Archive

Posts Tagged ‘debian’

USB Armory is an Open Source Hardware Freescale i.MX53 Dongle for Security Applications

October 22nd, 2014 4 comments

Most computers-on-a-stick come with an HDMI port, and a few USB ports, but Inverse Path’s dongle is quite different. USB Armory is a flash drive sized computer powered by Freescale i.MX53 Cortex A8 processor with only a USB port and a micro SD slot, that targets security applications such as mass storage devices with automatic encryption, virus scanning, host authentication and data self-destruct, VPN routers, electronic wallets, password managers, portable penetration testing platforms, and so on.

Inverse_path_USB_armoryUSB Armory specifications:

  • SoC – Freescale i.MX53 ARM Cortex-A8 @ 800Mhz with ARM TrustZone
  • System Memory – 512MB DDR3 RAM
  • Storage – microSD card slot
  • USB – 1x USB host port. USB device emulation: CDC Ethernet, mass storage, HID, etc.
  • Expansion Header – 5-pin breakout header with GPIOs and UART
  • Misc – customizable LED, including secure mode detection
  • Power – 5V via USB  (<500 mA power consumption)
  • Dimensions – 65 x 19 x 6 mm

The board is said to run Android, Debian, Ubuntu, and FreeBSD. USB Armory is open source hardware and software, and you can already find the Kicad schematics and PCB layout files for the alpha version, distributed under a GPL v2 license, on github. Some software documentation can be found on the project’s Wiki, with firmware images coming later. Security features are achieved through ARM Trustzone which allows for secure and normal zones, and you may want to read a Trustzone on i.MX53 article on Genode OS framework project for more technical details.

USB armory is still under development, but you can register your interest on Crowdsupply where it should sell for less than 100 Euros later this year. Some more information is also available on Inverse Path’s USB Armory page.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Lark Board Powered by Altera Cyclone V SX ARM Cortex A9 + FPGA SoC

October 16th, 2014 4 comments

Farnell/Element14 has quietly announced Lark Board from their subsidiary Embest Technology in September. The board is powered by an Altera Cyclone V ARM Cortex-A9 dual-core + FPGA processor with high speed transceivers, runs Debian 7.4, and targets medical instruments, video surveillance and industrial control applications.
Lark_Board
Lark board specifications:

  • SoC – Altera Cyclone V SX (5CSXFC6D6F31I7N) with a dual core Cortex A9 processor (HPS – Hard Processor System) @ 800 MHz, FPGA fabric including up to 110K logic cells (LE), and high speed transceivers (2 PCIe hard IPs and 9 3Gbps transceivers)
  • System Memory – 1GB DDR3 SDRAM for HPS, 1GB DDR3 SDRAM for FPGA
  • Storage –  4GB eMMC Flash + micro SD card slot
  • Audio/Video Interfaces – HDMI, VGA, and 24-bit LCD interface supporting 4-wire touch screen
  • Data Transfer Interfaces:
    • High-resolution serial digital interface (SDI) that supports SMD standard interface and provides a SDI TX and a SDI RX
    • 12-bit digital camera input
    • 2x 12-bit high-speed ADC interfaces that support SMA input
    • PCIe x4 interface for PCIe x4, PCIe x2 and PCIe x1 adapter cards
    • RJ45 interface that supports RGMII gigabit Ethernet
    • 4x high-speed USB2.0 Host interfaces
    • 40-pin FPGA expansion interface for LVDS, RSDS, SLVS, mini-LVDS signals
    • 40-pin HPS expansion IO for I2C, SPI, QSPI, UART, GPIO signals
  • Debugging Interfaces
    • On-board USB Blaster II (Mini USB Type B)
    • 10-pin JTAG interface can be used to connect an external USB Blaster
  • Misc – Reset button and 5 user-defined buttons, RTC
  • Power – 12V~30V round DC power jack and ATX 4-pin standard power connector
  • Dimensions – 180 mm x 120 mm (10-layer PCB)
  • Temperature Range – 0~70°C (operating)

The company provides a binary image and source code based on Debian 7.4 with u-boot 2013.01.01, and Linux 3.10. The board can boot from either a micro SD card or the eMMC. Documentation includes a user’s manual, a quick start guide, schematics (PDF), sample applications, as well as datasheets for the SoC and other components.

