Archive

Posts Tagged ‘raspberry pi’

Manga Screen 2 is Smartphone Touchscreen Display with USB and HDMI Ports for Makers (Crowdfunding)

July 20th, 2017 6 comments

Most touchscreen displays aimed to be connected to a development board work through a display interface such as MIPI DSI or LCD RGB (and USB or I2C for touch support), and come with somewhat low resolution such as 800×480 which can be suitable for HMI applications. They also often don’t work with all boards due to the different interfaces used, and there’s no way to easily connect such small display to your computer. Taking those limitations into account, and since most boards and computers come with HDMI and USB ports, Elias Bakken and his team have added HDMI and USB ports to two smartphone displays, and Manga Screen 2 was born.

The two displays – made by Sharp – have the following hardware specifications:

Big (5.9”) Small (4.8”)
Resolution 1920×1080 1280×720
FPS (max) 60 57
Color mode 24-bit
PPI 376.2 307.9
Brightness 400 cd/m2 500 cd/m2
Contrast ratio 1000:1 800:1
Viewing angle 80 degrees
Power draw (max.) 600 mA 520 mA
Active area 129.6 x 72.9 mm 105.6 x 59.4 mm
Weight ~95 grams TBD
Outline size 150 x 82 mm TBD
Touch points 10

They added the electronics to convert HDMI signals to whatever interface the displays use, and a micro USB port for power and the touch screen interface. So those should pretty much be play and plug, and work with Raspberry Pi, ODROID, BeagleBone Black and other boards, as well as your computer, laptop, etc…
The project has launched on Kickstarter with the goal of raising 300,000 NOK (~$37,100 US). Rewards start at ~$83.5 US for the smaller 4.8″ screen, and ~$94 US for the 5.9″ screen. Those are early bird rewards, and retail price should be $99 for both displays? (Maybe a mistake on KS). Shipping adds 85 NOK ($10.5), and delivery is scheduled for October to the big screen, and December for the small one.

Potential projects include home automation interface, standalone Spotify player, pet food dispenser, 3D printer interface, and any project that may benefit from a ~5″ touchscreen display. The promo video demonstrates some of those applications.

Thanks to Nanik for the tip.

ModBerry Industrial Automation Controllers Leverage Raspberry Pi, FriendlyELEC, and AAEON Boards and Modules

July 19th, 2017 No comments

TECHBASE’s ModBerry Linux based industrial controllers have been around since 2014 with their first model being ModBerry 500 powered by a Raspberry Pi compute module. Over the years, the company has kept adding new ModBerry controllers with now an interesting choice of Raspberry Pi 3 board or compute module, FriendlyELEC’s NanoPi M1 Plus board, or Intel Atom x5 based AAEON’s UP board.

Click to Enlarge

All programmable automation controllers (PAC) runs Linux 4.0 or greater, with Debian or Ubuntu Core rootfs including ready tools and pre-compiled packs including C/C++, JAVA, SQL, PHP, SSH, and VPN support. The firmware is upgradeable over the air, and the controllers can run the company’s iMod control software and interface with iModCloud cloud computing service for telemetry, remote control and data sharing. Typical uses include C-L-V functions with conversion to collect and transmit data over communication interfaces, logging via iModCloud or a SCADA, and visualization via a web browser.

Click to Enlarge

All models share many of the same features, with some models having more I/Os beside the different board, but to get a better idea of the systems, I’ll have a look at ModBerry M700 specifications:

  • SoC – Allwinner H3 quad core Cortex A7 @ 1.2 GHz with an ARM Mali-400MP2 GPU
  • System Memory – 1GB DDR3
  • Storage – 8GB eMMC flash + micro SD card slot
  • Video & Audio Output – HDMI 1.4 and 3.5mm jack for CVBS (composite + stereo audio)
  • Connectivity

    ModBerry M700 – Click to Enlarge

    • Gigabit Ethernet
    • 802.11 b/g/n WiFi and Bluetooth 4.0 LE
    • Optional Zigbee, LTE/3G, GPS, WiFi, and Bluetooth cards
  • USB – 2x USB 2.0 host ports, 1x 4-pin USB 2.0 host header, 1x micro USB port (OTG/power)
  • Expansion I/Os
    • 4x digital inputs, 4x digital outputs up to 30V DC
    • 1x RS-232/RS-485
    • 1x PCIe slot
    • Optional 1-wire
    • Optional ExCard I/O modules for more RS-232/485 ports, Ethernet ports, PCIe slots, analog input and output, digital I/Os, relays, M-Bus interface, and more
  • Misc – RTC with battery, watchdog timer,
  • Power Supply – 7~30V DC up to 20-35W
  • Dimensions – 106 x 91 x 61 mm (ABS casing with DIN railin enclosure)
  • Weight – 300 grams
  • Operating Conditions – Temperature: -30 ~ 80°C; humidity: 5 ~ 95% RH (non-condensing)

The ExCard are DIN rail module that plugs into the ModBerry like LEGO’s, and up to 3 ExCard is supported per ModBerry.

