Archive

Posts Tagged ‘real-time’

Embedded Linux Conference & Open Source Summit Europe 2017 Schedule

August 27th, 2017 3 comments

The Embedded Linux Conference & IoT summit 2017 took place in the US earlier this year in February, but there will soon be a similar event with the Embedded Linux Conference *& Open Source Summit Europe 2017 to take up in Europe on October 23 – 25 in Prague, Czech Republic, and the Linux Foundation has just published the schedule. It’s always useful to find out what is being discussed during such events, even if you are not going to attend, so I went through the different sessions, and compose my own virtual schedule with some of the ones I find the most interesting.

Monday, October 23

  • 11:15 – 11:55 – An Introduction to SPI-NOR Subsystem – Vignesh Raghavendra, Texas Instruments India

Modern day embedded systems have dedicated SPI controllers to support NOR flashes. They have many hardware level features to increase the ease and efficiency of accessing SPI NOR flashes and also support different SPI bus widths and speeds.

In order to support such advanced SPI NOR controllers, SPI-NOR framework was introduced under Memory Technology Devices (MTD). This presentation aims at providing an overview of SPI-NOR framework, different types of NOR flashes supported (like SPI/QSPI/OSPI) and interaction with SPI framework. It also provides an overview of how to write a new controller driver or add support for a new flash device.

The presentation then covers generic improvements done and proposed while working on improving QSPI performance on a TI SoC, challenges associated when using DMA with these controllers and other limitations of the framework.

  • 12:05 – 12:45 – Free and Open Source Software Tools for Making Open Source Hardware – Leon Anavi, Konsulko Group

The open source hardware movement is becoming more and more popular. But is it worth making open source hardware if it has been designed with expensive proprietary software? In this presentation, Leon Anavi will share his experience how to use free and open source software for making high-quality entirely open source devices: from the designing the PCB with KiCAD through making a case with OpenSCAD or FreeCAD to slicing with Cura and 3D printing. The talk will also provide information about open source hardware licenses, getting started guidelines, tips for avoiding common pitfalls and mistakes. The challenges of prototyping and low-volume manufacturing with both SMT and THT will be also discussed.

  • 14:20 – 15:00 – Introduction to SoC+FPGA – Marek Vašut, DENX Software Engineering GmbH

In this talk, Marek introduces the increasingly popular single-chip SoC+FPGA solutions. At the beginning, the diverse chip offerings from multiple vendors are introduced, ranging from the smallest IoT-grade solutions all the way to large industrial-level chips with focus on their software support. Mainline U-Boot and Linux support for such chips is quite complete, and already deployed in production. Marek demonstrates how to load and operate the FPGA part in both U-Boot and Linux, which recently gained FPGA manager support. Yet to fully leverage the potential of the FPGA manager in combination with Device Tree (DT) Overlays, patches are still needed. Marek explains how the FPGA manager and the DT Overlays work, how they fit together and how to use them to obtain a great experience on SoC+FPGA, while pointing out various pitfalls.

  • 15:10 – 15:50 – Cheap Complex Cameras – Pavel Machek, DENX Software Engineering GmbH

Cameras in phones are different from webcams: their main purpose is to take high-resolution still pictures. Running preview in high resolution is not feasible, so resolution switch is needed just before taking final picture. There are currently no applications for still photography that work with mainline kernel. (Pavel is working on… two, but both have some limitations). libv4l2 is doing internal processing in 8-bit, which is not enough for digital photography. Cell phones have 10 to 12-bit sensors, some DSLRs do 14-bit depth.

Differences do not end here. Cell phone camera can produce reasonable picture, but it needs complex software support. Auto-exposure / auto-gain is a must for producing anything but completely black or completely white frames. Users expect auto-focus, and it is necessary for reasonable pictures in macro range, requiring real-time processing.

  • 16:20 – 17:00 – Bluetooth Mesh with Zephyr OS and Linux – Johan Hedberg, Open Source Technology Center, Intel

Bluetooth Mesh is a new standard that opens a whole new wave of low-power wireless use cases. It extends the range of communication from a single peer-to-peer connection to a true mesh topology covering large areas, such as an entire building. This paves the way for both home and industrial automation applications. Typical home scenarios include things like controlling the lights in your apartment or adjusting the thermostat. Although Bluetooth 5 was released end of last year, Bluetooth Mesh can be implemented on any device supporting Bluetooth 4.0 or later. This means that we’ll likely see very rapid market adoption of the feature.

The presentation will give an introduction to Bluetooth Mesh, covering how it works and what kind of features it provides. The talk will also give an overview of Bluetooth Mesh support in Zephyr OS and Linux and how to create wireless solutions with them.

