Archive

Posts Tagged ‘ubuntu’

NanoPi NEO 2 Board, NanoHats, and BakeBit Starter Kit Review – Part 1: Hardware Overview & Assembly

March 26th, 2017 20 comments

NanoPi NEO 2 development board is an update of NanoPi NEO with a quad core 64-bit Allwinner H5 processor + 512 MB RAM, Gigabit Ethernet, and an extra audio header, which can be a great little board for headless application since there’s no video output. FriendlyELEC ask me whether I wanted to review to board with some of their NanoHATs add-on boards, and while I asked for NanoHat PCM5102A audio board and NEO Hub which I intended to use with Grove modules from my Wio Link Started Kit, I get a bit more than expected, as the company included sets of NEO 2 boards and accessories, NanoHATs, two serial debug board, and their BakeBit Starter Kit with several Grove modules to play with.

Click to Enlarge

Since I have so many things to look at in this first post, I’ll just describe the hardware, assemble it, quickly check the paper documentation, and give some of my impressions about the kit I receive.

Let’s start with NanoPi NEO 2. It’s super tiny, as exactly the same forum factor as NanoPi NEO, except for the low profile Ethernet jack.

The bottom side comes with Allwinner H5 processor SoC, and Samsung K4B4G1646E-BYK0 DDR3L memory (512MB), while the top of the board features Realtek RTL8211E Gigabit Ethernet Transceiver. The board just has four ports/connectors: a micro SD slot, a micro USB port for power, a USB 2.0 host port, and an RJ45 connector.

Click to Enlarge

There are also two headers (2x 12 pin + 12x pin) for I/O just like for the first NEO board, as well as an extra 5-pin header for audio on the right of the 4-pin UART header. The audio header is also present on NanoPi NEO v1.3 board, but not the older boards. See pinout table for details.

Click to Enlarge

Each package with the board also includes a Quick Start Guide describing the board, and explaining how to use the company’ Ubuntu Core + Qt image. As you can see from the photo above, the boards also make great paper weights, but I’m sure you’ll find something more interesting to do with them… 🙂

I also get a heatsink + thermal pads + screws and nuts kit, not included by default. Installation is very easy. First remove the two protective plastic sheets on the blue thermal pad, place it on Allwinner H5 processor, and then add the heatsink on top and secure it with the screws and nuts. Just make sure you orientate properly without covering the IO pins.

I did that for both, and checked possible combinations for those who want to build NanoPi NEO (2) farms. The first combination is to place the boards in opposite direction, and then use some spacers (mine were not suitable) to hold both boards in place as shown here.

The configuration above takes the less space, however, you may want to have all Ethernet ports on the same side, and the low profile Ethernet jack allows for a more compact design compared to what was possible with NanoPi NEO.

This takes about 5 x 4.5 x 4 cm, so if we round that up you could have 1 meter x 1 meter x 4.5 cm deep cluster with 800 NanoPi boards (3,200 cores). You’d just have to find out how to power and cool it down… The 512MB memory might limit use cases for clusters. FriendlyELEC also sells an acrylic case for 8 board clusters.

The main use case for NanoPi NEO (2) board is probably IoT and electronics projects, so I soldered the two headers which are provided with the board (inside the package).

First I thought I made a mistake when I installed the heatsink first, but actually the nuts help keep the headers in place while soldering, so I did not have to use a sponge to push the headers while soldering, as I normally do.


NanoPi NEO 2 boards are now ready. So let’s checkout the two add-on board I got: NanoHAT PCM5102A audio board with Texas Instruments PCM5102A audio stereo DAC,  stereo audio output via RCA connectors, and an IR receiver, as well as NEO Hub (aka NanoHAT Hub) with 12 Grove connectors (I2C, Digital I/O, Analog Inputs, UART)  compatible with Seeed Studio offerings.

Click to Enlarge

NEO Hub also includes an unpopulated SPI header.

Click to Enlarge

The NanoHats sit on top of NEO (2) board, and you can still connect the UART to TTL debug board if you need to access the serial console. NanoHat PCM5102A also comes with 2x RCA to 3.5mm female jack to connect headphones or speakers.

Click to Enlarge

Since NanoHats includes male headers, it’s also possible to stack them.