Click to Enlarge

Applications for such systems include PLC, telemetry module with data logger, serial port server, protocol and interface converter, programmable controller, MODBUS Gateway/Router, SNMP Agent, Web server with PHP and SQL database support, SMS Gateway, LTE/3G/GPRS router and more.

TECHBase has not released pricing for the controllers, but you can find more details, including detailed PDF product briefs and links to purchase the controllers and expansions (you’ll still have to ask for the price), on the products page.

Via LinuxGizmos

Microsoft Releases Raspberry Pi 3 Web Simulator Working with Azure IoT Cloud

July 11th, 2017 No comments

If you were already following this blog when the first Raspberry Pi launched, you may have tried to emulate a Raspberry Pi and run Fedora in QEMU, as getting a board was a challenge at that time. Microsoft has launched its own Raspberry Pi (3) simulator running in web browsers, connecting to virtual sensors and components using Fritzing, and interfacing with the company’s Azure IoT cloud service.

Click to Enlarge

The preview version of the simulator does not allow you customize components on the breadboard, something you’ll be able to do in the release version, so we are stuck with a BMP280 sensor and red LED in the assembly window. on the left. On the top right, we’ve got sample source code written using Node.js to read temperature data from the sensor, push it to an Azure IoT Hub, and blink the LED in the coding area, and finally the integrated console window can be seen on the bottom right corner.

To do anything useful, you’ll need to create a new IoT Hub in Azure, at which point you’ll need to register an account, and provide a mobile phone number and credit card info for authentication, so I stopped there. The company does say “you will not be charged unless you explicitly transition to a paid offer”, so it should be free to try.

You’ll find the full simulator doc here, and the project is open source with all files released in Github.

Via Eddy Lab’s G+ Community

MASS RPI 07 is a 7″ Industrial Touch Panel PC Based on Raspberry Pi 3

July 6th, 2017 4 comments

MASS GmbH has launched RPI 07, a touch panel PC with a 7″ 800×480 display powered by a Raspberry Pi 3 board, and designed for industrial applications thanks to a 12V to 24V variable power input, aluminum housing, DIO with optocouplers, an optional CAN Bus and more.

MASS RPI-07 specifications:

  • SoC – Broadcom BCM2837 quad core ARM Cortex A53 processor @ up to 1.2 GHz with VideoCore IV GPU
  • System Memory – 1GB LPDDR2
  • Storage – 16GB micro SD SDHC Class 10
  • Display – 7″ WVGA 800×480 touchscreen display with 250cd/m² brightness, 500:1 contrast, 10-point touch
  • Connectivity – 1x 10/100Mbps Ethernet, 802.11 b/g/n WiFi and Bluetooth 4.2 LE
  • USB – 4x USB 2.0
  • Optional Interfaces – Real-time clock (RTC), DIO with optocouplers, I²C, CAN, RS232
  • Power supply – 12 to 24V DC (15W max) via 2-pin terminal with on/off switch
  • Dimensions – 200 x 118 x 48mm (powder coated metal housing)
  • Weight – 900 grams
  • Certifications – CE

Hardware options include VESA 75 mount with pivot arm or foot,holding clamp for mounting in consoles, control cabinet doors or wall recessing, digital input card 8-bit with optocouplers, digital output 8-bit card with optocouplers, analog input card 5 channel 10-bit, and analog output card 4 channel 10-bit.

The company supports Raspbian and Microsoft Windows IoT Core for the panel PC, with other operating systems available on requests.

The company has not released availability and pricing information for the RPI 07. You may find more details on the product page.

Via LinuxGizmos

Husarion CORE2 STM32 Board for Robotics Projects Works with ESP32, Raspberry Pi 3, or ASUS Tinkerboard

June 30th, 2017 No comments

Husarion CORE2 is a board designed to make robotics projects simpler and faster to complete with pre-configured software and online management. Projects can start using LEGOs, before moving to 3D printed or laser-cut version of the mechanical parts without having to spend too much time on the electronics and software part of the project.