  • 17:10 – 17:50 – printk() – The Most Useful Tool is Now Showing its Age – Steven Rostedt, VMware

printk() has been the tool for debugging the Linux kernel and for being the display mechanism for Linux as long as Linux has been around. It’s the first thing one sees as the life of the kernel begins, from the kernel banner and the last message at shutdown. It’s critical as people take pictures of a kernel oops to send to the kernel developers to fix a bug, or to display on social media when that oops happens on the monitor on the back of an airplane seat in front of you.

But printk() is not a trivial utility. It serves many functionalities and some of them can be conflicting. Today with Linux running on machines with hundreds of CPUs, printk() can actually be the cause of live locks. This talk will discuss all the issues that printk() has today, and some of the possible solutions that may be discussed at Kernel Summit.

  • 18:00 – 18:45 – BoF: Embedded Linux Size – Michael Opdenacker, Free Electrons

This “Birds of a Feather” session will start by a quick update on available resources and recent efforts to reduce the size of the Linux kernel and the filesystem it uses.

An ARM based system running the mainline kernel with about 3 MB of RAM will also be demonstrated. If you are interested in the size topic, please join this BoF and share your experience, the resources you have found and your ideas for further size reduction techniques!

Tuesday, October 24

  • 10:55 – 11:35 – Introducing the “Lab in a Box” Concept – Patrick Titiano & Kevin Hilman, BayLibre

Continuous Integration (CI) has been a hot topic for long time. With the growing number of architectures and boards, it becomes impossible for maintainers to validate a patch on all configurations, making it harder and harder to keep the same quality level without leveraging CI and test automation. Recent initiatives like LAVA, KernelCI.org, Fuego, (…) started providing a first answer, however the learning curve remains high, and the HW setup part is not covered.

Baylibre, already involved in KernelCI.org, decided, as part of the AGL project, to go one step further in CI automation and has developed a turnkey solution for developers and companies willing to instantiate a LAVA lab; called “Lab in a Box”, it aims at simplifying the configuration of a board farm (HW, SW).

Motivations, challenges, benefits and results will be discussed, with a demo of a first “Lab in a Box” instantiation.

  • 11:45 – 12:25 – Protecting Your System from the Scum of the Universe – Gilad Ben-Yossef, Arm Holdings

Linux based systems have a plethora of security related mechanisms: DM-Crypt, DM-Verity, Secure Boot, the new TEE sub-system, FScrypt and IMA are just a few examples. This talk will describe these the various systems and provide a practical walk through of how to mix and match these mechanisms and design them into a Linux based embedded system in order to strengthen the system resilience to various nefarious attacks, whether the system discussed is a mobile phone, a tablet, a network attached DVR, a router, or an IOT hub in a way that makes maximum use of the sometime limited hardware resources of such systems.

  • 14:05 – 14:45 – Open Source Neuroimaging: Developing a State-of-the-Art Brain Scanner with Linux and FPGAs – Danny Abukalam, Codethink

Neuroimaging is an established medical field which is helping us to learn more about how the human brain works, the most complex human organ. This talk aims to cover neuroimaging systems, from hobbyist to professional, and how open source has been used to build state-of-the-art systems. We’ll have a look the general problem area, why open source was a good fit, and some examples of solutions including a commercial effort that we have been involved in bringing to market. Typically these solutions consist of specialist hardware, a bespoke software solutions stack, and a suite to manage and process the vast amounts of data generated during the scan. Other points of interest include how we approached building a maintainable and upgradeable system from the outset. We’ll also talk about future plans for neuroimaging, future ideas for hardware & discuss areas lacking good open source solutions.

  • 14:55 – 15:35 – More Robust I2C Designs with a New Fault-Injection Driver – Wolfram Sang, Renesas

It has its challenges to write code for certain error paths for I2C bus drivers because these errors usually don’t happen on the bus. And special I2C bus testers are expensive. In this talk, a new GPIO based driver will be presented which acts on the same bus as the bus master driver under inspection. A live demonstration will be given as well as hints how to handle bugs which might have been found. The scope and limitations of this driver will be discussed. Since it will also be analyzed what actually happens on the wires, this talk also serves as a case study how to snoop busses with only Free Software and OpenHardware (i.e. sigrok).

  • 16:05 – 16:45 – GStreamer for Tiny Devices – Olivier Crête, Collabora

GStreamer is a complete Open Source multimedia framework, and it includes hundreds of plugins, including modern formats like DASH, HLS or the first ever RTSP 2.0 implementation. The whole framework is almost 150MB on my computer, but what if you only have 5 megs of flash available? Is it a viable choice? Yes it is, and I will show you how.

