Archive

Posts Tagged ‘sifive’

SiFive Introduces HiFive Unleashed RISC-V Linux Development Board (Crowdfunding)

February 4th, 2018 19 comments

RISC-V free and open architecture has gained traction in the last couple of years. SiFive has been one of the most active companies with RISC-V architecture, introducing Freedom U500 and E500 open source RISC-V SoCs in the summer of 2016, before launching their own HiFive1 Arduino compatible board, and later the official Arduino Cinque board.

That’s fine if you are happy with MCU class boards, but RISC-V is getting into more powerful processors, and recently got initial support o Linux 4.15, so it should come as no surprise the company has now launched HiFive Unleashed, the first RISC-V-based, Linux-capable development board.

Click to Enlarge

HiFive Unleashed key features and specifications:

  • SoC – SiFive Freedom U540 with 4x U54 RV64GC application cores @ up to 1.5GHz with Sv39 virtual memory support, 1x E51 RV64IMAC Management Core, 2 MB L2 cache;  28 nm TSMC process
  • System Memory – 8GB DDR4 with ECC
  • Storage –  32MB Quad SPI Flash from ISSI, MicroSD card for removable storage
  • Connectivity – Gigabit Ethernet port
  • Debugging – Micro USB port connector to FTDI chip
  • Expansion – FMC Connector for future add-in cards
  • Misc – On-off switch, various configuration jumpers
  • Power Supply – 12V DC input
  • Dimensions – TBD

Freedom U540 SoC Block Diagram

The board is mostly for developers and enthusiasts and currently the main use cases including building a RISC-V computer, adding features to Linux, or port packages to a Linux distribution. It’s unlikely to be a plug and play board suitable for anybody, at least at the beginning.

The company simultaneously unveiled & showcased the board at FOSDEM 2018 (See embedded video below), and launched it on CrowdSupply with a symbolic $1 funding goal. The downside is that as with most new technologies it’s pretty expensive at first, and you’d have to pledge $999 to get the board shipped at the end of June 2018, or $1,250 to get one of the first 75 boards in March/April 2018. Shipping is free to the US, but adds another $40 to the rest of the world. More details may eventually be available in the product page.

 

SiFive U54-MC Coreplex is the First Linux Ready RISC-V based 64-bit Quad-Core Application Processor

October 6th, 2017 8 comments

We first covered SiFive when they unveiled their open source Freedom RISC-V SoCs. Since then, they moved away from open source for their customizable IP, since their customers did not require fully open source designs, but kept releasing more RISC-V cores such as 32-bit E31 Coreplex & 64-bit E51 Coreplex, as well as offering their one-time fee pricing without recurring royalties, contrary to what some competitors – such as Arm – are doing.

The company has now just announced U54-MC Coreplex quad core real-time capable application processor with support for full featured operating systems such as Linux.

Click to Enlarge

U54-MC Coreplex main specifications / features:

  • Fully compliant with the RISC-V ISA specification
  • 4x RV64GC U54 Application Cores
    • 32KB L1 I-cache with ECC, 32KB L1 D-cache with ECC
    • 8x Region Physical Memory Protection
    • 48x Local Interrupts per core
    • Sv39 Virtual Memory support with 38 Physical Address bits
  • 1x RV64IMAC E51 Monitor Core
    • 4KB L1 I-Cache with ECC
    • 8KB DTIM with ECC
    • 8x Region Physical Memory Protection
    • 48x Local Interrupts
  • Fully Coherent TileLink Bus
  • Integrated 2MB L2 Cache with ECC
  • Real-time capabilities – Both the L1 Instruction Cache and the L2 Cache can be configured into high speed deterministic SRAMs
  • CLINT for multi-core timer and software interrupts
  • PLIC with support for up to 511 interrupts with 7 priority levels
  • Debug with instruction trace
  • U54 Performance – 1.7 DMIPS/MHz; 2.75 CoreMark/MHz

U54-MC Coreplex has been taped out as part of Freedom Unleashed platform with all 5 cores, including U54 and E51, running at over 1.50 GHz and manufactured using 28nm technology. The company compares it to Arm Cortex A35 cores in the table below which shows the added features.

U54-MC Coreplex ARM Cortex-A35
RV64GC
M + S + U Mode
ARMv8-A, AArch32, AArch64
16 bit instructions AArch32 only
Physical Memory Protection (PMP) and MMU None, MMU only
Real-time capable Not applicable
E51 Monitor Core Requires additional IP
Integrated interrupt controller Requires additional IP

More details about the U54-MC Coreplex can be found on the product page, and the company plans to release an U54-MC Coreplex development board in Q1 2018.

