Archive

Posts Tagged ‘raspberry pi’

NexDock is Working on a Hybrid Laptop Dock for Intel Compute Cards

January 18th, 2017 5 comments

NexDock first launched a 14″ laptop dock for smartphones, tablets, and development boards via a Indiegogo campaign in 2016, where they successfully raised over $350,000, and delivered rewards to backers last September and October. With the recent introduction of the Intel Compute Card, the company has now decided to work on a new NexDock that will take Intel’s cards.

We don’t have much details right now, but the company said that beside the Intel Compute Card, it will come support interchangeable USB type-C modules, and will still support Windows 10 smartphones with continuum feature, Raspberry Pi and other devices that can be connected through a USB-C port. The second drawing also suggests the keyboard will be detachable, and you’ll be able to use NexDock as a Windows tablet.

It could be nice to have an Intel laptop with Linux or Windows, and an ARM tablet with Android, but this won’t be possible, since Intel Compute Card are unlikely to be fitted with ARM processors.

Nevertheless, it’s an interesting development, as Intel appeared to target smart devices and business applications for their Compute Card when the announced it as CES 2017, but if the NexDock becomes reality, we will also find it in consumer devices, possibly around mid-2017 when the new NexDock is supposed to launch.

RailPi 2.0 DIN Rail Enclosure & Industrial Expansion Board is Designed for Raspberry Pi 3 & ODROID-C2 Boards

January 17th, 2017 1 comment

We’ve already seen the Raspberry Pi compute module used for industrial applications with RevolutionPi RevPi Core industrial computer with a DIN rail enclosure, support for digital I/O modules and fieldbus gateways. Hagedorn Software Engineering GmbH, another German company has designed a similar industrial computer, called RailPi 2.0, with a DIN rail enclosure integrating an add-on board designed for Raspberry Pi 3 and ODROID-C2 boards.

Click to Enlarge

RailPi 2.0 specifications (adapted from Google Translation of website):

  • I/Os
    • 4x digital outputs, short-circuit-proof, PWM-compatible, with diode for the connection of inductive loads such as relays.
    • 2x optically decoupled inputs, current-limited, with dimensions compliant with the S0 standard to allow them to be used with  pules counters / current meters.
    • RS485 interface
    • 1-Wire bus placed at the front of the RailPi
    • Bus connector for extensions with GND,I2C Clock (5V), I2C data (5V), 5V, and 12V
  • Misc – Real-time clock
  • Power Supply – Input voltage range of 9-36V DC

The Raspberry Pi 3 / ODROID-C2 ports are also exposed through the enclosure with 4 USB ports, Ethernet, and more. RailPi website provides some more details, especially if you can read German. The expansion board schematics have also been released in PDF format.

Click to Enlarge

This type of equipment is quite specialized and sold in low volume, so pricing might be higher than you would expect. You’ll find two models on RailPi store with RailPi 2.0 + Raspberry Pi 3 board sold for 236.81 Euros, and RailPi 2.0 + ODROID C2 for 248.71 Euros.

If you don’t really need to complete system with industrial input / output boards, but would just need a DIN rail enclosure for your board, there are much cheaper options with on RS Components starting at 4.74 GBP (<$6) although at this low price it might only be part of the case, as well as ModMyPi, and eBay.

Thanks to Sander for the tip.

Raspberry Pi 3 Compute Modules CM3 and CM3L Launched for $30 and $25

January 16th, 2017 14 comments

We all knew Raspberry Pi Compute Module 3 were about to be launched soon, as the Raspberry Pi foundation announced a partnership with NEC displays last October, and the datasheet for two version of the Broadcom BCM2837 based system-on-module, CM3 and CM3L (Light), was released shortly after. The good news is that the modules have officially been launched for $30 and $25 for respectively Compute Module 3 with 4GB flash, and Compute Module 3 Light with the SD card signals exposed via the SO-DIMM connector. The foundation has also lowered the original compute module price to $25.