Starting with simple tricks like only including the necessary plugins, all the way to statically compiling only the functions that are actually used to produce the smaller possible footprint.

  • 16:55 – 17:35 – Maintaining a Linux Kernel for 13 Years? You Must be Kidding Me. We Need at Least 30? – Agustin Benito Bethencourt, Codethink Ltd

Industrial grade solutions have a life expectancy of 30+ years. Maintaining a Linux kernel for such a long time in the open has not been done. Many claim that is not sustainable, but corporations that build power plants, railway systems, etc. are willing to tackle this challenge. This talk will describe the work done so far on the kernel maintenance and testing front at the CIP initiative.

During the talk it will be explained how we decide which parts of the kernel to cover – reducing the amount of work to be done and the risk of being unable to maintain the claimed support. The process of reviewing and backporting fixes that might be needed on an older branch will be briefly described. CIP is taking a different approach from many other projects when it comes to testing the kernel. The talk will go over it as well as the coming steps. and the future steps.

Wednesday, October 24

  • 11:05 – 11:45 – HDMI 4k Video: Lessons Learned – Hans Verkuil, Cisco Systems Norway

So you want to support HDMI 4k (3840×2160) video output and/or video capture for your new product? Then this is the presentation for you! I will describe the challenges involved in 4k video from the hardware level, the HDMI protocol level and up to the kernel driver level. Special attention will be given to what to watch out for when buying 4k capable equipment and accessories such as cables and adapters since it is a Wild, Wild West out there.

  • 11:55 – 12:35 – Linux Powered Autonomous Arctic Buoys – Satish Chetty, Hera Systems 

In my talk/presentation, I cover the technical, and design challenges in developing an autonomous Linux powered Arctic buoy. This system is a low cost, COTS based, extreme/harsh environment, autonomous sensor data gathering platform. It measures albedo, weather, water temperature and other parameters. It runs on a custom embedded Linux and is optimized for efficient use of solar & battery power. It uses a variety of low cost, high accuracy/precision sensors and satellite/terrestrial wireless communications.

I talk about using Linux in this embedded environment, and how I address and solve various issues including building a custom kernel, Linux drivers, frame grabbing issues and results from cameras, limited power challenges, clock drifts due to low temperature, summer melt challenges, failure of sensors, intermittent communication issues and various other h/w & s/w challenges.

  • 14:15 – 14:55 – Linux Storage System Bottleneck for eMMC/UFS – Bean Huo & Zoltan Szubbocsev, Micron

The storage device is considered a bottleneck to the system I/O performance. This thinking drives the need for faster storage device interfaces. Commonly used flash based storage interfaces support high throughputs, eg. eMMC 400MB/s, UFS 1GB/s. Traditionally, advanced embedded systems were focusing on CPU and memory speeds and these outpaced advances in storage speed improvements. In this presentation, we explore the parameters that impact I/O performance. We describe at a high level how Linux manages I/O requests coming from user space. Specifically, we look into system performance limitations in the Linux eMMC/UFS subsystem and expose bottlenecks caused by the software through Ftrace. We show existing challenges in getting maximum performance of flash-based high-speed storage device. by this presentation, we want to motivate future optimization work on the existing storage stack.

  • 15:05 – 15:45 – New GPIO Interface for User Space – Bartosz Golaszewski

Since Linux 4.8 the GPIO sysfs interface is deprecated. Due to its many drawbacks and bad design decisions a new user space interface has been implemented in the form of the GPIO character device which is now the preferred method of interaction with GPIOs which can’t otherwise be serviced by a kernel driver. The character device brings in many new interesting features such as: polling for line events, finding GPIO chips and lines by name, changing & reading the values of multiple lines with a single ioctl (one context switch) and many more. In this presentation, Bartosz will showcase the new features of the GPIO UAPI, discuss the current state of libgpiod (user space tools for using the character device) and tell you why it’s beneficial to switch to the new interface.

  • 16:15 – 16:55 – Replace Your Exploit-Ridden Firmware with Linux – Ronald Minnich, Google

With the WikiLeaks release of the vault7 material, the security of the UEFI (Unified Extensible Firmware Interface) firmware used in most PCs and laptops is once again a concern. UEFI is a proprietary and closed-source operating system, with a codebase almost as large as the Linux kernel, that runs when the system is powered on and continues to run after it boots the OS (hence its designation as a “Ring -2 hypervisor”). It is a great place to hide exploits since it never stops running, and these exploits are undetectable by kernels and programs.