Categories: Linux, Processors, SiFive Tags: risc-v, sifive, soc

LoFive is a Tiny Open Source Hardware Board based on SiFive FE310 RISC-V Open SoC

August 31st, 2017 11 comments

Do you remember HiFive1? It’s an Arduino compatible board based on the SiFive FE310 open source RISC-V SoC. Michael Welling has now started working on LoFive board using the same processor, but in a much smaller & breadboard friendly form factor.

LoFive board specifications:

  • MCU – SiFive Freedom E310 (FE310) 32-bit RV32IMAC processor @ up to 320+ MHz (1.61 DMIPS/MHz)
  • Storage – 128-Mbit SPI flash (ISSI IS25LP128)
  • Expansion – 2x 14-pin headers with JTAG, GPIO, PWM, SPI, UART, 5V, 3.3V and GND
  • Misc – 1x reset button, 16 MHz crystal
  • Power Supply – 5V via pin 1 on header; Operating Voltage: 3.3 V and 1.8 V
  • Dimensions – 38 x 18 mm (estimated)

The board will be programmable with Arduino IDE + Cinco just like HiFive1 board.

Click to Enlarge

The board is also open source hardware, so beside the aforelinked info on Hackster,io, you’ll also find the KiCAD schematics, PCB layout, and 3D renders, released under CERN Open Hardware License v1.2, on Github.

Arduino Cinque Combines SiFive RISC-V Freedom E310 MCU with ESP32 WiFi & Bluetooth SoC

May 22nd, 2017 5 comments

SiFive introduced the first Arduino compatible board based on RISC-V processor late last year with HiFive1 development board powered by Freedom E310 MCU, but  the company has been working with Arduino directly on Arduino Cinque board equipped with SiFive Freedom E310 processor, ESP32 for WiFi and Bluetooth, and an STM32 ARM MCU to handle programming.

Click to Enlarge

Few other technical details have been provided for the new board, but since it looks so similar to HiFive1, I’ve come with up with preliminary/tentative Arduino Cinque specifications:

  • MCU – SiFive Freedom E310 (FE310) 32-bit RV32IMAC processor @ up to 320+ MHz (1.61 DMIPS/MHz)
  • WiSoC – Espressif ESP32 for WiFi and Bluetooth 4.2 LE
  • Storage – 32-Mbit SPI flash
  • I/Os
    • 19x Digital I/O Pins
    • 19x external interrupt pins
    • 1x external wakeup pin
    • 9x PWM pins
    • 1/3 SPI Controllers/HW CS Pins
    • I/O Voltages –  3.3V or 5V supported
  • USB – 1x micro USB port for power, programming and debugging
  • Misc – 6-pin ICSP header, 2x buttons
  • Power Supply – 5 V via USB or 7 to 12V via DC Jack; Operating Voltage: 3.3 V and 1.8 V
  • Dimensions – 68 mm x 51 mm

Image Source: Olof Johansson

The board will obviously be programmable with the Arduino IDE, something that’s already possible on HiFive5 possibly with limitations since the platform is still new. Freedom E310 SoC RTL source code is also available via the Freedom SDK.

There’s no availability nor price information, but considering HiFive1 board is now sold for $59, and Arduino Cinque may cost about the same or a little more once it is launched since it comes with an extra ESP32 chip, but a smaller SPI flash. Hopefully, it will take less time than the one year gap experienced between the announcement and the release of Arduino Due.

SiFive Launches 32-bit E31 Coreplex & 64-bit E51 Coreplex RISC-V Processors, Reveals Pricing

May 5th, 2017 4 comments

SiFive unveiled their Freedom U500 and E500 open source RISC-V SoCs last year, and a little layer launched HiFive1 Arduino compatible development board based on SiFive Freedom E310 processor. The company has now launched their non-open source Coreplex IP also based on RISC-V ISA with the 32-bit E31 Coreplex and 64-bit E51 Coreplex, and explained details about pricing.

E51 Coreplex – Click to Enlarge

Some of the key features of the processors are listed below:

  • E31 Coreplex
    • 32-bit RV32IMAC core @ 900 to 1.5 GHz (with 28nm process)
    • Advanced Memory Subsystem – 16KB, 2-way Instruction Cache, Instruction Tightly Integrated Memory (ITIM) option, up to 64KB Data Tightly Integrated Memory (DTIM) support
    • Up to 16 local interrupts with vectored addresses
    • Performance – 1.61 DMIPS/MHz  ; 2.73 Coremark/MHz
    • Power Consumption
      • 28nm HPC process – Core only: 150 DMIPS/mW ; Coreplex: 41 DMIPS/mW
      • 55nm LP process – Core only: 95 DMIPS/mW; Coreplex: 16 DMIPS/mW
    • Applications: Edge Computing, Smart IoT or Wearables.
    • Suited to replace the Cortex-M3 and Cortex-M4, but provides even higher performance without sacrificing area or power.
  • E51 Coreplex
    • 64-bit RV64IMAC embedded core @ 900 to 1.5 GHz (28nm process)
    • Advanced Memory Subsystem – 16KB, 2-way Instruction Cache, Instruction Tightly Integrated Memory (ITIM) option, up to 64KB Data Tightly Integrated Memory (DTIM) support
    • Support for up to 40 physical address bits
    • Up to 16 local interrupts with vectored addresses
    • Performance – 1.8 DMIPS/MHz  ; 2.76 Coremark/MHz
    • Power Consumption
      • 28nm HPC process – Core only: 125 DMIPS/mW ; Coreplex: 36 DMIPS/mW
      • 55nm LP process – Core only: 36 DMIPS/mW; Coreplex: 15 DMIPS/mW
    • Applications:
      • System or host control core within a larger 64-bit SoC
      • SSD controllers and network processors which require 64-bit compute without the requirement of virtual memory or full-featured operating systems.

SiFive R31 Coreplex Block Diagram – Click to Enlarge

If you want to manufacture an ARM processor, you first need to buy a license before accessing any information, and once you’re shipping your chips, you’ll pay royalties for each SoC sold with one or more ARM cores. SiFive business model is different. First, it’s free to try Coreplex IP on FPGA boards such as Digilent Arty, or evaluate RTL code in your own environment, so you don’t need to commit to any large investment before knowing whether you’ll go ahead with the cores. SiFive Coreplex IP is also royalty-free so how much you pay does not depend on how many chips you sell, and the way they make money is through a one-time license that costs $275,000 and up for E31 Coreplex, and $595,000 and up for E51 Coreplex with the exact price depending on options.

You’ll find the full details on Sifive Coreplex IP product page.

Categories: Hardware Tags: fpga, risc-v, sifive, soc

$59 HiFive1 Arduino Compatible Board is Powered by Sifive Open Source RISC-V MCU (Crowdfunding)

November 30th, 2016 8 comments

Royalty-free RISC-V instruction sets has been getting in the news in the last few years with various MMU designs from companies or projects like lowRISC, PULPino, and SiFive, and recently there are been rumors that Samsung may use RISC-V in their future IoT SoCs. Many projects are still in progress, and while you can get involved in OnChip Open-V MCU crowdfunding campaign to their get the MCU or a development board, the cost for the MCU ($49) and development board ($99) is a little on the high side, and delivery is expected in 2018 for most rewards. SiFive appears to have a more interesting open source RISC-V solution with HiFive1 Arduino compatible board going for $59 and slated to ship between December 2016 and February 2017.

HiFive1 Board

HiFive1 Board

HiFive1 development board specifications:

  • MCU – SiFive Freedom E310 (FE310) 32-bit RV32IMAC processor @ up to 320+ MHz (1.61 DMIPS/MHz)
  • Storage – 128 Mbit SPI flash
  • I/Os
    • 19x Digital I/O Pins
    • 19x external interrupt pins
    • 1x external wakeup pin
    • 9x PWM pins
    • 1/3 SPI Controllers/HW CS Pins
    • I/O Voltages –  3.3V or 5V supported
  • USB – 1x micro USB port for power, programming and debugging
  • Power Supply – 5 V via USB or 7 to 12V via DC Jack; Operating Voltage: 3.3 V and 1.8 V
  • Dimensions – 68 mm x 51 mm
  • Weight – 22 g

sifive-fe310

The company’s Freedom SDK with the RTL files for Freedom E310 (and U500) MCUs will allow you to actually play and/or modify the MCU on an FPGA platform, which can be useful for education or if you want to create your own MCU based on SiFive design. If you don’t have the know-how the company’s “chips-as-a-service” offering can customize FE310/U500 MCU to meet your needs.

 Most users will probably just program the board with the Arduino IDE, and many of the usual development tools have already been ported to RISC-V architecture. The processor is also quite faster than our typical Arduino, being about 10 times faster than Intel Curie and Atmel SAMD21G18 used in respectively Arduino 101 and Arduino Zero.

hifive1-vs-arduino

Power efficiency (@ 200 MHz) appears to be much higher compared to Atmel AVR and Intel Quark. However, based on ARM Cortex M0 product brief (I could not find data for M0+), 10DMIPS/mW can be achieved using 180ULL process, and 75 DMIPS/mW with 65LP process.

If you are interested, you can get the board on Crowdsupply with the HiFive1 devkit going for $59 and shipping in February 2017, but if you want to have a piece of history, you may consider HiFive1 Founder Edition for $79 with SiFive Founding Team’s Signature on the silkscreen and shipping at the end of December 2016. Shipping is free to the US, and $15 to the rest of the world.

RISC-V could be a serious competitor to ARM and MIPS in the MCU/IoT space in the years ahead, as it’s royalty-free, and the RISC-V foundation has many players including some heavy weights such as Google, AMD, Microsemi, Qualcomm, Nvidia and more…

Thanks to noone for the tip.

SiFive Introduces Freedom U500 and E500 Open Source RISC-V SoCs

July 12th, 2016 5 comments

Open source used to be a software thing, with the hardware design being kept secret for fear of being copied, but companies such as Texas Instruments realized that from a silicon vendor perspective it would make perfect sense to release open source hardware designs with full schematics, Gerber files and SoM, to allow smaller companies and hobbyists, as well as the education market, normally not having the options to go through standard sales channels and the FAE (Field Application Engineer) support, to experiment with the platform and potentially come up with commercial products. That’s exactly what they did with the Beagleboard community, but there’s still an element that’s closed source, albeit documented: the processor itself.

Freedom U500 Block Diagram

Freedom U500 Block Diagram

But this could change soon, as SiFive, a startup founded by the creators of the free and open RISC-V architecture, has announced two open source SoCs with Freedom U500 processor and Freedom E300 micro-controller.

Freedom U500 (Unleashed family) platform key specifications:

  • U5 Coreplex with 1 to 8 U54 cores @ 1.6GHz+
  • RV64GC Architecture (64- bit RISC-V)
  • Multicore, Cache Coherency Support
  • High Speed Peripherals: PCIe 3.0, USB3.0, GbE, DDR3/4
  • TSMC 28nm

The SoC supports Linux, and targets applications such as machine learning, storage, and networking.

Freedom E300 Block Diagram

Freedom E300 Block Diagram

Freedom E300 (Everywhere family) platform key specifications:

  • E3 Coreplex
  • RV32IMC/RV32EMC Architecture
  • On chip Flash, OTP, SRAM
  • TSMC 180nm

Three real-time operating systems, including FreeRTOS, have already been ported to Freedom E300 for embedded micro-controllers, IoT, and wearable markets.

Open source SoCs are made to be customizable to match your applications exact needs, instead of picking on existing SoC matching your requirements but with some uneeded features. SiFive also explains that “storage customers talks about custom instructions for bit manipulation so they can use one not 10 instructions for 10x speed up”. But before you get to Silicon, you’d normally ruin and customize the core on FPGA boards and three boards are currently available for development and evaluation:

  • Freedom U500:
  • Freedom E300 – Digilent Arty FPGA development kit powered by Xilinx XC7A35T-L1CSG324I FPGA, with 256 MB RAM, 16 MB flash, and vairous expension ports. Price: $99
Click to Enlarge

Xilinx Virtex-7 FPGA VC707 devkit – Click to Enlarge

You also have detailed documentation about the SoCs, U5 nd U3 coreplex, the development kits, software and tools, as well as developer forums, on SiFive developers website. You can also directly checkout the code and SDK on github.

RISC-V instructions set is royalty-free, so compared to the entry level $40,000 ARM license for startups using Cortex M0 MCU, it should provide some savings. It does not help with manufacturing costs which should remain the same. but SiFive expects that open source SoC could be manufactured through a “moderate” crowdfunding campaign.  I have not been able to figure out SiFive business model yet, unless they plan on selling their own chips too, and/or provide customization services to customers.

Lots more information can be found on Sifive website.

Via EETimes