Archive

Posts Tagged ‘ble’

Nordic Semi nRF52840 vs nRF52832 vs nRF52810 Comparison for Bluetooth 5 Applications

August 9th, 2017 4 comments

Bluetooth 5 was formally introduced earlier this year with promises of four times the range, and twice the speed. Several companies offer chips that are compatible with the new standard, and among them Nordic Semi offers Bluetooth 5 ready solutions via nRF52840, nRF52832, nRF52810 Bluetooth SoCs. However, if you thought – like I did – that all three would provide the same Bluetooth 5 support with just some differences in memory, storage and performance, a comparison table put together by Raytac Corporation will show that among the three SoCs only nRF52840 will support the longer range, while the two older SoC only support the extra bandwidth offered by Bluetooth 5.

I could find a blog post about a long range demo that confirms the above:

Two nRF52840 Preview Development Kits (PDK) or nRF52832 Development Kits. A combination of the two different kits can also be used. Notice that if the nRF52832 Development Kit is used, the long-range feature will not work as this is only possible with the nRF52840.

That blog post also gives some ideas about the achievable bitrates for different modes:

The throughput measured may vary depending on the environment, but the maximum throughput should be around 1365 Kbps for BLE 5 High Speed, 775 Kbps for BLE 4.2, 128 Kbps for BLE 4.1 and 21.3 Kbps for BLE 5 Long Range. Be aware that there may be some inaccuracies in the measurements.

The main takeaway here is that if you are going to select an SoC, development board, or product with Bluetooth 5 connectivity, long range support may not always be supported, and if that feature is important to your use case, you should make sure the hardware supports it.

Categories: Nordic Semi Tags: ble, bluetooth, nordic

Bluetooth Low Energy Now Supports Mesh Networking for the Internet of Things

July 19th, 2017 8 comments

The Bluetooth Special Interest Group (SIG) has announced support for mesh networking for BLE, which enables many-to-many (m:m) device communications, and is optimized for large scale device networks for building automation, sensor networks, asset tracking solutions, and other IoT solutions where up to thousands of devices need to reliably and securely communicate with one another. The standard actually specifies 32,767 unicast addresses per mesh network, but that number of nodes is not achievable right now.

Mesh networking works with Bluetooth Low Energy and is compatible with version 4.0 and higher of the specifications. It requires SDK support for the GAP Broadcaster and Observer roles to both advertise and scan for advertising packets, and the FAQ claims Mesh Networking does not require extra power, and the devices only need to wake up at least once every four days or when they have data to transmit. Mobile apps connecting to mesh networking products will use the Bluetooth mesh proxy protocol implemented on top of BLE GAP and GATT APIs.

Bluetooth Mesh Control Model – Server and Client models are also available

You can access access various part of the Mesh Networking standard including Mesh Profile specification 1.0, Mesh Model specification 1.0, and Mesh Device properties 1.0 on Bluetooth website.

The Bluetooth SIG expects commercial products with Bluetooth mesh networking technology to become available later this year. Qualcomm – who purchased CSR – announced Mesh networking support for their QCA4020 and QCA4040 BLE chip in samples today, and commercial availability in September 2017, and Nordic Semi has released a Mesh SDK, and so has Silicon Labs. Since I understand mesh network does not require hardware modifications, then all companies providing BLE solutions should offer it.

Thanks to Crashoverride for the tip.

Flic Hub Controls WiFi, Bluetooth, and IR Devices with Bluetooth LE Buttons (Crowdfunding)

July 10th, 2017 No comments

This week-end, I wrote about 1btn open source WiFi button that can allow you directly control WiFi appliances, and/or set scenes without the need for a smartphone. We also discussed limitations of WiFi due to high power consumption, security issues and the one-way aspect of RF communication, and that Bluetooth 5 may be a better option for range and battery life if possible. Flic Hub is another way to approach the issue, as it combines Bluetooth LE buttons with a gateway supporting WiFi, Bluetooth, and infrared.

Flic Hub gateway specifications:

  • Connectivity – Bluetooth Classic, Bluetooth LE, WiFi, Ethernet, IR via optional add-on accessory.
  • Audio – 3.5mm audio out/mic in
  • Power Supply – 5V via micro USB
  • Power Consumption – 1.5W typ.
  • Security – SPARKE2+ Bluetooth encryption
  • Dimensions – 85 x 50 x 15 mm
  • Weight – 99 grams

Users can configure workflows by setting up Flic with IFTTT, Zapier, Microsoft Flow or even the HTTP request function in their apps. A Flic SDK for iOS and Android is also available, The Flib Hub runs Linux, and they encourage hacking it to fit your project/application.