Our answer to this is NERF (Non-Extensible Reduced Firmware), an open source software system developed at Google to replace almost all of UEFI firmware with a tiny Linux kernel and initramfs. The initramfs file system contains an init and command line utilities from the u-root project, which are written in the Go language.

  • 17:05 – 17:45 – Unikernelized Real Time Linux & IoT – Tiejun Chen, Vmware

Unikernel is a novel software technology that links an application with OS in the form of a library and packages them into a specialized image that facilitates direct deployment on a hypervisor. But why these existing unikernels have yet to gain large popularity broadly? I’ll talk what challenges Unikernels are facing, and discuss exploration of if-how we could convert Linux as Unikernel, and IoT could be a valuable one of use cases because the feature of smaller size & footprint are good for those resource-strained IoT platforms. Those existing unikernels are not designed to address those IoT characters like power consumption and real time requirement, and they also doesn’t support versatile architectures. Most existing Unikernels just focus on X86/ARM. As a paravirtualized unikenelized Linux, especially Unikernelized Real Time Linux, really makes Unikernels to succeed.


If you’d like to attend the real thing, you’ll need to register and pay a registration fee:

  • Early Registration Fee: US$800 (through August 27, 2017)
  • Standard Registration Fee: US$950 (August 28, 2017 – September 17, 2017)
  • Late Registration Fee: US$1100 (September 18, 2017 – Event)
  • Academic Registration Fee: US$200 (Student/Faculty attendees will be required to show a valid student/faculty ID at registration.)
  • Hobbyist Registration Fee: US$200 (only if you are paying for yourself to attend this event and are currently active in the community)

There’s also another option with the Hall Pass Registration ($150) if you just want to network on visit with sponsors onsite, but do not plan to attend any sessions or keynotes.

A Look at Three Options to Develop Real-Time Linux Systems on Application Processors – HMP, Real-Time Linux and Xenomai

October 15th, 2016 6 comments

This is a guest post by written by Guilherme Fernandes, Raul Muñoz, Leonardo Veiga, Brandon Shibley, all working for Toradex.

Introduction

Application processor usage continues to broaden. System-on-Chips, usually powered by ARM Cortex-A cores, are taking over several spaces where small ARM Cortex-M, and other microcontroller devices, have traditionally dominated. This trend is driven by several facts, such as:

  • The strong requirements for connectivity, often related to IoT and not only from a hardware point of view, but also related to software, protocols and security
  • The need for highly interactive interfaces such as multi-touch, high resolution screens and elaborate graphical user interfaces;
  • The decreasing price of SoCs, as consequence of its volume gain and new production capabilities.

Typical cases exemplifying the statement above are the customers we see every day starting a product redesign upgrading from a microcontroller to a microprocessor. This move offers new challenges as the design is more complicated and the operating system abstraction layer is much re complex. The difficulty of hardware design using an application processor is overcome by the use of reference designs and off-the-shelf alternatives like computer-on-modules or single board computers. On the operating system layer, the use of embedded Linux distributions is widespread in the industry. An immense world of open source tools is available simplifying the development of complex and feature rich embedded systems. Such development would be very complicated and time consuming if using microcontrollers. Despite all the benefits, the use of an operating system like Linux still raises a lot of questions and distrust when determinism and real-time control application topics are addressed.

A common approach adopted by developers is the strategy of separating time-critical tasks and regular tasks onto different processors. Hence, a Cortex-A processor, or similar, is typically selected for multimedia and connectivity features while a microcontroller is still employed to handle real-time, determinism-critical tasks. The aim of this article is to present some options developers may consider when developing real-time systems with application processors. We present three possible solutions to provide real-time capability to application processor based designs.

Heterogeneous Multicore Processing

The Heterogeneous Multicore Processing (HMP) approach is a hardware solution. Application processors like the NXP i.MX7 series, the NXP i.MX6SoloX and the upcoming NXP i.MX8 series present a variety of cores with different purposes. If we consider the i.MX7S you will see a dual core processor composed of a Cortex-A7 core @ 800MHz side-by-side with a Cortex-M4 core @ 200MHz. The basic idea is that user interface and high-speed connectivity are implemented on an abstracted OS like Linux with the Cortex-A core while, independently and in parallel, executing control tasks on a Real-Time OS, like FreeRTOS, with the Cortex-M core. Both cores are able to share access to memory and peripherals allowing flexibility and freedom when defining which tasks are allocated to each core/OS. Refer to Figure 1.