Here are Compute Module 3 specifications as a reminder:

  • SoC – Broadcom BCM2837 quad core Cortex A53 processor @ 1.2 GHz with Videocore IV GPU
  • System Memory – 1GB LPDDR2
  • Storage
    • CM3L – SD card signals through SO-DIMM connector
    • CM3 – 4GB eMMC flash
  • 200-pin edge connector with:
    • 48x GPIO
    • 2x I2C, 2x SPI, 2x UART
    • 2x SD/SDIO, 1x NAND interface (SMI)
    • 1x HDMI 1.3a
    • 1x USB 2.0 HOST/OTG
    • 1x DPI (Parallel RGB Display)
    • 1x 4-lane CSI Camera Interface (up to 1Gbps per lane), 1x 2-lane CSI Camera Interface (up to 1Gbps per lane)
    • 1x 4-lane DSI Display Interface (up to 1Gbps per lane), 1x 2-lane DSI Display Interface (up to 1Gbps per lane)
  • Power Supply – VBAT (2.5V to 5.0V) for BCM2837 processor core, 3.3V for PHYs, UI and eMMC flash, 1.8V for PHYs, IO, and SDRAM, VDAC (2.8V typ.) for video composite DAC, GPIO0-27_VREF & GPIO28-45_VREF (1.8 to 3.3V) for the two GPIO banks.
  • Dimensions – 67.6 x 31 mm; compliant with JEDEC MO-224 mechanical specification used in DDR2 SO-DIMM memory module
  • Temperature Range – -25 to +80 degrees Celsius

The module is mostly electrically & mechanically backward compatible with the original Compute Module, and benefits from the software running on Raspberry Pi 3 board. You’ll find specific documentation here.

In order to get started quickly, a Raspberry Pi Compute Module 3 devkit is also offered with a CM3 module and a “Compute Module IO V3” baseboard exposing GPIO headers, an HDMI port, a USB port, a micro SD slot, and more.

Raspberry Pi Compute Modules CM3 and CM3L, as well as the development kit (~$150), can be purchased on RS Components and element14.

ASUS Tinker Board is a Raspberry Pi 3 Alternative based on Rockchip RK3288 Processor

January 5th, 2017 38 comments

Regular readers may remember MQMaker MiQi board, a $35 (and up) development board powered by Rockchip RK3388 quad core ARM Cortex A17 processor, based on Raspberry Pi 3 form factor, but much faster according to benchmarks. Sadly, the board’s crowdfunding campaign was not that successful, possibly because of the “its’ a 2-year old processor” syndrome. But now, Minimachines has found that ASUS has designed a very similar board, dubbed Tinker Board, with an extra WiFi and Bluetooth LE module, audio jack, MIPI DSI connector, and a few other modifications.

Click to Enlarge

Click to Enlarge

Asus Tinker Board specifications (bold highlights and strike-through show differences with MiQi board):

  • SoC – Rockchip 3288 quad core ARM Cortex A17 up to 1.8 GHz with Mali-T764 GPU supporting OpenGL ES 1.1/2.0 /3.0, and OpenCL 1.1
  • System Memory – 2GB LPDDR3, dual channel
  • Storage – 8 or 32 GB eMMC flash + micro SD slot
  • Video output & Display I/F
    • 1x HDMI 2.0 up to [email protected]
    • 1x 15-pin MIPI DSI supporting HD resolution
  • Audio – 1x 3.5mm audio jack; Realtek HD codec with 192KHz/24-bit audio
  • Connectivity – Gigabit Ethernet, 802.11 b/g/n WiFi, Bluetooth 4.0 + EDR
  • USB – 4x USB 2.0 host ports, 1x micro USB port (for power)
  • Expansion Headers
    • 40-pin “somewhat Raspberry Pi compatible” header with up to 28x GPIOs, 2x SPI, 2x I2C, 4x UART, 2x PWM, 1x PCM/I2S, 5V, 3.3V, and GND
    • 2-pin contact point with 1x PWM signal, 1x S/PDIF signal
  • Misc – Button, unpopulated fan header
  • Power Supply – 5V/2A via micro USB port
  • Dimensions – 85.6 x 54 cm

The company targets education, maker, and IoT markets for the board, with applications ranging from mini PC to portable game console and RC products like drones. The board supports Debian with Kodi.

asus-tinker-board-vs-raspberry-pi-3ASUS also provided a quick comparison table with Raspberry Pi 3 model B, that mostly shows the advantages over the Tinker board. The table is mostly fine, and I got some Phoronix benchmarks showing RK3288 can be about three times as fast as BCM2837 processor for FLAC audio encoding. The last row with officially supported OS appears to show both boards on the same footings, but Raspberry Pi 3 model B will have a clear advantage here, although I’m not sure why Asus did not list Android OS support for their board. The table does not include any price information either.