In some ways, NanoPi NEO (2) and NanoHAT are the more powerful equivalent of Wemos D1 Mini and shields based on ESP8266, and I really like the design of both solutions.

If you already own some Seeed Studio grove modules, you just need the NEO Hub, but Bakebit Starter Kit appears to be a nice way to expereriment with all sorts of sensors, LEDs, and servo.

Click to Enlarge

There are twelve modules in total: 2 LED modules, an LED bar, on OLED display, a button, a joystick, a buzzer, an ultrasonic sensor, a servo, a potentiometer, a light sensor, and a sound sensors. The kit includes two detailed user manuals: one in good English, one in Chinese.

Click to Enlarge

The first part explains the features and interface for each module with a Wiki link, and latter on you have some easy projects with source code leveraging the NEO hub and some of the modules.

Click to Enlarge

You can also access the documentation online.

FriendlyELEC boards may be slightly more expensive than Shenzhen Xunlong’s Orange Pi boards, but documentation appears to be clearly a step or two ahead, and they have an ecosystem of modules that’s currently lacking on Orange Pi boards.

Some price info about the kit I’ve received:

  • NanoPi Neo 2 board – $14.99
  • Heatsink set – $2.97
  • NanoHat PCM5102A – $9.99
  • NEO Hub – $12.99 (Not needed if you buy Bakebit Starter Kit)
  • BakeBit Starter Kit – $29.99

You’ll need to add shipping, but it’s normally only a few dollars extra for registered airmail. You’ll find additional accessories by scrolling down on NanoPi Neo 2 page on FriendlyARM store. The next step will be to install an operating system, which will be FriendlyELEC’s Ubuntu Core + Qt image, or Armbian nightly build, in order to do some basic tests and run benchmarks like I did for NanoPi NEO, and following up on that I plan to write an extra post reporting on my experience playing with NanoHat PCM5102A and Bakebit Starter Kit.

Bosch Rexroth IndraControl XM22 PLC Runs Ubuntu Core IoT, Supports Industrial Apps

March 23rd, 2017 7 comments

Canonical wants you to run Ubuntu apps (snaps) for everything and on all types of devices, not only on your computer or smartphone. For example, base station apps (4G LTE, Bluetooth, LoRa…) can now run on LimeSDR board, the company is pushing for branded app stores, like the one for Orange Pi Boards, and now they have introduced the concept of App Logic Controllers (ALC) which are PLC devices running apps, thus bringing the concept of apps to the industrial world. Bosch Rexroth demonstrated the solution at Embedded World 2017 on their IndraControl XM22 PLC running Ubuntu Core.

Let’s have a look at the hardware first with IndraControl XM22 specifications:

  • Processor – Intel Atom E620 one core / two threads processor @ 600 / 1300 MHz (3.3W TDP)
  • Memory – 512 MB RAM
  • Storage – likely some flash + SD card slot
  • Networking Connectivity – Gigabit Ethernet (RJ45) port
  • USB – 1x USB host port, 1x USB device port
  • I/Os
    • Function extension – Connection of IndraControl XM extension modules XFE01-1-FB-xx via controller bus socket module XA-BS02
    • I/O extension – Connection of IndraControl S20 modules via controller bus socket module XA-BS01 or XA-BS02
  • Fieldbus
    • PROFINET RT Controller/device via extension modules
    • Master/Slave Sercos
    • EtherNet/IP Scanner/adapter via extension modules
    • PROFIBUS DP Master/Slave via extension modules
  • Power Supply – 24 V DC; Umin … Umax = 18 V … 31.2 V (including all tolerances, including ripple)
  • Certifications – CE/UL/CSA
  • Weight – 380 grams
  • Temperature Range – -25 °C … +60 °C
  • Relative humidity – 5% to 95%, EN 61131-2
  • IP Rating – IP20
  • Fatigue limits according to EN 60068-2-6 – 5 g
  • Shock resistance (single shock) according to EN 60068-2-27 – 30 g

Normally, you’d connection a few IO boxes to the PLC, and run the software. The video below shows IndraControl XM22 in action with Ubuntu.