NXP i.MX7 Block Diagram (Click to Enlarge)

Figure 1 – NXP i.MX7 Block Diagram (Click to Enlarge)

Some of the advantages of using the HMP approach are:

  • Legacy software from microcontrollers can be more easily reused;
  • Firmware update (M4 core) is simplified as the firmware may be a file at the filesystem of the Cortex-A OS;
  • Increased flexibility of choosing which peripherals will be handled by each core. Since it is software defined, future changes can be made without changing hardware design.

More information on developing applications for HMP-based processors are available at these two articles:

Toradex, Antimicro and The Qt Company collaboratively built a robot showcasing this concept. The robot – named TAQ – is an inverted pendulum balancing robot designed with the Toradex Computer on Module Colibri iMX7. The user interface is built upon Linux with the QT framework running on the Cortex-A7 and the balancing/motor control is deployed on the Cortex-M4. Inter-core communication is used to remote control the robot and animate its face as seen in the short video below.

Real-Time Linux

The second approach we present in this article is software related. Linux is not a real-time operating system, but there are some initiatives which have greatly improved the determinism and timeliness of Linux. One of these efforts is the Real-Time Linux project. Real-Time Linux is a series of patches (PREEMPT_RT) aimed at adding new preemption options to the Linux Kernel along with other features and tools to improve its suitability for real-time tasks. You can find documentation on applying the PREEMPT_RT patch to the Linux kernel and developing applications for it at the official Real-Time Linux Wiki (formerly here).

We did some tests using the PREEMPT_RT patches on a Colibri iMX6DL to exemplify the improvement in real-time performance. The documentation on preparing the Toradex Linux image to deploy the PREEMPT_RT patch is available at this link. We developed a simple application which toggles a GPIO at a 2.5KHz (200µs High / 200µs Low). The GPIO output is connected to a scope where we measure the resulting square wave and evaluate the real output timings. The histograms below show the comparison between the tests on a standard Linux kernel configured for Voluntary Preemption (top) and a PREEMPT_RT patched Linux kernel configured for Real-time Preemption (bottom). The x-axis represents the period of the square wave sample and the y-axis represents the number of samples which measured with such a period. The table below the chart presents the worst and average data.

Click to Enlarge

Figure 2: Histogram of the square wave generated using the standard Kernel (top) and Preempt-RT kernel (bottom) – Click to Enlarge

Description

Samples

Smallest (µs)

Worst Case for 99% of  Samples (µs)

Worst Case (µs)

Median (µs)

Average (µs)

Default Kernel

694,780

36

415

4,635

400

400

PREEMPT_RT Kernel

683,593

369

407

431

400

400

Table 1: Comparison between Default Kernel and real-time Kernel when generating a square wave.

An example software system using the PREEMP_RT patch is provided by Codesys Solutions. They rely on the Real-Time Linux kernel, together with the OSADL (Open Source Automation Development Lab), to deploy their software PLC solution which is already widespread throughout the automation industry across thousands of devices. The video below presents the solution running on a Apalis iMX6Q.

Xenomai

Xenomai is another popular framework to make Linux a real-time system. Xenomai achieves this by adding a co-kernel to the Linux kernel. The co-kernel will handle time-critical operations and will have higher priority than the standard kernel. To use the real-time capabilities of Xenomai the real-time APIs (aka libcobalt) must be used to interface user-space applications with the Cobalt core, which is responsible for ensuring real-time performance.

dual-core-xenomai-configuration

Figure 3: Dual Core Xenomai Configuration

Documentation on how to install Xenomai on your target device can be found at the Xenomai website. Additionally, there is a variety of Embedded Hardware which is known to work as indicated in the hardware reference list, which includes the whole NXP i.MX SoC series.

To validate the use of Xenomai on the i.MX6 SoC we also developed a simple experiment. The target device was the Colibri iMX6DL by Toradex. We ran the same test approach as described above for the Real-Time Linux extension. Some parts of the application code used to implement the test are presented below to highlight the use of Xenomai APIs.

The results comparing Xenomai against a standard Linux kernel are presented in the chart below. Once again, the real-time solution provides a clear advantage – this time with even greater distinction – over the time-response of the standard Linux kernel.

Click to Enlarge

Figure 3: Histogram of the square wave generated using the standard Kernel (top) and Xenomai (bottom) – Click to Enlarge

Description

Samples

Smaller (µs)

Worst Case for 99% of Samples (µs)

Worst Case (µs)

Median (µs)

Average (µs)

Default Kernel

694,780

36

415

4,635

400

400

Xenomai Implementation

1,323,521

386

402

414

400

400

Table 2: Comparison between Default Kernel and Xenomai implementation when generating a square wave.