The only information I could find was from the Slideshare presentation above, and there does not appear to be any official website or page on Asus website.

Thanks to Freire for the tip.

Ten Most Popular Posts of 2016 on CNX Software and Some Stats

December 31st, 2016 13 comments

The last day of the year is a good time to look back at what the year brought us, and I have to say it has been a fun and interesting year on CNX Software. The TV boxes news cycle has been dominated by Amlogic products, but most products have now switched to 64-bit ARM SoC, with 4K and HDMI 2.0 support, and price have kept going down, so you can now get a 4K TV box for as low as $20, although many people will prefer spending a bit more for extra memory and support. Intel based Bay Trail & Cherry Trail mini PCs have continued to be released with Windows, and in some cases Ubuntu, but the excitement seems to have died off a bit, maybe with the expectation of upcoming Apollo Lake mini PCs that should be more powerful. The year have been especially fruitful in the IoT space with a dramatic reduction in costs and sizes from ESP8266 boards to GPS modules and microwave radar modules, and we’ve also seen LPWAN modules & boards, mostly based on LoRa, but also Sigfox, being brought to market, as well as an alternative to ESP8266 with Realtek RTL8710AF, and of course the launch of Espressif ESP32 SoC with WiFi and Bluetooth LE. We’ve also been spoiled with development boards this year with the launch of 64-bit boards such as Raspberry Pi 3, ODROID-C2, and Pine A64+, as well as more dirt cheap Orange Pi boards, joined by NanoPi boards later in the year, and made all the more useful thanks to armbian community.

I’ve compiled a list of the most popular posts of 2016 using the page views count from Google Analytics:

  1. Amlogic S905 vs S812 Benchmarks Comparison (January 2016) – Amlogic S905 was probably the most popular SoC for TV boxes in 2016, thanks to a decent set of features, and aggressive pricing from manufacturers. So people wanted to find out if it was worth upgrading from S812 to S905, or maybe had to decide between purchasing a S905 or S812 TV box.
  2. Raspberry Pi 3, ODROID-C2 and Pine A64+ Development Boards Comparison (February 2016) – 2016 was also the year of cheap 64-bit development board with the launch of Raspberry Pi 3, ODROID-C2 and Pine A64+ boards, more or less at the same time, so again people want have wanted to look at which one to buy through this comparison.
  3. This is What a 16 Raspberry Pi Zero Cluster Board Looks Like (January 2016) – What can generated more buzz than the Raspberry Pi Zero? A cluster of Raspberry Pi Zero boards, as this post went viral the day after being posted. There was some talk about a crowdfunding campaign at one point, but it never happened.
  4. Review of K1 Plus Android TV Box with Combo DVB-S2/DVB-T2 Tuner (February 2016) – My review of K1 PLus T2 S2 might not be the most viewed post on CNX Software, but it sure generated a lot of comments, as while the product offers a unique combination of DVB-T2 and DVB-S2 tuners in an Android TV box at an attractive price, the documentation and software may need some improvements. Unofficial OpenELEC firmware images later surfaced from the community.
  5. How to Change Language to English and Install Apps Remotely on Xiaomi Mi Box 3 Enhanced (April 2016) – Xiaomi Mi Box 3 Enhanced is probably the most powerful TV box that can easily be purchased worldwide, but the caveat is that it has only been designed for the Chinese market. That post explains how to work around that limitation.
  6. Amlogic S905 vs Amlogic S912 Benchmarks Comparison (September 2016) – Quad core vs octa core, yeah twice the performance! Well not quite, but people were still curious to find out how the latest octa-core Amlogic S912 SoC would perform against Amlogic S905, and the truth is that the performance difference is rather minor, except for 3D graphics.
  7. NEXBOX A95X (Amlogic S905X) TV Box Review – Part 2: Android 6.0 and Kodi 16.1 (August 2016) – NEXBOX A95X was one of the first TV boxes based on Amlogic S905X processor, and my second review. The device is tiny an relatively cheap, so the review attracted some eyeballs.
  8. Mini M8S II TV Box (Amlogic S905X) Review – Part 2: Android 6.0 Firmware (July 2016) – My first review of an Amlogic S905X TV box nearly had the same number of views as NEXBOX A95X post, and many of the same features, just in a different package.
  9. Getting Started with Wemos D1 mini ESP8266 Board, DHT & Relay Shield (March 2016) – Wemos D1 mini is a great little ESP8266 board. It’s small, cheap ($4), and easy to use. The optional shields, just as cheap, make it a very attractive option for your IoT projects. Other people noticed it too, and then visited my review to get started.
  10. Raspberry Pi 3 Model B Board Features a 64-Bit ARM Processor, Adds WiFi and Bluetooth Connectivity (February 2016) – The last post is the list if a Raspberry Pi 3 leak just one day before the actual announcement.