Lark_Board_Block_Diagram

Block Diagram

Lark board is available now for $799 on Embest website where you can also find documentation, the OS image and source code. It’s also listed on Newark/Element14 and Aliexpress for around $900.

Thanks to Nanik for the tip.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

ITEAD Core AW204X AllWinner A20 SoM and Core EVB Baseboard

October 14th, 2014 1 comment

ITEAD Studio has been making systems-on-module based on Allwinner processors for a little while which are found in the company’s IBOX mini PC, MOD Duo guitar pedal, and more. They’ve now launched a new system-on-module with a 204-pin SO-DIMM connector instead of the headers used in the earlier modules.

AW2042_AllWinner_A20_System-on-Module

AW2042 SoM (Click to Enlarge)

ITEAD Core AW2041 / AW2042  SoM specifications:

  • SoC- AllWinner A20 dual core ARM Cortex-A7 @ 1 GHz + ARM Mali 400 MP2
  • System Memory – 1 or 2 GB DDR3 RAM (AW2014: 1GB, AW2042: 2GB).
  • Storage – 4GB NAND Flash, micro SD card slot (on the back), SATA connector.
  • Connector – 204-pin SO-DIMM edge connector with UART, I2C, SPI, LCD, I2S, LVDS, GPIO, etc.. signals
  • Misc – Built-in RTC, reset, FEL and power buttons.
  • Power – 5V supply, 3.3V I/Os. AXP209 PMIC.
  • Dimensions – 67.60 x 48.25 x 1.6 mm
  • Weight – 35 grams
  • Temperature Range – Commercial

To facilitate development, the company is also providing an open source hardware baseboard (Kicad) simply called “EVB Core”.

EVB Core (Click to Enlarge)

EVB Core (Click to Enlarge)

Baseboard specifications:

  • SoC / Memory / Storage – Via AW204x modules.
  • Eternal Storage – SATA port on module, 5V SATA power on EVB, 1x micro SD slot on EVB, 1x micro SD slot on module.
  • Video Output – HDMI 1.4, 18/24-bit single or dual channel LVDS
  • Audio – HDMI, optical S/PDIF, 3.5mm audio jack supporting 8 Ohm speakers @ 3W via included amplifier.
  • Connectivity – 10/100/1000M Ethernet
  • USB – 3x USB 2.0 OTG ports, 1x USB OTG port (full size)
  • Expansions Headers:
    • 32-pin connector (beige) with access to UART, I2C, SPI, I2S, and GPIO signals, that can be used with some add-on boards made by ITEAD Studio.
    • 40-pin headers compatible with Raspberry Pi Model B+ (UART/I2C/SPI/GPIO)
  • Misc – IR receiver, bicolor LED, power, reset, FEL buttons,
  • Power – 7-23V DC via 2.5mm power jack
  • Power Consumption – 200mA typical, 300mA max. @ 5V? (without devices attached to EVB)
  • Dimensions – 140.2 x 90 mm
  • Weight – 82 grams
  • Temperature Range – Operating: 0 to 60℃; storage: -40 to 80℃

The evaluation board can be fitted into IBOX metallic enclosure. The company provide supports for ITEAD OS based on Debian 7.0 (Link to SDK), and Android 4.2 for their modules. Some documentation, mostly the pinout diagrams. can be found on the Wiki for AW204x modules, and EVB Core.

Both the modules and baseboard appear to be available now. AW2041 SoM (1GB RAM) sells for $45, AW2042 (2GB RAM) for $60, and EVB Core for $29.99, so a complete development kit would start at $75.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

CALAO Systems Introduces PInBALL Industrial Board Based on Raspberry Pi Compute Module

October 1st, 2014 No comments

CALAO Systems has just launched an industrial single board computer (SBC) for professional Raspberry Pi developers called PiNBALL or, if you prefer, PAC-1210-S200-B2835-EXX…. The board is powered by the Raspberry Pi Compute Module, features interfaces such as two mini PCIe slots (for USB, I2C, GPIOs,…), fast Ethernet, HDMI, opto-isolated inputs and outputs, etc., +6 to +36V power input, and can operate in -20°C to +70°C temperature range.