Conclusion

This article presented a brief overview of some solutions available to develop real-time systems on application processors running Linux as the target operating system. This is a starting point for developers who are aiming to use microprocessors and are concerned about real-time control and determinism.

We presented one hardware-based approach, using Heterogeneous Multicore Processing SoCs and two software based approaches namely: Linux-RT Patch and Xenomai. The results presented do not intend to compare operating systems or real-time techniques. Each of them has strong and weak points and may be more or less suitable depending on the use case.

The primary takeaway is that several feasible solutions exist for utilizing Linux with application processors in reliable real-time applications.

ARM Unveils Cortex-R52 ARMv8-R CPU Core for Safety-Critical Systems

September 20th, 2016 1 comment

ARM has introduced their very first ARMv8-R real-time 32-bit CPU core with Cortex-R52 designed for safety-critical applications in the automotive, industrial and health-care markets. It has been designed to address higher workloads with increased performance (up to 35%) compared to Cortex-R5 processor.

Click to Enlarge

Click to Enlarge

The processor should be used in systems capable of fulfilling IEC 61508 SIL 3 and ISO 26262 ASIL D functional safety requirements. ARM explains the new processor address both random errors for example bit flipping from radiation, and systemic errors more related to software or design faults.

functional-safety-random-systematic-faults

The latter can be addresses with the right development processes, including following aforementioned functional safety standards, but random errors require some extra hardware features such as ECC memory, or dual core lock step processors, where instructions are run on two processors simultaneously and results compared.

Normally, the whole software stack must be validated and certified on safety-critical systems, even for part of the code that may not be safety-critical. This is a time-consuming and costly endeavor however, and as software becomes ever more complex becomes an issue. So Cortex R52 cores also implement a Level 2 MPU running monitor or hypervisor software, which can help separating safety code, critical safety code and non-safety code.

arm-processor-real-time-coreCortex-R52 cores would typically be used in conjunction with Cortex-A cores running non-safety code, and offering higher performance, throughput, and more peripherals. Some current processors featuring Cortex-Rxx cores include Xilinx Zynq UltraScale+ MPSoC (Cortex-R5), and Renesas R-Car H3 automotive SoC (Cortex-R7).

You may want to visit ARM Cortex-R52 product page for a few more details.

Embedded Linux Conference Europe 2014 Schedule – IoT, ARM vs x86, Optimization, Power Management, Debugging…

August 21st, 2014 2 comments

The Embedded Linux Conference Europe (ELC 2014), CloudOpen, and LinuxCon Europe will jointly take place at the Congress Centre Düsseldorf, in Germany on October 13 – 15, 2014. The 3-day events will consists of keynotes, presentations, and tutorials. Each day will open with two or three keynotes by speakers including  Jim Zemlin (Executive Director, Linux Foundation), and Jono Bacon (XPRIZE), followed by presentation and tutorials. There will be 45 presentations for ELCE, 58 for LinuxCon, and 47 for CloudOpen, I’ll make a virtual schedule with a few sessions part of the Embedded Linux Conference Europe “track”.

ELCE_2014

Monday, October 13

When faced with a performance problem, the initial steps towards a solution include identifying the sections of code responsible and the precise reasons they are time-consuming. To this end, the ‘perf’ profiling tools provide valuable insight into the characteristics of a program. The presentation will show, using real-world examples, how the ‘perf’ tools can be used to pinpoint the parts of a program in need of optimization.

It’s not uncommon to produce embedded Linux based devices that end up with long and inconvenient boot times – yet eliminating boot time delays can be difficult and time consuming. Furthermore once a minimal boot time has been achieved it’s often just as difficult to maintain it through subsequent software development.

In this presentation, Andrew unfolds 12 keys lessons learned in his experience of boot time reduction. These lessons provide an insight into the common causes of boot time delays, why they are present and how they can be overcome. In describing these lessons Andrew will also take you on a journey that indicates why file system benchmarks should probably be ignored (with respect to boot time reduction) and a journey that illustrates that the Linux kernel is rarely the worst offender for boot delays.

With the introduction of Bluetooth Smart (aka Low Energy), the ubiquity of Bluetooth is more and more present. Millions of devices support Bluetooth Low Energy and with Bluetooth 4.1 specification, they are ready for the Internet of Things. This presentation will give an overview of Bluetooth Low Energy, and its usage for the Internet of Things. It will also introduce 6loWPAN over Bluetooth and show the possibilities this opens for Linux.

With experience developing community based open hardware for both the ARM based PandaBoard project and the x86 based MinnowBoard project, this presentation will provide a detailed comparison of the pros and cons of each platform with highlights of what each platform can learn from the other. Not only limited to the hardware aspect of the platforms, but also discuss community, software, corporate and general embedded aspects.

