Archive

Posts Tagged ‘ble’

Intrinsyc Introduces Open-Q 2100 SoM and Devkit Powered by Qualcomm Snapdragon Wear 2100 SoC for Wearables

April 27th, 2017 2 comments

Qualcomm unveiled Snapdragon Wear 2100 SoC for wearables early last year, and since then a few smartwatches powered by the processor – such as LG Watch Style and Watch Sport – have been launched, and Intrinsyc has now unveiled one of the first module based on the processor with Open-Q 2100 system-on-module, and a corresponding Nano-ITX baseboard.

Open-Q 2100 SoM specifications:

  • SoC – Qualcomm Snapdragon Wear 2100 (APQ8009W) quad core ARM Cortex A7 processor @ up to 1.094 GHz with Adreno 304 GPU
  • System Memory – 512 MB LPDDR3
  • Storage – 4GB eMMC flash
  • Connectivity – 802.11 b/g/n WiFi (WCN2320), Bluetooth 4.1 LE, Gen 8C GNSS (GPS/GLONASS) with on-board u.FL connector (WGR7640)
  • Audio – Integrated Codec/PMIC (PM8916-1) with optional support for Fluence HD, Snapdragon Voice Activation, and Snapdragon Voice+
  • 2x 100-pin board-to-board connectors with USB 2.0, I2S, GPIO, MIPI DSI up to 720p @ 60 Hz, 2-lane MIPI CSI, SDC2/microSD signals
  • Power Supply – 3.6 to 4.2V input
  • Dimensions – 31.5 x 15 mm
  • Temperature Range – -10 to +70 °C

The module runs Android 7 Nougat by default, but it can also support Android Wear.

The company also provides Open-Q 2100 SoM development board to evaluate the platform, and get started as soon as possible while you wait for your custom baseboard. The development includes the following key features:

  • Connectors for Open-Q 210 system-on-module
  • Storage – micro SD slot
  • Display – MIPI DSI connector with optional smartphone display, HDMI output
  • Camera – MIPI CSI connector for optional 720p capable camera
  • Connectivity – Ethernet port (via LAN9514); wireless connectivity (WiFi, BLE, GPS) on module
  • USB – 4x USB 2.0 host ports
  • Expansion Headers – SPI, I2S, GPIO, etc…
  • Debugging – micro USB port for debug UART
  • Power Supply – 12V/3A via DC jack, or 6-pin battery connector
  • Dimensions – Nano-ITX form factor (120×120 mm)

The module is expected to be used in connected wearables & trackers, tethered smartwatches, as well as ultra-compact embedded designs.

Open-Q 2100 SOM and Development Kit can be pre-ordered for respectively $75 and $595, with “early adopter units available to approved customers by May 31”. More information can be found on Intrynsic Open-Q2100 SoM and Devkit pages.

Via LinuxGizmos

$14 LinkIt 7697 Bluetooth 4.2 LE and WiFi IoT Board is Powered by Mediatek MT7697 ARM Cortex-M4 MCU

April 26th, 2017 5 comments

Mediatek Labs has launched a new IoT development, which on the surface looks similar to LinkIt Smart 7688 board, but the internal design is quite different as the MIPS processor and Linux OS, have been replaced by Mediatek MT7697 ARM Cortex-M4 processor running FreeRTOS, and beside WiFi, also includes support for Bluetooth 4.2 LE.

LinkIt 7697 board specifications:

  • Wireless SoC – Mediatek MT7697 ARM Cortex M4F MCU @ 192 MHz with 352KB RAM, 4MB flash, 802.11 b/g/n WiFi, Bluetooth 4.2 LE and a PMU
  • Expansion – 2x 14-pin header with 18x GPIO, 2x UART, 1x I2C, 1x SPI, 18x PWM, 4x EINT, 4x ADC (0 to 2.5V), 1x IrDA, 1x I2S
  • Debugging – 1x SWD, CP2102 UART to USB chipset
  • Misc – Reset and user buttons; power and user LEDs
  • Power Supply – 5V via micro USB port
  • Dimensions – 48 x 26 mm

Pinout Diagram – Click to Enlarge

The board can be programmed with the Arduino IDE, or if you need more control LinkIt SK for RTOS. The documentation is available on Mediatek Labs LinkIt MT7697 page. We’ll note that the board is based on Wrtnode7 module, also found in the upcoming 96Boards WRTnode IE board. Mediatek MT7697 appears to competes directly with Espressif ESP32, and already comes with a 5GHz variant (MT7697D).