Stats

Traffic has been rather steady in 2016 over the months.

cnx-software-traffic-2016The blog got around 9.8 millions pageviews in 2016 compared to about 7.2 millions pageviews in 2015, a 36% growth in traffic that was likely helped by my not going on a 3 months trip this year…

“openwrt” and scoop.it, respectively the top keyword and referral in 2015, were replaced by “amlogic s912” and Facebook in 2016.  Google Analytics only shows the last three months for keywords, and the full year for referrals, with referrals excluding search engines such as Google where CNX Software gets most of its traffic.

Top 10 Keywords Top 10 Referrals
amlogic s912 facebook.com
rk3399 flipboard.com
s905 vs s905x scoop.it
s905x vs s912 t.co
mxq box m.facebook.com
amlogic s905 4pda.ru
orange pi vs raspberry pi com.google.android.googlequicksearchbox
s905 vs s912 duckduckgo.com
s912 vs s905x plus.google.com
amlogic freaktab.com

The visitor mix of the blog per country as not changed much, with the top 10 countries of 2015 still there in 2016, and the top five order unchanged with United States, United Kingdom, Germany, Canada, and France.

cnx-software-visitors-2016London still hold the top city spot, but Hong Kong and Moscow dropped of the list to be replaced by New York and Melbourne.

cnx-software-2016-browser-operating-systems

Windows is still the main operating system of CNX Software visitors, but its share, as well as the share of other desktop operating ssystems including Linux and “Macintosh”, keeps dropping, while Android and iOS are having a stronger and stronger presence. In the “browser war”, Chrome lead extended further from 52.93% in 2015 to 59.41% in 2016, and Firefox dropping from 23.54% to 18.90%. Microsoft Edge probably had the best growth going from 0.56% last year to 1.86% this year.

Some of the 2016 review samples and I wish all my readers a very happy, prosperous, and healthy new year 2017.

Click to Enlarge

Click to Enlarge

SonikTech e-Paper Shield Starter Kit Relies on Teensy LC MCU Board

December 23rd, 2016 2 comments

Soniktek Electronics has designed the “e-Paper Shield Starter Kit” featuring Pervasive Displays’ E2215CS062 e-paper screen, and an adapter board to connect it to Teensy LC (Low Cost) board powered by NXP Kinetis L ARM Cortex M0+ microcontroller @ 48 MHz, or other 3.3V MCU boards supporting SPI.

e-paper-devkitAdapter board & display specifications:

  • Supports Pervasive Displays 2.15″ E2215CS062 e-paper screen with 208 x 112 resolution, no backlight required, fully sunlight-readable
  • Communication protocol – SPI  @ 3.3V
  • Sensor – On-board thermometer with I2C interface
  • Dimensions – Screen: 48 mm x 26 mm; adapter board fits into Teensy-LC module (36x18mm)

The advantages of e-Paper display are that they don’t require power to maintain an image, and they can be read in sunlight, just like actual paper. I can’t remember having seen many – if any – low cost e-Paper development kits so far, and the project is open source hardware with design files and source code available on hackster.io.

The project was successfully funded on Crowdsupply last month, but you can now pre-order directly on the platform, starting at $25 for the adapter only if you already have an MCU board and the e-Paper display, $50 for the adapter board, and display, and $75 for a full kit with Teensy LC board, the adapter board, and the e-Paper Display. Shipping is free to the US, and $5 to the rest of the world.

If you are interested in e-Paper display development kits, I’ve noticed there are a dozen listed on Pervasive Display e-Ink development kits page, including e-Paper HATs boards for Raspberry Pi Zero, and other Raspberry Pi boards, and e-Paper shields for Arduino.