For almost as long as there have been deployments of Linux, there has been someone wondering “how can I get the device started quicker?” and “how do I configure some redundancy, easily, in case something goes wrong?”. And for the longest time, the answer has been “hack this and this and that” or “hire these consultants, they have done it before”. In this presentation, Tom will show what you need to turn on and the prep work required for, getting a lot of those items out of the box in U-Boot, what the hardware (and/or ROM) needs to do, and the what works is left going forward.

Got a question, comment, gripe, praise, or other communication for the Yocto Project and/or OpenEmbedded? Or maybe you’d just like to learn more about these projects and their influence on the world of embedded Linux? Feel free to join us for an informal BoF.

Tuesday, October 14

While user experiences are increasingly moving to 3D, rendering of 2D content remains at the core of how we interact with computer applications today. Skia is an open-source project maintained by Google whose goal is to bring the best 2D graphics library to a variety of targets, from mobile to desktop and embedded. Skia is used in highly popular projects like Mozilla Firefox, the Chromium browser and Android.

This talk will introduce Skia to developers and users, giving an overview of its design, architecture and features. It will also discuss briefly how hardware acceleration improves performance of Skia in the context of new devices, form-factors and the industry shift to mobile; with focus set on Linux and Android platforms.

The 4.4 KitKat release includes the results of “Project Svelte”: a set of tweaks to the operating system to make it run more easily on devices with around 512 MB RAM. This is especially important for people working with Android Wearables and “Embedded Android”, that is, implementing Android on devices at the lower end of the Android ecosystem. A large part of the problem is knowing how much RAM is really being used. Android offers a variety of tools for the purpose: procrank, procmem, meminfo and procstats, which Chris covers in the first part of the talk. In the second part, he takes a real-world example and show the practical steps you can take to optimize memory use including tuning the size of the Dalvik heap, enabling KSM (Kernel samepage merging) and swap to zRAM.

Android has relied from its early days on the Linux kernel for sandboxing the processes it runs. Yet, the permission model presented to app developers is significantly different from the Unix permission model. What’s the relationship between those two models? How is Android’s app security framework tied to the Linux kernel’s security model? More recently, Android has started using SELinux and has been extended by SEAndroid to support similar functionality. How is SELinux used by Android and what is SEAndroid about? Furthermore, how does Android provide support for multiple users?

This talk will explore Android’s security model in great detail and explain how the functionality found in the kernel is used to isolate user processes and the SE enhancements are leveraged by Android. As we’ll see, there are quite a few moving parts in Android’s security model.

Since last year, Free Electrons has been working on supporting the SoCs from Allwinner, a Chinese SoC vendor, in the mainline kernel. These SoCs are cheap, wide-spread, backed by a strong community and, until last year, only supported by an out-of-tree kernel. Through this talk, Maxime will share the status of this effort: the status a year ago, what solutions were in place, where we are currently, and what to expect from the future. He will also focus on the community around these SoCs, the work that is done there, etc.

Enlightenment Foundation Library is a set of libraries designed to use the full potential of any hardware to do great UI. It has been designed with the embedded devices in mind, but it is a desktop class toolkit. Being done in C, it is providing a stable API/ABI, high efficiency, low memory and low battery usage for all kind of Linux devices. Enabling development of modern UI adapted to any hardware that run Linux. These are the reason why Samsung uses it in its Tizen devices. This talk, after a short overview of what this libraries cover, will focus on this year improvement, and where it is heading. It will also be an opportunity to learn about project around EFL that will help people develop product with it. And it would also be a good opportunity to see where EFL are used with some real use case.

Wednesday, October 15

A major issue the community faces is the lack of power measurement (PM) instrumentation, coupled with poor integration: development boards not designed for it, expensive high-precision lab equipment not accessible to hobbyists (plus limited Linux support), limited low-cost solutions (precision, sampling rate) to monitor high-performance SoC (System On Chips) platforms (e.g. smartphones, tablets, IoT, …). After a brief introduction to the problematic (PM techniques, sense resistor / ADC selection, …) and a comparative study of existing solutions, this presentation will focus on a new upcoming initiative to close these gaps and bring a full-blown multi-channel but low-cost power (and temperature) measurement equipment to the community, including the definition of an open standard PM connector. After having covered motivations, challenges, key decisions, a live demo will close the talk.