It’s pretty with all the LEDs blinking, but I could not find the exact details about the setup. Nevertheless one of the goals of apps to to reduce the cost of hardware and software, as it should work on any device that runs Ubuntu Core with the right interfaces, including Kunbus Revolution Pi industrial computer based on Raspberry Pi.

One example of industrial app is Induscover snap app which identifies and enumerates devices through various industrial standards such as  BACnet, CoDeSys V2, EtherNet/IP, etc.. and compatible for hardware platforms such as Schneider Electric Modicon PLCs, Omron PLCs, PC Worx Protocol enabled PLCs, ProConOS enabled PLCs and Siemens SIMATIC S7 PLCs.

Snaps are supposed to be easy to install and use, and Induscover is no exception:

Those two commands will install induscover, discover attached devices, and publish discover/plc/out MQTT topic with the information. The github link to Induscover above also explain how to use Node-RED to manage and control the devices.

Click to Enlarge

You’ll find more about Rexroth IndraControl XM22 PLC / ALC on the product page.

Thanks to Jian for the tip.

UP Core is a Low Cost & Compact Intel Maker Board Powered by an Atom x5-Z8350 SoC (Crowdfunding)

March 18th, 2017 19 comments

The UP community has already launched Intel Cherry Trail and Apollo Lake boards in the past with UP Board and UP2 (squared) boards, and they are now about to launch a cheaper and smaller board called UP Core powered by Intel Atom x5-Z8350 processor with to 1 to 4GB memory, up to 64GB eMMC flash, HDMI, USB 3.0, … and I/O expansion connectors.

Click to Enlarge

UP Core specifications:

  • SoC – Intel Atom x5-Z8350 “Cherry Trail” quad core processor @ 1.44 GHz / 1.92 GHz (Burst frequency) with Intel HD 400 graphics @ 200 / 500 MHz
  • System Memory –  1, 2 or 4 GB DDR3L-1600 (soldered on board)
  • Storage – 16, 32, or 64 GB eMMC flash, SPI flash ROM
  • Video Output / Display – HDMI 1.4 port, full eDP (embedded DisplayPort) connector
  • Audio I/O – Via HDMI, and I2S
  • Connectivity – 802.11 b/g/n WiFi  @ 2.4 GHz, Bluetooth 4.0 LE (AP614A)
  • USB – 1x USB 3.0 host port, 2x USB 2.0 via header
  • Camera I/F – 1x 2-lane MIPI CSI, 1x 4-lane MIPI CSI
  • Expansion
    • 100-pin docking connector with power signals, GPIOs, UART, SPI, I2C, PWM, SDIO, I2S, HDMI SMBUS, PMC signals, 2x USB HSIC, CSI, and PCIe Gen 2
    • 10-pin connector with 2x USB 2.0, 1x UART
  • Misc – Power & reset buttons, RTC battery header, fan connector, BIOS reflash connector
  • Power Supply – 5V/4A via 5.5/2.1mm power barrel
  • Dimensions – 66 x 56.50 mm
  • Temperature Range – Operating: 0 to 60 °C

The board will support Microsoft Windows 10, Windows 10 IoT Core, Linux including Ubilinux, Ubuntu, and the Yocto Project, as well as Android 6.0 Marshmallow.

Block Diagram – Click to Enlarge

If you look at the bottom right connector of the diagram above, we can see an extension HAT for the 100-pin docking port will be offered, as well as an IO board, both of which should be compatible with Raspberry Pi HATs with 40-pin connectors. But so far, I could not find details about the extension HAT, nor the IO board.

The UP core is coming soon to Kickstarter with price starting at 69 Euros with 1GB RAM, 16GB eMMC flash, and WiFi and Bluetooth. Other part of the documentation show a $89 price for the 1GB/16GB board, so maybe it’s the expected retail price out of the crowdfunding campaign. You’ll find a few more information on UP Core page, but we’ll probably have to wait for the Kickstarter campaign to launch to get the full details, especially with regards to add-on boards, and pricing for various options.

Thanks to Freire for the tip.