Calao Systems PInBall Board with R-Pi Module (Click to Enlarge)

Calao Systems PInBall Board with R-Pi Module (Click to Enlarge)

PInBALL industrial SBC specifications (Items marker with ‘*’ are optional, and depend on model):

  • SoC / Memory / Storage  – Via Raspberry Pi Compute Module – Broadcom BCM2835, 512MB RAM, 4GB eMMC Flash.
  • Other Storage – 1x 2Kb I²C EEPROM with EUI-48 MAC Address & 128 bit Serial Number (AT24MAC402).
  • Video Output – 1x HDMI Out, 1x CVBS Out (BCM2835)
  • Audio Output – 1x HDMI, 2x S/PDIF Out / Optical & RCA (WM8804),
  • Connectivity – 1x Fast Ethernet (LAN9514), 1x Micro-SIM Socket
  • USB – 2x USB 2.0 Host (LAN9514), 1x USB Device,
  • Serial Ports – 2x TTL Serial Ports (BCM2835), 2x TTL Serial Ports (MAX3109)*
  • Other I/Os
    • 1x CAN Bus (MCP2515)*
    • 2x MiPi DSI*
    • 2x MiPi CSI*
    • 3x Industrial Inputs (Téléinfo, Interface S0 or Standard Opto-isolated , 24VDC Output)*
    • 3x Industrial Outputs (1x Relay COM / NO or NC, 2x Isolated Outputs, 24VDC Input)*
  • Sensors – 1x Humidity & Temperature Sensor (Si7020)*
  • Expansions
    • 1x Mini PCIe Slot (USB 2.0 only, no PCIe)*
    • 1x Mini PCIe Slot (I2C, SPI, UART, USB & GPIOs)*
    • x KNX BAOS 820 module (KNX/TP1)*
  • Debugging – 1x JTAG port for BCM2835 (ARM11 or VideoCore GPU)
  • Misc – 1x RTC (DS3232) with BR1632A lithium battery, power/reset/user push buttons & LEDs,
  • Power Supply
    • Main: 12VDC / 2A (9-36 VAC/VDC),
    • Auxiliary Power Input: 9-36 VAC/VDC for 2nd power supply or external battery charger system,
  • Temperature Range – -20°C to +70°C
  • Dimensions – 100 x 120 mm
PInBALL SBC Block Diagram (Click to Enlarge)

PInBALL SBC Block Diagram (Click to Enlarge)

There will be three solutions/version based on PInBALL board:

  • CoreAccess – For “multipurpose application”, the variant will less options (No MiPi, no industrial I/Os…). Lacks all options marked with *
  • Home and Building Automation (HaBA) – Includes Industrial I/Os and a base of a Scada OPC UA software. All options listed in the specs above are supported
  • Industrial Automation and Robotics (IAaR) – Same as HaBA minus KNX module, and a “Open HAB Smart home” software is provided.

You can check the PInBall Selection Guide (PDF) for a side-by-side comparison of the three boards. Once you choose a board, you can simply order the carrier board only, a “pre-assembled” computer with the carrier board and the compute module, or an “Embedded System” adding a black anodized aluminum enclosure with mounting brackets.

CoreAccess module comes pre-loaded with XBian (XBMC), and the two others with Raspbian, the Debian distribution for the Raspberry Pi. The company also claims to provide an “open source SW package integrating a BSP maintained in main-line, a Linux Kernel, and then depending of the version, a Java virtual machine, OSGI framework, device abstraction, network and connectivity management”. The software Wiki currently makes use of code on Raspberry Pi github account.

