Rockchip RK3588 benchmarks – Geekbench4, GFXBench, Antutu

RK3588 benchmarks

We’ve been talking about the Rockchip RK3588 Cortex-A76/A55 processor since it showed up in a roadmap in the Spring of 2019, and the initial plan was for a release in Q1 2020. But as most regular readers know, there have been delays after delays, and some people have even started to associate RK3588 with vaporware. But there may be light out of the tunnel with Rockchip RK3588 platform being showcased at the Rockchip Developer Conference 2021, notably with CPU and GPU benchmarks for the device. The results for Geekbench 4 reveal around 2.7 times (single core) or 3.4 times (multi-core) higher CPU speed, but the most impressive part is the GPU as GFXBench shows Rockchip RK3588 being multiple times faster than RK3399, in some cases over 10 times faster. A few weeks ago, we noted some Geekbench 4 results with a system running Android 12 with 8GB of RAM, and […]

Amlogic A311D2 octa-core Arm processor supports up to 16GB RAM

Amlogic A311D2 Block Diagram

Amlogic A311D2 octa-core processor is the successor to Amlogic A311D hexa-core SoC with four Cortex-A73 cores, four Cortex-A53 cores, a more powerful Mali-G52 MP8 (8EE) GPU, support for eDP and LVDS video interface, 8Kp24 AV1 video decoding, and support for a whopping 16GB LPDDR4/X memory. But it’s not all! The chip also includes supports for three HDMI 2.1 inputs up to 4Kp60, a 16MP ISP, 4K video encoding, and the more powerful GPU and higher memory bandwidth enable 4K user interfaces which were not feasible on most other Arm hardware barring the NVIDIA Shield. Comparison of Amlogic A311D2 and A311D specifications. * Amlogic A311D multiplexed PCIe and USB 3.0  interfaces means two configurations are possible: 1x USB 2.0 Host + 1 PCIe, OR 1x USB3.0 (No PCIe), but Amlogic A311D2 PCIe and USB 3.0 interfaces are independent, so we are not losing USB 3.0 when using PCIe (5 Gbps). The […]

Imagination Technologies to design RISC-V cores

Imagination RISC-V

Now better known for its PowerVR embedded GPUs, Imagination Technologies tried to enter the CPU market by purchasing MIPS Technologies and introducing microAptiv, interAptiv, and proAptiv cores in 2012. It did not end up well, as the company had to sell its MIPS technology a few years later, and the MIPS architecture is now barely supported. But Imagination is now working on getting back into the CPU space by designing RISC-V cores. At least that’s what the company revealed in a press release also announcing overall revenues increased by 55% to $76m in H1 2021, with $70m in cash, and no external third-party debt. This year Imagination is re-entering the CPU market with designs based around the RISC-V open ISA. Imagination’s heritage in CPU enables it to provide innovative and patent protected technologies for the discrete CPU market as well as addressing demand for heterogeneous solutions that combine GPU, CPU […]

Intel Alder Lake hybrid mobile processor family to range from 5W to 55W TDP (leak)

Intel Alder Lake Mobile Hybrid Processors

Intel’s first foray into hybrid processors using Foveros 3D stacking technology did not end well with the company just announcing the end of the life for Lakefield hybrid processors. But the company is not giving up on hybrid technology, and a recent leak shows the Intel Alder Lake family comprised of more powerful mobile hybrid processors will be offered for a wide range of applications from tablets with 5-7W M5 processors and up to “muscle laptops” or mobile workstations (MWS) with H55 processor at 45-55W TDP. Alder Lake hybrid processors will be comprised of high-performance CPU “Golden Cove” cores and energy-efficient Atom-based “Gracemont” CPU cores, in a way that’s similar to Arm’s Cortex-A7x big cores and Cortex-A5x LITTLE cores with big.LITTLE or DynamIQ processing with the goal of optimizing power consumption. The Intel Alder Lake Mobile SKU stack includes processors for 6 market segments including three “new” segments/TDP ranges according […]