Dell Edge Gateway 3000 Series Are Powered by Intel Bay Trail-I SoCs for Automation, Transportation, and Digital Signage

March 17th, 2017 No comments

Dell has recently introduced Edge Gateway 3000 series with three models powered by Intel Bay Trail-I processor, running Ubuntu Core 16 or Windows 10 IoT, with each model targeting respectively general-purpose automation, transportation & logistics, and digital signage and retail.

The specifications for the three models can be found in the table below.

Dell Edge Gateway 3001
Model for General-Purpose Automation
Dell Edge Gateway 3002
Model for Transportation & Logistics
Dell Edge Gateway 3003
Model for Media & Retail Kiosks
SoC Intel Atom E3805 dual core processor  @ 1.33 GHz (3W TDP) Intel Atom E3815 single core processor @ 1.46 GHz with GPU @ 400 MHz (5W TDP)
System Memory 2 GB DDR3L-1066
Storage 8 or 32 GB eMMC flash
Industrial-grade Micro-SD card: 8GB / 16GB / 32 GB / 64 GB
Connectivity 1 x 10/100 Fast Ethernet (RJ-45)
with PoE (15.4W)
WiFi 802.11 b/g/n
Bluetooth 4.0 LE
Optional ZigBee module.
2x 10/100 Fast Ethernet (RJ-45), main port supports PoE (15.4W)
WiFi 802.11 b/g/n
Bluetooth 4.0 LE
Integrated Zigbee/802.15.4 module for mesh
networking.
2 x 10/100 Fast Ethernet (RJ-45).
Main port supports PoE (15.4W)
WiFi 802.11 b/g/n
Bluetooth 4.0 LE
Optional ZigBee module
Cellular Connectivity 3G or 4G LTE for select countries, US/Canada 4G LTE with AT&T or Verizon
Video & Audio DisplayPort 1.1 up to 2560×[email protected]
3.5mm Line Out/Line
In; RealTek codec
Serial Interfaces 2x RS-232/422/485.
GPIOs 8x channel, independently
programmable, DAC, ADC.
CAN Bus CAN2.0 A/B/FD 1Mbps (CAN2.0), 5Mbps (CAN-FD)
USB 1x USB 2.0, 1x USB 3.0
GNSS Integrated GPS
Sensors Accelerometer, Pressure, Temperature and Humidity
Power Supply 12V-57V wide DC input;
PoE compliant with IEEE 802.3.af standard up to 15.4 W, 48 V over existing Ethernet infrastructure, no
modifications required.
Dimensions 125 mm x 125 mm x 51 mm
Weight Around 1.1 kg

While all three models can run Ubuntu Core 16 and Windows 10 IoT Enterprise LTSB 2016, the latter requires a 32GB eMMC flash. Each gateway also comes with a Trusted Platform Module (TPM) 2.0, secure boot, BIOS password and I/O port disablement, and a fleet of gateway can be managed via Dell Edge Device Manager (EDM) cloud-based manageability suite (sold separately).

Gateway 30001 used for Mining Operations – Click to Enlarge

The gateway can be used for all sort of applications from mining management systems as shown above, to 18-wheelers, and revenue generating city fountains.

Dell Edge Gateway 3000 series will start selling this May for $399 and up. More details can be found on Dell website.

Shenzhen Xunlong Software & Canonical Launch Orange Pi App Store for Ubuntu Snaps

March 17th, 2017 3 comments

The maker of Orange Pi boards, Shenzhen Xunlong Software, has partnered with Canonical to launch Orange Pi app store, allowing developers to gain a simple mechanism to share their applications, projects and scripts with the Orange Pi community.

Click to Enlarge

The store relies on snaps instead of deb packages, with snaps allowing a secure distributions of apps bundled with all their dependencies, which according to Canonical can decreased the time for an half an hour installation process to just a few seconds.

The community has already contributed hundreds of snaps in the Ubuntu snap store, including openHAB for home automation, Rocket.chat self-hosted chat platform, NextCloud for cloud storage, and wifi-ap for networking.

You can get them from the App store, but installing a snap from the command line is easy, for example:

However, I cannot find any Ubuntu Core image for Orange Pi Boards yet on Ubuntu Core Getting Started page. It would also work on other operating systems like Arch Linux ARM, Gentoo, Ubuntu (not Core), Debian, etc… by installing snapd.