You can control individual devices with the Hub, but also set scenes such as turning off light, blinds, and aircon, as well as locking with the door when you leaving by pressing once, and cancel this mode with two clicks when you comeback. It can also be used to order items online with one to multiple press, and short and long presses.

The Flic button has actually been around for a little while, as it was launched in 2015 via Indiegogo, and initially relied on your smartphone to act as a gateway. They added to Flic Hub to control more than just Bluetooth devices, and offer a more capable gateway working without smartphone, so for example you can now use up to 60 buttons, instead of just 8 with a smartphone, and anybody in your home can easily use the buttons.

The Flic buttons battery life has also been increased to up to 3 years. You can find reviews of the first Flic buttons without hub on sites like CNET, as well as somewhat mixed customers’ reviews on Amazon.

Flic Hub is now on Indiegogo with 10 days to go, and over $300,000 raised. If you already own some Flic buttons, you can pledge $69 to get the Flic Hub only, and if you plan to control IR devices too, then you’ll want to add the infrared accessory for a total of $79. If you are new to Flic, you may prefer option for Flic Hub with 3 buttons for $109, or $124 with the IR accessory. They also offer glow in the dark buttons for $59 (2 buttons) or $99 (4 buttons) that could be very useful in some situations. Shipping is free to the US, $10 to the European Union, and $15 to the rest of the world. Delivery is scheduled for October 2017.

Thanks to Leon for the tip.

$29 Bluey nRF52832 BLE & NFC Development Board Comes with Temperature, Humidity, Light, and Motion Sensors

July 5th, 2017 No comments

Electronut Labs, a startup based in Bangalore, India, has designed Bluey board powered by Nordic Semi nRF52832 Bluetooth LE SoC, and equipped with 3 sensor chips reporting temperature, humidity, light intensity, and acceleration data.

Bluey board specifications:

  • SoC – Nordic Semi nRF52832 ANT + BLE ARM Cortex-M4 @ 64 MHz processor with 512kB flash, 64kB RAM
  • Storage – Micro SD slot
  • Connectivity – Bluetooth 4.2/5 LE and other proprietary 2.4 GHz wireless standards via PCB Antenna, NFC via PCB antenna
  • Sensors
    • TI HDC1010 Temperature/Humidity sensor
    • APDS-9300-020 ambient light sensor
    • ST Micro LSM6DS3 accelerometer
  • Expansion Header – 18-pin header with GPIO, 5V, 3.3V, and GND
  • Debugging – CP2104 USB interface; 6-pin SWD header
  • Misc – CREE RGB LED; 2 push buttons; coin cell holder; on/off witch; external / battery power jumper
  • Power Supply – 5V via micro USB port, up to 6V battery voltage via 4-pin header

The board is partially open source hardware with KiCad & PDF schematics (v1.1 PCB) released in Github, but not the Gerber files nor the BoM released on Github, where you’ll find some documentation, and various samples relying on Nordic nRF5 SDK to play with Bluetooth LE and sensors, as well as sample code for a 2 wheeldrive ultrasonic robot.

The board is sold on Tindie for $29, but if you live in India, you can purchase it locally instead for 1,875 Rupiah. Visit the product page for a few more details. They do not sell the full robot, as it is based on off-the-shelf parts including HCSR-04 ultrasonic sensor, DRV8835 motor driver, and chassis made by Femtech RC Model Co that is similar to the Mini Robot Rover sold on Adafruit.

Qualcomm Snapdragon Wear 1200 Platform for Wearables Supports LTE Cat M1 and NB1 (NB-IoT)

June 28th, 2017 No comments

After Snapdragon Wear 2100 and 1100 launched last year , Qualcomm has announced a new Snapdragon Wear 1200 platform still designed for wearables, but with lower power consumption, less processing power, a more compact package, and built-in support for LTE IoT communications standards such as LTE Cat M1 and LTE NB-IoT (Cat NB1).

 

Qualcomm Snapdragon Wear 1200 key features and specifications:

  • CPU – ARM Cortex A7 @ 1.3 GHz
  • Memory / Storage – Support for discreet or MCP NAND and LPDDR2
  • Display – Support via SPI for simple UI and displays
  • Modem
    • Global multi-mode supporting Cat-M1 / NB1 / E-GPRS.
    • Supports LTE FDD and TDD for Cat-M1 and E-GRPS and FDD only for Cat-NB1
    • Up to 300 kbps downlink and 350 kbps uplink for Cat-M1
    • 10 kbps download and 60 kbps upload speeds for Cat-NB1
    • Integrated voice support for VoLTE
  • Other Connectivity – Pre-integrated support for Qualcomm 11ac Wi-Fi and Bluetooth 4.2 / Bluetooth Low Energy
  • Location
    • GLONASS, Galileo, and BeiDou constellations supported
    • Accurate Wi-Fi and cellular positioning, optimized for Cat-M1/NB1
    • Low power Geo-Fencing
    • Qualcomm Cloud Based Location Services with   day GNSS predicted orbits service, Qualcomm end-to-end Global Terrestrial Positioning (GTP) Wi-Fi
      and cellular service
  • Security
    • Qualcomm Trusted Execution Environment
    • Wireless protocol security
    • Hardware based security with Secure Boot/storage/debug, hardware crypto engine, hardware random number generator, and Trustzone
  • Power Management
    • Ultra-low Rock Bottom Sleep Current (RBSC) for extended standby
    • Power Save Mode (PSM)
    • Extended Discontinuous Receive (eDRX)
    • Charging – Companion charging chipset
  • Package / Process – 79mm2 package; 28nm manufacturing process

The product brief actually mention an ARM Cortex-A1 core, but this must be a mistake, as later on Qualcomm explains the platform is cost-optimized to reduce the BOM and NRE with an ARM Cortex A7 core “eliminating the need for MCUs” . The company also claims the solution is scalable thanks to broad software re-use, and the possibility to add voice, WiFi, and Bluetooth. The solutions is also said to last 10 day on a charge with LTE standy, when paired with 350 mAh battery and using eDRX.

Linux and ThreadX operating systems will be supported, and while Wear 1200 chipset is supposed to target wearables such as kid, pet, elderly, and fitness trackers, I’d assume it might also be useful for some IoT applications like GPS trackers provided it’s cost-effective. Reference designs from Borqs and Quanta are available in order to allow manufacturers to bring products to market quickly. You may be able to find a few more details on Qualcomm Snapdragon Wear 1200 product page.

Intrynsic Open-Q 835 Development Kit Features Qualcomm Snapdragon 835 Processor, Support Android 7 and Windows 10

June 7th, 2017 1 comment

Intrinsyc has just launched one of the first development boards powered by Qualcomm Snapdragon 835 processor with their Open-Q 835 devkit equipped with 4GB LPDDR4x, 128GB UFS 2.1 flash, 802.11ad WiFi, dual camera support and more.

Open-Q 835 Devkit with Cooling Plate Underneath

Open-Q 835 development kit is comprised of a “processor board” and a baseboard with the following specifications:

  • Processor Board
    • SoC – Qualcomm Snapdragon 835 (APQ8098) octa-core processor with four high performance Kryo 280 cores @ 2.20 GHz/ 2.30 GHz (single core operation), four low power Kryo cores @ 1.9 GHz, Adreno 540 GPUwith  OpenGL ES 3.2, OpenCL 2.0 Full support, and Hexagon 682 DSP with Hexagon Vector eXtensions (dual-HVX512)
    • System Memory – 4GB LPDDR4x RAM
    • Storage – 128GB UFS2.1 Gear3 2 lane Flash
    • Connectivity
      • Wi-Fi 802.11a/b/g/n/ac 2.4/5Ghz 2×2
      • Bluetooth 5.0 + BLE
      • WiGig60 802.11ad with on-board antenna
    • Dimensions – 70 x 60 mm
  • Carrier Board
    • Display – 1x HDMI 2.0 out up to 4K Ultra HD, 2x 4 lane MIPI DSI + Touch Panel connector for optional LCD panel accessory
    • Audio
      • On-board Audio Codec; Audio in & out expansion headers, 1x ANC Headset Out
      • Optional SW features – Qualcomm Fluence HD with Noise Cancellation, high fidelity music playback 24-bit/192kHz, Dolby 5.1 support
    • Camera
      • 3x 4-lane MIPI CSI connectors
      • Dual Qualcomm Spectra 180 ISP
      • Optional SW Features – Qualcomm Clear Sight camera; Hybrid Autofocus, Optical Zoom; HW-accelerated Face Detection; HDR Video Record
    • Other Interfaces
      • GNSS daughter card with GPS, GLONASS, Beidou, and Galileo, PCB antenna and SMA connector option
      • 1x UART debug (USB micro-B)
      • 1x USB3.1 Type C
      • 1x uSD 3.0 UHS-1
      • I2S, SPI, GPIO, sensor header
    • Power Supply – 12V/3A DC; optional 3,000 Li-Ion battery
    • Dimensions  — 170mm x 170mm (mini-ITX form factor)

The company provides support for Android 7 Nougat, and Windows 10 should be feasible too but you are asked to “contact sales”. An optional WQHD AMOLED LCD is also available. Intrynsic explains the development kit is particularly suited for OEMS and device makers evaluating the processor and peripherals, and for premium mobile device development.

The “Early Adopter Version” of Open-Q 835 development kit can be purchased for $1,149, subject to an approval process. You may be able to find additional details on the product page.

Olimex ESP32-EVB Board with Ethernet, CAN Bus, and Relays up for Sale for 26 Euros

May 30th, 2017 3 comments

One of the new feature of Espressif ESP32 SoC over ESP8266 is the inclusion of an Ethernet MAC interface, but so far few boards come with an RJ45 jacks. ESP32 Monster board is an option, also including an OLED Display and CAN Bus, and sold on Tindie for $35, but Olimex has now stocked their ESP32-EVB board with Ethernet, CAN Bus, and two relays, and you can purchase it for 26 Euros per unit, and less in larger quantities.

Olimex ESP32-EVB Rev. B specifications:

  • Wireless Module – ESP32-WROOM32 module with 802.11 b/g/n WiFi and Bluetooth LE
  • Wired Connectivity – 10/100M Ethernet with RJ45 jack (via LAN8710A)
  • External Storage – micro SD slot
  • Relays – 2x 10A/250VAC relays with LED status
  • Expansion
    • 40-pin GPIO female header (2.54mm pitch)
    • UEXT connector for sensors and modules
    • CAN Bus
  • USB – 1x micro USB port for debugging (CH340T) and power
  • Misc – Reset and user buttons, IR receiver and transmitter with up to 5 meter range
  • Power Supply
    • 5V via power jack or micro USB port
    • LiPo charger and step up converter allowing ESP32-EVB to run from LiPo battery
  • Dimensions – 75 x 75 mm

The specifications are a little different compared to the Rev. A prototype shown in February, as they added IR transmitter and receiver, a CAN bus, and a micro USB port for debugging, which increases the size of the PCB, and also explains why the price went up from an expected 22 Euros to 26 Euros for the final board.

The board is open source hardware, and you’ll find hardware design files on Github. The software directory is empty for now, but the Tindie page about ESP32 Monster board indicates that “Ether and CAN programming requires ESP-IDF environment and still not by Arduino IDE”, so if you want to use the latter you may have wait a little longer. Olimex is also planning for a color 2.8″ LCD 320×240 pixel display board connected through UEXT header.

STMicro Unveils STM32L4 Discovery Kit for IoT with WiFi, BLE, NFC, Sub-GHz RF, and Plenty of Sensors

May 29th, 2017 3 comments

STMicro has recently introduced B-L475E-IOT01A Discovery kit powered by STM32L4 Cortex-M4 and targeting IoT nodes with a choice of connectivity options including WiFi, Bluetooth LE, NFC, and sub-GHZ RF at 868 or 915 MHz, as well as a long list of various environmental sensors.

Click to Enlarge

B-L475E-IOT01A Discovery kit key features and specifications:

  • MCU – STM32L4 Series MCU based on ARM Cortex -M4 core with 1 MB Flash memory, 128 KB SRAM
  • Storage – 64 Mbit (8MB)  Quad-SPI Flash memory (Macronix)
  • Connectivity
    • Bluetooth 4.1 LE module (SPBTLE-RF)
    • Sub-GHz (868 or 915 MHz) low-power-programmable RF module (SPSGRF-868 or SPSGRF-915)
    • Wi-Fi module based on Inventek ISM43362-M3G-L44 (802.11 b/g/n compliant)
    • Dynamic NFC tag based on M24SR with its printed NFC antenna
  • Sensors
    • 2x digital omni-directional microphones (MP34DT01)
    • Capacitive digital sensor for relative humidity and temperature (HTS221)
    • 3-axis magnetometer (LIS3MDL)
    • 3D accelerometer and 3D gyroscope (LSM6DSL)
    • 260-1260 hPa absolute digital output barometer (LPS22HB)
    • Time-of-Flight and gesture-detection sensor (VL53L0X)
  • USB – 1x micro USB OTG port (Full speed)
  • Expansion – Arduino UNO V3 headers, PMOD header
  • Debugging – On-board ST-LINK/V2-1 debugger/programmer with USB re-enumeration capability: mass storage, virtual COM port and debug port
  • Misc – 2 push-buttons (user and reset)
  • Power Supply – 5V via ST LINK USB VBUS or external sources

The board supports ARM mbed online compiler, but can also be programmed using IDEs such as IAR, Keil, and GCC-based IDEs. STMicro also provides HAL libraries and code samples as part of the STM32Cube Package, as well as X-CUBE-AWS expansion software to connect to the Amazon Web Services (AWS) IoT platform.

You’ll find documentation, hardware design files, software, and tools on  the product page, where you’ll also be able to purchase the board for $51.94 with either a 868 or 915 MHz RF module.