop mode, and sure enough it will be into Raspbian, and you could potentially use it as a normal Raspberry Pi 3 board too.

Once you’ve selected this mode, it will boot to Raspbian by default. If you want to use it as a thin client again, the Switch to Thin Client Mode icon will reboot RX300 to vSpace client user interface.

Recycling older Windows computer with vSpace Pro Client

If your organization owns some older Windows PCs or laptops that lack the performance or memory to run recent programs, you could download vSpace Pro client for Windows to put them to good use. Just to the the Software Downloads page, register or/and login, and select vSpace Pro Client for WIndows 7, 8.1 or 10 as needed. Linux clients are not available for download.

You could then have a “fleet” a thin clients mixing older hardware and NComputing RX300. You’d have to consider electricity charges while calculating your TCO, as RX300 only consumes around 3.0 to 3.4 Watts, and older hardware may consume much more than that.

The Costs

Larger organizations should probably contact the company to find out the best way to match their requirements. But if you have smaller needs, or just want to evaluate the system, you could purchase Ncomputing RX300 for $99 MSRP with a 1-year license, or $174.99 with a 3-year license. I understand vCAST streaming is included for free for 6 months, but after you’d have to pay extra for the feature. What I could not find is public pricing for the various licenses. The company however has a cost calculator allowing you to check how much you’d save with thin clients compared to having PCs, but again premium features license costs such as vCAST or dual display are not included. You’d also have to consider Windows server license requirements.