You can also learn how to create your own branded app store for your board or community on Ubuntu website.

ECDREAM EC-V26 is a Mini PC with a 8″ Touchscreen Display Powered by an Intel Celeron/Pentium Apollo Lake Processor

March 15th, 2017 3 comments

Mini PCs with a touchscreen display targeting consumer markets, and looking like very thick tablets started with PiPo X8, and later other companies joined the fray with products like GOLE 1, but the form factor appears to have become popular with even more manufacturers, as Shenzhen EC Technology has now launched ECDREAM EC-V26 powered by Intel Celeron or Pentium “Apollo Lake” processor, and equipped with an 8″ touchscreen display.

ECDREAM EC-V26 mini PC specifications:

  • SoC (one of the other)
    • Intel Celeron N3350 dual core processor @ 1.1 GHz / 2.4 GHz with a 12 EU Intel® HD Graphics 500; 6W TDP
    • Intel Celeron N3450 quad core processor @ 1.1 GHz / 2.2 GHz with a 12 EU Intel® HD Graphics 500; 6W TDP
    • Intel Pentium N4200 quad core processor @ 1.1 GHz / 2.5 GHz with an 18 EU Intel HD Graphics 505; 6W TDP
  • System Memory – 2GB on-board DDR3 + 1x DDR3 SO-DIMM socket up to 8GB
  • Storage – 32, 64 or 128GB eMMC flash + M.2 socket with optional 64 or 128GB SSD
  • Display – 8″ IPS display with a 10-point capacitive panel; 1280×800 resolution
  • Video Output – HDMI 1.4b port up to 4K @ 30 Hz, VGA
  • Audio – 3.5mm audio jack, stereo speakers 1W/80 Ohm
  • Connectivity
    • Gigabit Ethernet (RJ45)
    • WiFi 802.11 b/g/n (single band) or  dual band Bluetooth 802.11 a/b/g/n/ac
    • Bluetooth V4.0 + HS
  • USB – 2x USB 3.0 ports, 2x USB 2.0 ports, USB 2.0/3.0 Type C port (not for power)
  • Camera – Optional front panel camera
  • Misc – Power LED, power key, optional RS232 port
  • Power Supply – 12V to 19V up to 3.42A via 5.5/2.5 mm power barrel
  • Battery – Optional 4,000 to 10,000 mAh 3.7/3.8V battery with up to 2A charge current
  • Dimensions – 198 x 144 x 15-26 mm
  • Weight – TBD

The company told me it supports both Windows 10 and “Ubuntu Linux”, but it’s not clear whether there will be an Ubuntu version sold at retail, or the user will have to install the operating system himself/herself.

While the product description above shows a VGA port, it does not look like one (with 3 rows of 5 pins), but instead it should be the optional RS232 port (DB9). Alternatively, it might also be possible that the VGA and RS232 are just mutually exclusive, so you can select the one you want. If your model comes with VGA, it will support dual independent displays configuration. MiniPC DB also reported about the device, and managed to get a somewhat blurry picture of the motherboard, which still clearly shows the SO-DIMM socket.

Click to Enlarge

The company did not provided pricing info, but MiniPC DB’s guys think it will cost around $350 to $450 depending on options. [Update: the company told me pricing would be in the  $599 to $699 range]. You may find some more details on the product page.

NanoPi NEO2 Development Board Powered by Allwinner H5 64-bit ARM Processor Sells for $15

March 14th, 2017 44 comments

NanoPi NEO is a cool little board, and I’ve been using it with Armbian as a 24/7  MQTT + Domoticz server for several weeks without any issues so far. FriendlyElec has now an update with NanoPi NEO2 featuring Allwinner H5 quad core Cortex A53 processor instead of Allwinner H3 Cortex A7 processor, a faster Gigabit Ethernet connection, and a new audio header.