CORE2 and CORE2-ROS Boards – Click to Enlarge

Two versions of the board are available: CORE2 combining STM32 MCU with ESP32 WiFI & Bluetooth module, and CORE2-ROS with STM32 instead coupled to a Raspberry Pi 3 or ASUS Tinkerboard running ROS (Robot Operating System). Both solutions share most of the same specifications:

  • MCU -STMicro STM32F4 ARM CORTEX-M4 MCU @ 168 MHz with 192 kB RAM, 1 MB Flash
  • External Storage – 1x micro SD slot
  • USB – 1x USB 2.0 host port with 1A charging capability; 1x micro USB port for debugging and programming via FTDI chip
  • Expansion Headers
    • hRPi expansion header for
      • CORE2-ROS –  a single board computer Raspberry Pi 3 or ASUS Tinker Board
      • CORE2 – an ESP32 based Wi-Fi module
    • 2x motor headers (hMot) with
      • 4x DC motor outputs with built-in H-bridges
      • 4x quadrature encoder inputs 1 A cont./ 2 A max. current per output (2 A/4 A current when paralleled)
    • 6x servo ports with selectable supply voltage (5 / 6 / 7.4 / 8.6 V) 3 A cont./4.5 A max. current for all servos together
    • 6x 6-pin hSens sensor ports with GPIOs, ADC/ext. interrupt, I2C/UART, 5 V out
    • 1x hExt extension port with 12x GPIO, 7x ADC, SPI, I2C, UART, 2 x external interrupts
    • 1x CAN interface with onboard transceiver
  • Debugging – DBG SWD (Serial Wire Debug) STM32F4 debug port; micro USB port for serial console
  • Misc – 5x LEDs, 2x buttons
  • Power Supply – 6 to 16V DC with built-in overcurrent, overvoltage, and reverse polarity protection
  • Dimensions – 94 x 85 mm

On the software side, Husarion provide a set of open source libraries for robots as part of their hFramework, using DMA channels and interrupts internally to handle communication interfaces. The company has also prepared tutorials dealing with ROS introduction, creating nodes, simple kinematics for mobile robot, visual object recognition, running ROS on multiple machines, and SLAM navigation. CORE2 board can also be programming using the Arduino IDE, and finally Husarion Cloud allows you to securely create a web user interface to control the robot, and even program the robot firmware from a web browser.

That means you can program your robot using either the Web IDE, or offline with an SDK plus Visual Studio Code and the Husarion extension. The development work flow is summarized above.

CORE2 boards can be used for a variety of projects such as robotic arms, telepresense robots, 3D printers, education robots, drones, exoskeletons, and so on. If you want to learn about robots, but don’t have LEGO Mindstorms and don’t feel comfortable making your own mechanical parts yet, ROSbot might be a good way to start with CORE2-ROS board, LiDAR, a camera, four DC motors with encoders, an orientation sensor (MPU9250), four distance sensors, a Li-Ion battery (3 x 18650 batteries) and a charger, as well as aluminum mechanics. It also happens to be the platform they use for their tutorials.

ROSbot

You’ll find all those items, and some extra add-on boards, on the CrowdSupply campaign, starting at $89 for CORE2 board with ESP32 module, $99 for CORE2-ROS board without SBC, and going up to $1,290 for the complete ROSbot with ASUS Tinker Board. Shipping is free to the US, and $8 to $20 depending on the selected rewards, with delivery scheduled for September 2017, except for ROSbot that’s planned for mid-October 2017.

Canonical Releases Ubuntu Core 16 for Raspberry Pi 3 Compute Module

June 29th, 2017 No comments

Now that Canonical has refocused its development efforts on Cloud and IoT, Ubuntu Core has become even more important for the company, which has just released Ubuntu Core 16 for the Raspberry Pi 3 Compute Module, which is better suited for industrial projects than Raspberry Pi boards, for example thanks to the more resilient built-in storage of CM3 module.

Ubuntu Core was already supported on Raspberry Pi 2 & 3, Intel Joule, DragonBoard 410c, Intel NUC, and Samsung Artik boards, as well as KVM to run Ubuntu Core in a virtual environment.

One of the advantages of running Ubuntu Core is the availability of snaps and branded app stores, making it easy to provide updates, and promote app for the platform. Screenly is one commercial project that will take advantage of Ubuntu Core on CM3 module for their digital signage applications. You’ll find instructions to get started with Ubuntu Core on Raspberry Pi 3 Compute Module on Ubuntu Developer website.

Diskio Pi 13.3″ Touch Panel Display Kit is Designed for Raspberry Pi and ODROID Boards (Crowdfunding)

June 27th, 2017 7 comments

If your project requires a touch panel, there are plenty of solutions for Raspberry Pi and ODROID boards, with Hardkernel even selling ODROID-VU8C fully integrated touch panel display. However, most display kits require you to make your own case, and feature smaller displays with lower resolution. One developer has however come up with Diskio Pi, a higher-end touch panel kit with a 13.3″ Full HD display that works with the most popular Raspberry Pi and ODROID boards.