Via Softei.com

Kunbus RevolutionPi RevPi Core Raspberry Pi based Industrial Computer Sells with Digital I/O Modules and Fieldbus Gateways

December 16th, 2016 8 comments

Kunbus, a German company specialized in industrial network solution, has decided to design an industrial system based on Raspberry Pi Computer module supporting variable power supply, a wide temperature range, DIN rail mounting, etc, as well as corresponding digital I/O modules and fieldbus gateways.

industrial-raspberry-pi-revpiRevolutionPI RevPi Core specifications:

  • SoC – Broadcom BCM2835 ARM11 processor @ 700 MHz
  • System Memory – 512 MB
  • Storage – 4GB flash
  • Video Output – Micro HDMI port
  • Connectivity – 10/100M Ethernet port
  • USB – 2x USB 2.0 host ports, 1x micro USB port
  • Misc – RTC, 3x status LEDs (2 programmable)
  • Power Supply – 10.7 V to 28.8 V; polarity protection; 4 kV / 8 kV ESD protection & EMI passed (according to EN61131-2 and IEC 61000-6-2), surge and burst tests passed
  • Power Consumption – Max: 10 Watts including 2 x 450 mA USB load; typ.: 4 watts.
  • Dimensions – 96 x 22.5 x 110.5 mm (Polycarbonate case)
  • Housing type – DIN rail housing for DIN rail version EN 50022
  • Weight – 108 g
  • Protection class – IP20
  • Temperature Range – Operating: -40 °C to +55 °C (exceeds EN61131-2 requirements); storage: -40 °C to +85 °C (exceeds EN61131-2 requirements); N/B.: No guarantee that the system can start at less than 30 °C with a 24V power supply.
  • Humidity – up to 93% (non-condensing) @ 40°C

The system runs Raspian Wheezy with RT-patch for Linux kernel 4.1.13.

revolution-pi-revpi-core

Beside RevPi Core described above, the company also offers three different galvanically isolated “RevPi DIO” digital IO modules with a 28-pin I/O connector as shown in the first picture, as well as RevPi Gates gateways supporting industrial communication standards including Profinet, Profibus, EtherCat, Modbus, Sercos, CANopen, and more. RevPi DIO and Gates are connected to RevPi core through a overhead Pi Bridge connector allowing two expansions per RevPi Core.

Click to Enlarge

Some RevPi Gates Gateways

You can find the full details on Kunbus RevolutionPi microsite, and purchase RevolutionPi RevPi Core (169 Euros), DIO modules and gateways on their webstore.

Thanks to Sander for the tip.

Android Things OS for the Internet of Things Supports Raspberry Pi 3, Intel Edison, and NXP Pico Boards

December 14th, 2016 5 comments

Google introduced Project Brillo a little over a year ago, an operating system based on Android, but with a smaller footprint optimized for Internet of Things applications. Brillo has now just become Android Things OS, with Google releasing a developer preview of Android Things working on Raspberry Pi 3, Intel Edison, and NXP Pico boards.

android-things-architecture

Android Things Software Architecture

The company has also updated the Weave platform to simplify connection of all types of devices to the cloud, and interaction with services like the Google Assistant. The Weave Device SDK currently supports schemas for light bulbs, smart plugs, switches, and thermostats, with more type of device supported in the future, as well as a mobile app API for both Android and iOS.

Using an Android based OS instead of a pure Linux OS should make it easier for Android app developers to create smart devices thanks to the use of familiar Android APIs and Google Services. The workflow is pretty similar to creating mobile apps, with development being done within Android Studio and you’d connect to the target board through adb. One difference is the the Things Support library that provides a peripheral I/O API for interfaces such as GPIOs, PWM, I2C, SPI and UART as well as a user driver API  used to allow apps to inject hardware events in to the Android framework.

nxp-pico-board

NXP Pico Board with TechNexion PICO-i.MX6UL SoM

If you’d like to get started, get one of the three supported boards, and get the Android Things developer preview. You may also been interested in Weave and Google Cloud platform sites to respectively control capable device such as Philips Hue and Samsung SmartThings, and get your data into the cloud. Some sample code is also available on AndroidThings’ github account, and you may want to subscribe to  Google’s IoT Developers Community on Google+ for support and discussions. NXP also has a higher end Android IoT platform equipped with more I/Os and ports called VVDN Technologies Argon i.MX6UL development board.