NanoPi NEO2 specifications:

  • SoC – Allwinner H5 quad core Cortex A53 processor with an ARM Mali-450MP GPU
  • System Memory – 512 MB DDR3
  • Storage – micro SD card slot
  • Connectivity – Gigabit Ethernet (via RTL8211E-VB-CG chip)
  • USB – 1x USB 2.0 host ports, 1x micro USB OTG port, 2x USB via headers
  • Expansion headers
    • 24-pin header with I2C, 2x UART, SPI, PWM, and power signals
    • 12-pin header with 2x USB, IR pin, I2S
    • 5-pin audio header with microphone and LINE out signals
  • Debugging – 4-pin header for serial console
  • Misc – Power and status LEDs
  • Power Supply – 5V via micro USB port or VDD pin on headers.
  • Dimensions – 40 x 40 mm

One of my reader (Willy) also noticed they included a low-profile Ethernet jack that was asked by some. The company provides an image based on U-boot + Ubuntu Core, as well as hardware and software documentation on their Wiki. That’s not the first Allwinner H5 board we’ve seen, as Shenzhen Xunlong introduced Orange Pi PC 2 at the end of last year, but NEO2 is the first H5 board in such as small form factor.

Software support for H5 was not quite that good last November, but now Armbian community has released nightly builds for Orange Pi PC 2 based on Linux 4.10, which do seem to work fine for headless operation, but there’s little hope to have Mali drivers, hardware video decoding, and HDMI audio output support any time soon. None of those should matter for NanoPi NEO2 since it does not come with any video output ports, and I’d expect Armbian images to be released for the board soon.

NanoPi NEO2 is sold for $14.99 + shipping together with 2×12 and 1×12 headers directly on FriendlyARM website. Note that the heatsink is not included by default, and depending on your target application you may want to spend the extra $2.97 to add the heatsink + thermal pad to your order.

$25 Orange Pi Win Development Board To Run Windows 10 IoT (and Linux, and Android)

March 13th, 2017 24 comments

Shenzhen Xunlong Software must already have over a dozen of Orange Pi boards, but this is not stopping them from launching more, and the company has just introduced Orange Pi Win, powered by Allwinner A64 processor, and beside supporting Linux and Android like other models, it’s rumored to run Windows 10 IoT too.Orange Pi Win specifications:

  • SoC – Allwinner A64 quad core ARM Cortex A53 processor @ 1.2 GHz with Mali-400MP2 GPU
  • System Memory – 1 GB DDR3
  • Storage – 2MB SPI flash, micro SD slot up to 64 GB, footprint for optional eMMC flash
  • Video Output / Display interface – HDMI 1.4 up to 4K @ 30 Hz with CEC 3D and HDCP support,, MIPI LCD interface
  • Audio – HDMI, 3.5 mm headphone jack, built-in microphone
  • Connectivity – Gigabit Ethernet + 802.11 b/g/n WiFi & Bluetooth 4.2 (AP6212)
  • USB – 4x USB 2.0 host ports, 1x micro USB OTG port
  • Camera – MIPI CSI interface up to 5MP camera, up to [email protected] fps video capture
  • Expansion – 40-pin Raspberry Pi somewhat-compatible header
  • Debugging – 3-pin UART header
  • Misc – IR receiver; reset and power buttons; power and status LEDs;
  • Power
    • 5V via power barrel or micro USB port
    • Lithium battery header
    • Power selection jumper (4-pin header)
    • AXP803 PMIC
  • Dimensions – 93 x 60 mm
  • Weight – 48 grams

Supported operating systems includes “Android 4.4, Ubuntu, Debian, Raspberry Pi image, and Banana Pi image”. The latter is possible since Orange Pi Win is quite  similar to Banana Pi M64, except it has less RAM. “Raspberry Pi image” likely means Raspbian with Linux + Uboot for Allwinner A64 processor, and Raspbian image for Raspberry Pi won’t work. Linux support should now be relatively good due to the work done on other Allwinner A64 boards such as Pine A64 and Banana Pi M64, and I suspect Armbian builds should come soon enough.

Windows 10 IoT is not part of that list, but should eventually be supported according to a forum post, and Shenzhen Xunlong confirmed it by email. Not really surprising considering Windows 10 IoT has been ported to Pine A64 and Banana Pi M64 boards. You can check officially supported Allwinner boards directly on Microsoft Azure IoT device catalog, and Orange Pi Win is not there yet.

The board has just started to sell for $25 + shipping on Aliexpress.

Thanks to Tomaz, Aleksey, and tkaiser for the tip.