Diskio Pi with Raspberry Pi 3 Running Pixel

Diskio Pi specifications:

  • Display –  13.3″ AUO TFT IPS display with 1920×1080 resolution connected via a 30-pin eDP connector ; 330 cd/m2 brightness; 85° viewing angles in all directions.
  • Touch panel – 10-point capacitive touch; G/G structure; USB 2.0 interface; ≥6H surface hardness.
  • Main board:
    • HDMI to eDP driver
    • Stereo sound amplifier
    • USB 2.0 hub with 3x ports:  2x external + 1x internal
    • Battery balance circuit (3S/3S2P)
    • Expansion – Various headers for prototyping (RJ45, USB…)
    • Misc – Left & right mouse buttons (home button, USB); circuit protection via fuses, diodes…
    • Power Supply – RJ45 POE+ (Power over Ethernet)
  • Rack board:
    • Connections with the board via cables: 4 x USB, 2 x Ethernet, 1 x Power, 1 x HDMI
    • Fan circuit with potentiometer (fan will be optional)
    • Speakers – 2x round 3W speakers
    • Power Supply – 5V 3A from main board
  • Power Supply – 15 or 18V AC/DC adapter with EU, UK or US plug
  • Battery  – Optional 6 cells LiPo 3.7V=11.1V, 8000mAh
  • Dimensions – 348 x 265 x 25 mm (Final dimensions may change slightly)
  • Weight – 1.8 kg (prototype)

Diskio Pi with ODROID-C2 Board

Diskio Pi is currently compatible with Raspberry Pi 2, Raspberry Pi 3, Raspberry Pi Zero (W), ODROID C1+, and ODROID C2, but later, a modified kit will offer support for ODROID XU4 and Intel Atom based UP board. You can run any operating system you’d like since HDMI is used for video output (and converted to eDP), and USB used for the touch panel. You’ll be able to use accessories like the official Raspberry Pi camera, and there’s even space to add extra boards or modules like an Arduino mini or sensors using the IO headers or the internal USB port. The kit could be use as a large (and thick) tablet, an home automation dashboard, a portable Linux computer, etc…

The project has just been launched on Kickstarter with the aim of raising at least 400,000 Euros, which may prove to be a challenge, but we’ll see. The “very early adopter pack” rewards requires a 350 Euros pledge for Diskio Pi with the power adapter, but no battery, nor a Raspberry Pi or ODROID board. The 45 Euros battery pack is optional is reserved “for users who don’t need the POE+ power”. Shipping adds 9 Euros to France, 16 Euros to most of Europe, and 36 Euros to the rest of the world, with delivery scheduled for February 2018. The person behind the project has 10-year experience as… an optician, but he’s been working on the prototype for 18 months, and Advansee will take care of the final embedded electronics design, while CD-Plast will handle the mechanical design, with both companies based in the west of France.

IceZero Lattice iCE40 FPGA Board is Designed for Raspberry Pi Zero

June 24th, 2017 3 comments

Yesterday, we reported about Olimex’s open source hardware iCE40HX8K-EVB board with a Lattice iCE40 (HX8K) FPGA, and today, another iCE40 FPGA board, also open source hardware, appeared in my news feed with Trenz Electronic’s IceZero board specifically designed to be programmed using a Raspberry Pi Zero board.

Click to Enlarge

IceZero board specifications:

  • FPGA – Lattice ICE40HX4K with 3520 logic gates, and 80 Kbit memory
  • Storage – SPI Flash for FPGA self-configuration
  • Misc – 3x User LEDs;  User Clock: 100 MHz
  • Expansion – 4x unpopulated PMOD Connectors; 40-pin Raspberry Pi female header
  • Dimensions – 56 x 30.5mm (Raspberry Pi HAT Compatible)

The board is supported by icoTC open source FPGA toolchain for Windows and Linux, which you can use in Raspberry Pi Zero (W), and other RPi board with a 40-pin header running Raspbian, as explained in that simple example in Github. Trenz electronic only shared part of the documentation, but you’ll find everything on a blog post on Black Mesa Labs with the design files licensed with the CERN Open Hardware License v1.2, and more technical details about the board.

Block Diagram with Raspberry Pi

Trenz Electronic sells IceZero board for 34 Euros excluding VAT and shipping, but in case you’d like to make it yourself, you can also order the bare PCB on OSH Park.