In 2013, at the Embedded Linux Conference in Europe in Edinburgh, there was a race between a dog and a blimp. It was said that despite the dogs win, that the blimp had participated in the miracle of flight. In 2014, John wants to show that the brains of that dog can be transplanted and that it too, can participate in the miracle of flight. The talk is mainly targeting taking an off the shelf embedded platform, Minnowboard Max, and it’s use in UAVs, specifically quad-copters. With the ability to do real time computer vision, as well as various GPIO capabilities he will explore the directions that significantly more autonomous UAVs can take with Linux and embedded platforms using, mostly, off the shelf components.

There have been many presentations on what a device tree looks like and how to create a device tree. This talk instead examines how the Linux kernel uses a device tree. Topics include the kernel device tree framework, device creation, resource allocation, driver binding, and connecting objects. Troubleshooting will consider initialization, allocation, and binding ordering; kernel configuration; and driver problems.

Providing real-time capabilities to a general purpose operating system is an outstanding technical problem, and Linux Preempt-RT has been developed for 10 years for this goal. In this presentation, Jim proposes a lightweight open source para-virtualization layer, called “rtmux”, using resource-multiplexing techniques to provide a highly deterministic RT environment for Linux/ARM. Typically, less than 500 lines modification against Linux kernel are required to enable rtmux accompanied by POSIX/PSE51 compatible runtime.

During the last 2.5 years, a team of engineers at Free Electrons has been involved in mainlining the support for several ARM processors from Marvell, converting the not-so-great vendor-specific BSP into mainline quality code progressively merged upstream. This effort of several hundreds working days, has led to the integration of hundreds of patches in the kernel. Through this talk, Thomas will share some lessons learned regarding this mainlining effort, which could be useful to other engineers involved in ARM SoC support, as well as detail the steps Free Electrons engineers have gone through, the mistakes made and how they’ve been solved, as well as their overall experience on this project.

To make your own schedule matching your interests, you can check out the events’ program.

To attend the conference, you can register online.

The fees are listed as follows:

  • All-access Registration Fee – $600 until August 22 (tomorrow), $750 until October 2, and $850 afterwards
  • Attendee Networking Pass Registration – No access to conference sessions. $250 until August 22, $300 afterwards.
  • Student Registration Fee – $200 (valid student id required).
  • Registration Discount Scholar – $300. For active open source community members who can’t be sponsored by their company. .

Fees are significantly higher than last year, because there are only all-in-one (ELCE, CloudOpen and LinuxCon )options, and you can’t simply register to one single event.

Understanding PREEMPT_RT (The Real-Time Patch) – ELCE 2012

January 16th, 2013 No comments

Steven Rostedt, working at Red Hat, talks about Real-Time Linux at the Embedded Linux Conference Europe, in Spain on November 6, 2012.

Abstract:

The real-time patch (which provides CONFIG_PREEMPT_RT), has been around since 2005. Started by Ingo Molnar and maintained by Thomas Gleixner and several others, it has grown from a hobby RTOS into a very serious contender. Several distributions (Red Hat, SuSE, Debian, Ubuntu) supply a kernel version that includes this patch. The embedded world has started adding the -rt patch to their own devices that they ship. But do the embedded developers understand what the -rt patch supplies? Programming for real time, and especially when writing kernel code requires special knowledge to avoid real time traps. This talk will explain what the real time patch provides and special programming tips that will ensure embedded developers will get the best from their devices.

Real-Time Linux Option in Make menuconfig: "Fully Preempt Linux Kernel (RT)"

Real-Time Linux Option in Make menuconfig: “Fully Preemptible Kernel (RT)”

He goes through the following key points during the presentation:

  • Real-time OS definition – Deterministic, does not mean fast (but still nice), meet deadlines.
  • Goal of PREEMP_RT – 100% Preemptible kernel and quick reaction
  • Different levels of preemption in Linux:
    • No preemption – Do as most possible with as little scheduling overhead. Use for server in Linux 2.4
    • Voluntary preemption – Schedule only at “preemption points”
    • Preemptible Kernel – CONFIG_PREEMPT. Preempt anywhere except within spin_locks
    • Preemptible Kernel (Basic RT) – For debugging, it will most probably go away…
    • Fully Preemptible Kernel – PREEMPT_RT_FULL. Preempts everywhere except from preempt_disable and interrupts disabled.
  • Details of PREEMPT_RT in the Linux kernel – priorities, spin_locks, interrupts, threaded interrupts, etc…

You can also download the slides for this tutorial/presentation. You may also want to access the source code via the Git repo, or get the PREEMPT_RT patches at http://www.kernel.org/pub/linux/kernel/projects/rt/. Full details cane be found on the Real-Time Linux Wiki.