CALAO Systems PinBALL will be sold via Element14/Farnell and CALAO on-line shop in Q4 2014, starting at 325 Euros per unit for the CoreAccess version. The company will also showcase their latest solution at Booth 482 at SEMICON Europa, in Grenoble, France on October 7-9, 2014. Further information is available on PInBALLboard.org.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

The New Radxa Rock Lite Rockchip RK3188 Development Board Sells for $59

September 22nd, 2014 12 comments

You may have heard about Radxa Rock Lite development board before, so let’s clear up the different versions of the Radxa Rock first. There’s a total of four Radxa Rock models:

  • Radxa Rock (2013) – The original version with 2GB RAM, 8GB NAND Flash, and Wi-Fi/Bluetooth
  • Radxa Rock Lite (2013) – 1GB RAM, 4GB NAND Flash, and Wi-Fi only
  • Radxa Rock Pro (2014) – An evolution of the Radxa Rock still with 2GB RAM, 8GB NAND flash, Wi-Fi/Bluetooth but adding LVDS and camera interfaces.
  • Radxa Rock Lite (2014) – 1GB RAM, no NAND flash, and Wi-Fi only

The fist two versions appear to have been phased out, as they are not listed for sale on Radxa Rock website, and today, I’ll write about Radxa Rock Lite (2014).

Radxa_Rock_Lite_2014

Radxa Rock Lite (2014) specifications:

  • SoC – Rockchip RK3188 ARM Cortex-A9 quad core @ 1.6Ghz + Mali-400 MP4 GPU
  • System Memory – 1GB DDR3 @ 800Mhz
  • Storage – micro-SD SDXC up to 128GB
  • Video Output – HDMI 1.4 up to 1080p@60hz, and AV output. LVDS interface.
  • Connectivity – 10/100M Ethernet port, WiFi 150Mbps 802.11b/g/n with antenna
  • Audio I/O – Audio S/PDIF, headphone jack
  • Camera – CSI interface
  • USB – 2x USB 2.0 host port, micro USB OTG
  • Debugging – Serial Console
  • Misc – IR sensor, power key, recovery key, reset key, 3 LEDs, RTC
  • Expansions Header – 80-pins including GPIO, I2C, SPI, Line in, USB 2.0, PWM, ADC, LCD, GPS… etc

The only differences between Radxa Rock Pro and Radxa Rock Lite are the memory capacity (2GB vs 1GB RAM), the lack of NAND flash on Radxa Rock Lite (8GB on the Pro version), and Bluetooth 4.0 is not available on the Lite version. The rest of the features, including the camera and LVDS ports, are identical, and both board are hardware and software compatible. A Rockchip RK3188 board with internal storage is now possible, because instructions to boot Linux/Android from (micro) SD card has been made possible recently, and you can download SD card images for Radxa Rock (Pro) for Ubuntu 14.04 (desktop/server). There are also Android 4.4 and Debian images for NAND flash, so I don’t see why these could not boot from SD card.

Radxa Rock Lite is currently listed for $59, whereas the Pro version sells for $99.

Via Mini PCs community on G+.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

Emtrion SBC-SAMA5D36 ARM Cortex A5 Linux Development Board Comes with Dual Ethernet, HDMI Output

September 10th, 2014 2 comments

A few months ago, I reviewed Atmel Xplained SAMA5D3 development board powered by SAMA5D36 Cortex A5 processor. The kit is supported by the Yocto Project, so I could build and run Poky distribution with a recent Linux kernel (it support mainline), it features Arduino compatible headers, and I found the board to be a nice platform for headless applications, or applications that require an LCD display. However, if you wanted to connect an HDMI display you’d be out of luck, unless you design your own LCD to HDMI add-on board. Emtrion SBC-SAMA5D36 could be an interesting alternative, as it features very similar specifications, but adds an HDMI output port.

SBC-SAMA5D36 Development Board (Click to Enlarge)

SBC-SAMA5D36 Development Board (Click to Enlarge)

Emtrion SBC-SAMA5D36 specifications:

  • MPU – Atmel SAMA5D36 single core Cortex-A5 @  536 MHz
  • System Memory – 256 MB RAM
  • Storage – 512 MB NAND Flash, up to 16 MB NOR Flash, and micro SD Card socket
  • Connectivity – 100Base-TX Ethernet,  10/100/1000Base-TX Ethernet (Gigabit Ethernet)
  • Video Output – HDMI, LCD connector and 4-wire touch
  • USB –  2xUSB Host,  1x USB Device
  • Other I/Os:
    • I2S Audio Interface
    • 5x serial ports (LVTTL)
    • up to 52 GPIOs
    • 2x CAN buses
  • Misc – 2x user buttons, 4x user LEDs, RTC (battery buffered)
  • Power Supply – 5V.
  • Power Consumption –  Typ. 1 W
  • Dimensions – 135mm x 74mm
Block Diagram (Click to Enlarge)