First Armv9 cores unveiled – Cortex-A510, Cortex-A710, Cortex-X2

Armv9 Cortex-A510 Cortex-A710 Cortex-X2

Armv9 architecture was announced in Q1 2021, building upon Armv8 but adding blocks and instructions for artificial intelligence, security, and “specialized compute”, i.e. hardware accelerators or instructions optimized for specific tasks. The company has now introduced the first three Armv9 cores with Cortex-X2, Cortex-A710, and Cortex-A510 cores, providing updates to respectively Cortex-X1, Cortex-A78, and Cortex-A55 cores. The company calls those new cores “Arm Total Compute solutions”. Arm Cortex-X2 flagship core is the company’s most powerful CPU so far with 30% performance improvements over Cortex-X1 and will be found in premium smartphones and laptops. Arm Cortex-A710 “big” CPU core provides a 30% energy efficiency gain and 10% uplift in performance compared to Cortex-A78, while Arm Cortex-A510, high efficiency “LITTLE” Armv9 core delivers up to 35% performance improvements and over 3x uplift in ML performance compared to Cortex-A55 announced four years ago, or about the same performance as the “big” Cortex-A73 cores […]

Semiconductors lead times in March 2021

As we previously mentioned previously there is a serious chip shortage that will lead to supply issues and higher prices for single board computers and other electronics products. A few days ago, Hardkernel had o increase the price for ODROID boards using DDR4 memory with increases of $3 to $4 for ODROID-N2+, ODROID-C4, and ODROID-HC4 boards. But besides price increase, some semiconductors will not be available at any price with extended periods as lead times of up to 52 weeks have been reported as shown in the table below, obtained from a trusted, anonymous source, which I have translated from Chinese. Every manufacturer is impacted, but items highlighted in red are severely impacted. Since include processors from Qualcomm, STMicroelectronics, and NXP, as well as Broadcom wireless chips which are found in nearly every SBC with WiFi or Bluetooth through Ampak modules. Here’s the source image in Chinese for reference. Jean-Luc […]

Renesas RZ/G2L MPUs Feature Cortex-A55 & Cortex-M33 Cores for AI Applications

Block Diagram of RZ-G2L

Renesas Electronics Corporation announced RZ/G2L MPUs, allowing enhanced processing for an extensive variety of AI applications. The RZ/G2L group of 64-bit MPUs includes three new MPU models featuring Arm Cortex-A55, and an optional Cortex-M33 core. These are RZ/G2L, RZ/G2LC, and RZ/G2UL MPUs. The Cortex-A55 CPU core typically delivers approximately 20 percent improved processing performance compared with the previous Cortex-A53 core, and according to Renesas, is around six times faster in “essential processing for AI applications”. The company already has four mid to high-end design level MPUs including RZ/G2E, RZ/G2N, RZ/G2M, and RZ/G2H, with combinations of Cortex-A53 and Cortex-A57 cores. The new RZ/G2L group of three MPUs forms the entry-level design with Cortex-A55. Hence, the seven MPU models together provide scalability from entry-level to high-end design. Common Key Features in RZ/G2L, RZ/G2LC, and RZ/G2UL MPUs Up to 2x Cortex-A55 cores Cortex-M33 core Camera interface (MIPI-CSI) Display interface (Parallel-IF) USB 2.0 interface […]

Arm Announces Cortex-A78AE CPU, Mali-G78AE GPU & Mali-C71AE ISP for autonomous automotive & industrial applications

Cortex-A78AE

Arm has announced new CPU, GPU, and ISP specifically designed for autonomous automotive and industrial applications with respectively Cortex-A78AE CPU, Arm Mali-G78AE GPU, and Arm Mali-C71AE ISP. Arm Cortex-A78AE CPU Key features and specifications: Architecture – Armv8.2-A (AArch32 at ELO only) Extensions – Armv8.1, Armv8.2, and Armv8.3 extensions (LDAPR instructions only), RAS extensions, Armv8.4 Dot Product, Cryptography extensions, RAS extensions Microarchitecture Up to 4x CPU cores per cluster Out of order pipeline Neon / Floating Point Unit included with INT8 Dot Product and IEEE FP16 Optional Cryptography Unit 48-bit Physical Addressing (PA) Memory system and external interfaces 32kB to 64kB L1 I-Cache / D-Cache 256kB to 512kB L2 Cache Optional 512kB to 4MB L3 Cache ECC Support LPAE Bus interfaces – AMBA ACE or CHI Optional ACP, peripheral port Functional Safety Support – ASIL D Systematic1 and ASIL D Diagnostic2 Security – TrustZone Interrupts – External GICv4 Generic timer – […]

Exit mobile version