Mediatek MT7697 SoC Block Diagram

LinkIt 7697 board is up for pre-order for $13.90 on Seeed Studio, and there’s also a Grove Starter Kit for LinkIt 7697 selling with breakout board, and plenty of module for $150. The board and starter kit should ship on June 15, 2017…

$6.90 Wemos LoLin32 ESP32 Development Board Comes with 4MB Flash, Lithium Battery Support

April 21st, 2017 5 comments

Wemos – the company behind the cool Wemos D1 mini ESP8266 board – has now launched its first Espressif ESP32 development board with LoLin32 equipped with ESP-WROOM-32 module with 4MB flash, a micro USB port, and a battery header.

Click to Enlarge

Wemos Lolin32 specifications:

  • Wireless Module – ESP-WROOM-32 based on Espressif ESP-32 dual core processor @ 240 MHz with 4MB flash
  • Connectivity – 802.11 b/g/n WiFi + Bluetooth LE
  • I/Os
    • 26x digital I/Os
    • 12x analog inputs
    • UART, I2C, SPI, VP/VN, DAC
    • 3.3V I/O voltage
    • Breadboard compatible
  • USB – 1x micro USB port for power and programming/debugging
  • Power – 5V via micro USB + battery header for Lithium battery (charging current: 500mA max)
  • Dimensions – 5.8 x 2.54 cm
  • Weight – 5.8 grams

Click to Enlarge

The board is not compatible with Wemos D1 mini (34.2 x 25.6 mm) and shield, but offers a more powerful solution with Bluetooth LE, battery support, and more I/Os. The Wiki is still work-in-progres, and there’s no that much information on the page yet.

Wemos LoLin32 can be purchased for $6.90 + shipping ($8.66 in my case) on Aliexpress.

Via ESP32net twitter

MatchX LoRaWAN Solution Supports up to 65,535 Sensor Nodes per Gateway

April 14th, 2017 4 comments

MatchX is a startup with offices in Chicago, Shenzhen, and Berlin, that provides a complete LoRaWAN solution with their MatchBox gateway based on SX1301 concentrator and Mediatek MT7628N processor, as well as MatchStick, MatchModule, and MatchCore sensors with up to 65,535 of those connecting to a single  gateway.

MatchBox LoRaWAN/WiFi/GPRS/GPS Gateway

Outdoor and Indoor Enclosures for MatchBox – Click to Enlarge

MatchBox specifications:

  • Processor – Mediatek MT7628AN MIPS WiSoC @ up to 580 MHz
  • System Memory – 128MB DDR2 RAM
  • Storage – 16MB FLASH
  • Connectivity
    • LoRa – Semtech SX1301 + 2x SX1257@+27dbm  Output Power; 470/868/915Mhz frequency range, -146dBm sensitivity
    • 10/100M Ethernet
    • 802.11n 2×2 WiFi @ 300 MHz
    • Optional GPRS via SIM800H, 85.6 kbps (downlink/uplink) + micro SIM card slot
    • GPS via UBlox Max 7C
    • Antennas – 2x u.FL antennas for WiFi, u.FL or chip antenna for LoRa, GPS and GPRS modules
  • USB – 1x USB 2.0 port, 1x USB type C exposing 4 or 6 GPIOs and UART
  • Misc – RGB LED, 8x GPIO, on/off switch, reset button
  • Power Supply – Passive 24V POE, or  5V/2A via USB-C port
  • Power Consumption – 5W on average, 10W max.
  • Dimensions – 140 x 78 x 30mm
  • Temperature Range – -20°C to 85°C
  • Certification: CE, FCC, LoraWAN

The gateway runs OpenWrt or LEDE operating system. The company can receive packets from nodes up to 20km away in ideal conditions (line of sight, good weather…), and the company claims 4 gateways can cover Berlin’s RingBahn, and 17 gateways cover Silicon Valley Area, of course provided there’s not a very large number of nodes, exceeding the capacity of the gateways.

MatchStick & MatchCore LoRa Sensor Nodes

MatchStick

The company has two main products to connect sensors to the gateway with MatchStick and MatchCore sharing most of the same specifications, except the MatchStick is larger, supports many more sensors, and offers longer battery life:

  • MCU – Dialog SmartBond DA14680 ARM Cortex M0 micro-controller with 18 Mbit flash, 64 kB OTP memory, 128 kB Data SRAM, 128 kB ROM, and BLE 4.2 support
  • Connectivity
    • LoRa – Semtech SX1276 @+20dbm output power; 470/868/915Mhz; -146dBm Sensitivity; LoraWAN V1.0.2, Class A/B/C; on-board antenna
    • Bluetooth 4.2 LE @ +3dBm with on-board antenna
    • SIMCOM SM28L GPS module (MatchStick only)
  • Sensors
    • Inertial Sensor – Accelerometer, Magnetometer and Gyroscope
    • MatchStick only, selection of:
      • Air Sensor – CO, CO2, Methane
      • Fire Sensor – Smoke, and IR fire detection
      • Flood Sensor – Water leak detection
      • Movement Sensor – Human movement detection
      • Light Sensor – Gesture, color and ambient light detection
      • Agricultural Sensor – Soil moisture detection
      • Electricity Sensor – Relay control or power consumption
  • USB – 1x USB interface with 6 flexible GPIOs, SWD, Reset and power
  • Misc – RGB LED, reset & user buttons
  • Power Supply – 5V/1A via USB-C connector for charging the battery
  • Battery
    • MatchStick – Panasonic 18650 @ 3000mAh good for up to 10 years on a charge
    • MatchBox – CR2032 battery (300 mAh) good for up to 3 years on a charge
  • Power Consumption
    • Sleep Power – 30-50 uA
    • BLE Power – TX: 3.4 mA, RX: 3.7mA
    • LoRa Power – TX: 120mA @ 20dBm, RX: 9.9mA
  • Dimensions
    • MatchStick – 147 x 32 x 32 mm
    • MatchCore – 52 x 34 x 18 mm
  • Temperature Range – -20°C to 85°C
  • Certification: CE, FCC, LoraWAN

MatchCore

Both models can be programmed using Dialog DA1468X SDK, a community has been setup, as well as a developer’s blog, but so far I’ve been pretty quite, as the company works on completing development. There’s very little info about MatchModule , which will be a 25x25mm LoRa module that can be integrated into your own project. The only info I’ve got about is in the table below.

The MatchBox gateway should sell for around $299, while MatchStick and MatchCore should go for $28 and $16 respectively, I assume in their minimal configuration, as final price will depend on the choice of sensors.

You may be able to find some more details on Matchx.io website.

EEMBC IoT-Connect is a Family of Benchmarks Designed To Test the Power Efficiency of IoT Devices

April 14th, 2017 No comments

EEMBC, the Embedded Microprocessor Benchmark Consortium, has been providing benchmarks for embedded systems since 1996, including ULPBench helping to rank micro-controllers by their power efficiency. But with the Internet of Things gaining traction, it’s important to test more than just the MCU core’s power efficiency, and having a benchmark taking sensors and connectivity into account would be useful.

EEMBC EnergyBench Monitor showing Accumulated Energy while running UPLBench – Click to Enlarge

That’s exactly what EEMC IoT-Connect benchmark family aims for with the three main characteristics:

  • Provides flexibility to accommodate various communication protocols (e.g. Bluetooth, Thread, LoRa, WiFi)
  • Portable to work with any vendor’s microcontroller and radio-module products
  • Compatible with EEMBC ULPBench and EEMBC IoT-Secure benchmarks

The first benchmark of the family is IoTMark-BLE connectivity profile that supports Bluetooth (LE) MCUs. The benchmark requires fixed payload size, frequency of transmission, and transmit power, and performs a complete sequence of event ranging from sensor reading, to BLE notifications, and command write and CRC.

The IoT-Connect test infrastructure is completed, and supports IoTMark-BLE, but to access it, you’ll either need to license one or more benchmark suites, join the EEMBC Board of Directors, or an application-focused EEMBC subcommittee. There are also special licenses for faculty members colleges and universities.

The next IoT-Connect benchmark profile will be completed around Q4 2017 for another communication protocol which is yet to be decided between Wifi, Thread, and LoRA.

You can find more details on EEMBC’s IoT Connect product page.

Hornbill ESP32 Development Boards Come with an Optional IP67 Rated Enclosure (Crowdfunding)

April 7th, 2017 1 comment

While there are plenty of ESP32 development boards, and prices have recently plummeted, getting a case for your project can still be a problem especially if you plan to use it outdoor, as you need to protect your hardware from rain and dust. Hornbill project offers two ESP-WROOM-32 based boards, a prototype board, and an IP67 certified case that could be useful for outdoor use.

Hornbill ESP32 Development Boards

Let’s start by checking the boards available starting with ” Hornbill ESP32 Dev” board with the following specs:

  • ESP-WROOM-32 module with WiFi, Bluetooth LE,  FCC, CE, IC, MIC (Telec), KCC, and NCC certifications
  • I/O headers
    • 2x 19-pin headers with GPIOs, I2C, UART, SPI, ADC, DAC, touch interface, VN/VP, 5V, 3.3V and GND
    • Breadboard-friendly
  • Debug – Built-in CP21XX USB-to-serial
  • Power Supply – 5V via micro USB port, battery header + single cell LiPo charger
  • Dimensions – TBD

ESP32 Dev (left) and ESP32 Minima (right)

ESP32 Minima is also based on ESP-WROOM-ESP32 module, but is designed for wearables with its round PCB, it only includes a header for battery power, and is limited to 16 large pads with through holes for I/Os, as well as 6 pins for programming and debugging the board.

Hornbill ESP32 Dev Pinout Diagram – Click to Enlarge

Finally, the company has also designed Hornbill ESP32 Proto board where you can solder ESP32 Dev board, and add whatever components you may need for your project. The Proto board also includes a microSD card slot, an RGB LED, an SHT 31 humidity and temperature sensor, as well as footprints for 6x IR transmitters and 1x IR Receiver.

Hornbill Weather Proof Case and Kits

Beside the boards, the developers also provide an IP67 case for it, as well as kits leveraging the case:

  • Hornbill OUR (Open Remote Control) – Bluetooth (BLE) to Infrared (IR) bridge to control IR devices with your smartphone
  • Hornbill Lights – Control RGB LED strips over Bluetooth Smart
  • Hornbill IDL (Industrial Data Logger) – Logs power and temperature values, and upload them securely to the cloud.

There’s also Hornbill Makers Kit without the case, but with Hornbill ESP32 Dev and plenty of modules to play with, such as relays, various sensors, LEDs, a buzzer, an OLED display, a mini breadboard and so on… You’ll find ESP32 firmware and Android app source code for all kits on ExploreEmbedded github account.

 

Hornbill project has just launched on CrowdSupply with the goal of raising at least $2,000. A $12 pledge is asked for Hornbill ESP32 Dev or Hornbill Minima, $15 for the case, and the kits go from $39 (Hornbill ESP32 Dev + Proto board + Case) to $79 for Hornbill Lights with a WS2812 LED strip. Worldwide shipping is included in the price, and delivery is scheduled for June 2017. Noe that this is not the first project from ExploreEmbedded, as they previously launched Explorer M3 board based on NXP LPC microcontroller. However, since CrowdSupply do not show backers’ comments, I could not check whether backers are happy, or the project shipped on time.

UDOO BLU and BLU SENSE IoT Modules Integrate Bluetooth LE, Zigbee, and 6LOWPAN Connectivity

April 6th, 2017 No comments

UDOO is known for their Linux boards based on NXP and Intel processors for makers and the education market such as UDOO NEO or UDOO x86, but the company has now developed UDOO BLU and BLU SENSE battery powered modules based on Texas Instruments CC2650 ARM Cortex M3 microcontroller, both with Bluetooth LE, Zigbee, and 6LOWPAN connectivity, and the SENSE model adds some extra sensors.

UDOO BLU and BLU SENSE specifications:

  • Wireless MCU – Texas Instruments CC2650 ARM Cortex M3 MCU @ 48 MHz with 128KB flash, 8KB SRAM with 2.4 GHz radio
  • Connectivity – Bluetooth Low Energy (BLE), ZigBee, 6LoWPAN
  • Sensors (BLU SENSE only) –  NXP FX0S8700CQ accelerometer & magnetometer sensor, NXP FXAS21002C gyroscope & temperature sensor
  • Expansion
    • 1x 5-pin sensors Snap-In I2C connector for UDOO Bricks
    • 2x 10-pin headers with 8x Digital GPIOs, 6x ADCs, 1x I2C, 1x SPI, 1x UART
  • Misc – 3x User Configurable LEDs (Red, Yellow, Green), 2x buttons
  • Power Supply
    • CR2032 battery holder
    • 2-pin header for external power supply up to 5.5V
  • Dimensions – 45mm x 35mm

The full documentation and resources for the boards are not ready yet, but an Android Library to manage the UDOO BLU board using BLE has been released on Github.

The company is already taking pre-orders for BLU ($17.50) and BLU SENSE ($19.50), and more information may be found on UDOO BLU product page. The company is also attending DROIDCON Italy 2017 in Milan, where you’ll be able to see BLU boards, and other UDOO boards in action, and the company will give some boards away as part of a Hackathon on April 8-9.

New Espressif ESP32 Single and Dual Core Processors in 5x5mm Package, Optional Embedded Flash Coming Soon

April 4th, 2017 8 comments

Espressif ESP32 was launched last year as a dual core Tensila processor with WiFi and Bluetooth connectivity, relying on external flash for storage, and packaged into a QFN48 6x6mm package. Espressif recently updated ESP32 datasheet, and the guys at ESP32net noticed three new versions of the processor with a QFN48 5x5mm package, one version including 2 MBytes embedded flash, and another version with a single core.

The three new versions of ESP32 all come with the same WiFi 802.11b/g/n ad Bluetooth 4.0 LE connectivity and a QFN 5×5:

  • ESP32-D0WD dual core processor without embedded flash
  • ESP32-D2WD dual core processor with 16 Mbit embedded flash
  • ESP32-S0WD single core processor without embedded flash

ESP32-D0WD different with ESP32-D0WDQ6 is only the smaller package, while ESP32-D2WD brings 2MB embedded flash too possibly lowering the price of current solution with external flash, and ESP32-S0WD might be closer to ESP8266 price thanks to its single core, while still offering Bluetooth Smart support on top of WiFi.

Other interesting – but so far unused – parts of the nomenclature are that future ESP32 version may support 802.11a (AFAIK no that commonly used), as well as 802.11ac for higher WiFi throughput, which would also mean a dual band (2.4 / 5GHz) ESP32 processor (ESP32-D0CD or ESP32-D2CD) might be manufactured in the future.

Thanks to Nanik for the tip.

Categories: Espressif Tags: 802.11ac, ble, esp32, espressif, IoT, wifi