Block Diagram (Click to Enlarge)

The board is said to support Debian 8.0 (Jessie), as well as build frameworks such as the Yocto Project and Buildroot. Just like Atmel SAMA5D3 Xplained, SBC-SAMA5D36 is supported in Linux mainline, except the LCD driver which is work in progress. The SDK includes a pre-configured rootFS based on Debian 8, Qt 5.2 support, GNU toolchain, build scripts, a VMware virtual machine for development and various software and hardware documents.

The board is available now for around 100 Euros for a single unit, and around 80 Euros for 1k order. You can find more information, including the hardware manual, on the company’s blog, and SBC-SAMA5D36 product page.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter

MIPS Creator CI20 Development Board Formally Announced, Free to Selected Developers

August 28th, 2014 9 comments

Earlier this month, I discovered MIPS Creator CI20 development board based on Ingenic JZ4780 dual core MIPS processor thanks to one of my reader.  Imagination Technologies has now launched the board, which will run Debian 7 first, soon support Android 4.4 and others Linux distributions, and the company places their MIPS board as a competitor to the popular ARM based boards such as the Raspberry Pi and BeagleBone Black. This is the first board part of Prpl initiative for open source Linux and Android software for the MIPS architecture.

MIPS_CI20_Development_BoardAs a reminder, I’ll list the hardware specifications again:

  • SoC – Ingenic JZ4780 dual core MIPS32 processor @ 1.2 GHz with Imagination PowerVR SGX540 GPU. 32kI + 32kD per core, 512K shared L2.
  • System Memory – 1GB DDR3
  • Storage – 8GB NOR flash, 1x SD card slot, 1x SD card slot via expansion
  • Video Output – HDMI up to 1080p
  • Audio I/O – HDMI, Audio In and Out via 3.5mm jack
  • Video Playback – Up to 1080p60
  • Connectivity – 10/100M Ethernet, Wi-Fi + Bt 4.0 module (IW8103)
  • USB – 1x USB OTG, 1x USB 2.0 Host.
  • Expansions Headers – Access to 23x GPIOs, 2x SPI, 1x I2S, 7x ADC on header, including 5-wire touch and battery monitoring function, 1x UART, Transport Stream I/F.
  • Debugging – UART, and 14-pin MIPS EJTAG header
  • Misc – IR receiver, power LED, and button
  • Power Supply – 5V via 4mm/1.7mm barrel connector
  • Dimensions – 90x95mm

One thing I did not mention the last time are the multimedia capabilities of the Ingenic SoC, as it can handle codec such as MPEG-4, H.264, VP8, MPEG-2, and RV9 thanks to the video hardware, “making it ideal for HTPC enthusiasts” according to Imagination. The Linux source code  (3.0.8 and 3.16 kernel) is currently available on github and Imagination plans to up-streamed support to mainline. Graphics support includes Xorg-compliant OpenGL 2.1 and OpenGL ES 1.1/2.0 drivers, which means Linux distributions available for the board should have 3D GPU acceleration. The complete documentation is available on eLinux.

MIPS_Creator_CI20_vs_Raspberry_Pi_vs_BeagleBone_BlackBased on the comparison table above, MIPS Creator CI20 are significantly higher than Raspberry Pi, and even BeagleBone Black, and the board size is about double, so it’s unlikely it will compete on price with either, unless it’s sponsored. Its specs are more akin to the Cubietruck (except for 2GB RAM, SATA support, GbE…) which sells for $89, so something between $70 to $80 could be expected.

With regards to availability there are good and bad news. The bad news is that you can’t buy it right now, and they haven’t announced the price yet. The good news is that if you are involved in an open source project, you may be able to get it for free by requesting one. Eventually MIPS Creator CI20 should sell via Imagination Technologies e-Store.

Digg This
Reddit This
Stumble Now!
Buzz This
Vote on DZone
Share on Facebook
Bookmark this on Delicious
Kick It on DotNetKicks.com
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter