Archive

Posts Tagged ‘industrial’

MYD-C437x-PRU Development Board Leverages TI Sitara AM437x Programmable Real-time Unit

February 16th, 2017 No comments

MYIR Technologies launched MYC-C437x system-on-module based on TI Sitara AM437X processor, and the corresponding MYD-C437x development board at the end of 2015, but the latter did not make use of the processor’s PRU-ICSS (Programmable Real-Time Unit Subsystem and Industrial Communication SubSystem) block. The company has now released a new version of the baseboard called MYC-C437x-PRU which exposes I/Os pins to leverage the PRU-ICSS and enable implementation of protocols like EtherCAT and Profibus.MYD-C437x-PRU industrial development board specifications:

  • System-on-Module – MYC-C437x module with
    • SoC – Texas Instruments AM437x ARM Cortex A9 processor @ up to 1GHz with PowerVR  SGX530 GPU (AM4378/AM4379 only)
    • System Memory – 256 or 512MB (default) DDR3 SDRAM
    • Storage – 4GB eMMC Flash (reserved 256/512MB Nand Flash design), 16MB QSPI Flash (unpopulated by default), 32KB EEPROM
    • Connectivity – Gigabit Ethernet PHY
  • Storage – 1x micro SD slot
  • Serial ports – 1x 3-wire RS232 debug serial port, 2x  5-wire RS232 serial port, 1x RS485 with isolation
  • USB – 1x USB 2.0 host port, 1x mini USB 2.0 device port
  • Connectivity – 1x Gigabit Ethernet interface, 2x 10/100 Mbps PRU-ICSS Ethernet interfaces
  • Display – 1x 16-bit LCD interface, 1x 24-bit LCD interface, 1x 4-wire resistive touch screen interface
  • Camera – 1x Camera interface (0.5mm pitch 30-pin FPC connectors)
  • Debugging – 20-pin JTAG interface
  • Other Expansion Ports
    • 1x CAN interface with isolation
    • 3x 20-pin expansion connectors (2.0mm pitch) with:
      • 8x ADC
      • 2x SPI, 1x I2C, 2x UART
      • PRU-UART with support for PROFIBUS
      • 2x EnDat, 2x eQEP
      • eHRPWM
  • Misc – 4x Buttons (1x reset, 1x PMIC, 2x user), 1x power LED (red), 3x user LEDs (blue)
  • Power supply – +12V/1.5A (base board)
  • Dimensions – 150mm x 105mm (4-layer PCB)
  • Temperature Range – -40 to 85 Celsius (industrial grade)

The company provides a Linux 4.1.18 BSP for the modules and board, as well as Texas Instruments’ SYS/BIOS v6.45 Real-time Operating System. Note that you can only used one LCD interface at a time, and some of EtherCAT and LCD signals are multiplexed so only one can be used.

You can find some limited hardware & software documentation on the product page, as well as purchase MYD-C4377-PRU development board with TI Sitara AM4377 SoC, 512MB DDR3, and a 4GB eMMC flash for $189. Several modules are also offered with LCD displays, WiFi, and cameras.

Janz Tec emPC-A/RPI3 is an Industrial Embedded Controller Based on Raspberry Pi 3 Board

February 15th, 2017 No comments

We see more and more industrial devices making use of Raspberry Pi boards, after Kunbus RevolutionPi RevPi Core industrial computer based on Raspberry Pi Computer Module, and RailPi 2.0 embedded computer equipped with a Raspberry Pi 3 (or ODROID-C2) board, Janz Tec is now offering another option with emPC-A/RPI3 industrial embedded controller featuring Raspberry Pi 3 board, and supporting variable DC power input, 24V digital inputs and outputs, and interfaces such as CAN, RS485…

Janztec emPC-A/RPI3 specifications:

  • SoC – Broadcom BCM2837  quad core ARM Cortex-A53 processor @ 1.2 GHz (but limited to 4x 600 MHz on purpose to avoid overheating) and VideoCore IV GPU
  • System Memory – 1GB DDR2 RAM
  • Storage – externally accessible micro SD slot
  • Video Output – HDMI 1.4 port
  • Connectivity – 10/100M Ethernet port, 802.11 b/g/n WiFi and Bluetooth LE (BCM43143)
  • USB – 4x USB 2.0 ports
  • Debugging – 1x 9-pin D-SUB connector for serial debug console (RS232 only with RxD and TxD)
  • I/O connector with:
    • 1x CAN (ISO/DIS 11989-2, opto-isolated, term. settings via jumper, SocketCAN supported)
    • 1x RS232 (Rx, Tx, RTS, CTS) or switchable to RS485 (half duplex; term. settings via jumper)
    • 4x digital inputs (24V DC)
    • 4x digital outputs (24V DC)
  • Misc – Real-time clock, battery buffered
  • Power Supply – 9 … 32 V DC
  • Dimensions – 99.8 x 96.7 x 30.0 mm
  • Temperature Range – Operating: 0 °C … 35/40°C; storage: -20 °C … 75 °C
  • Humidity – 5 % ~ 95 %, non-condensing

The enclosure supports desktop, wall or DIN rail mounting. While customers can boot the operating system of their choice from micro SD card, the company offers support for Raspbian JESSIE Lite operating system, and can also provide – at extra cost – CODESYS V3 runtime environment, Oracle Java Embedded, and CANopen protocol stack and tools.


As with all other industrial solutions, the added features come at a costs, as Janz Tec emPC-A/RPI3 pricing starts at 250 Euros without micro SD card, power supply, nor any optional software options. The embedded computer can be purchased on Saelig website, and you may want to visit the product page for more information.

Via LinuxGizmos

Barionet 1000 DIN Rail Programmable I/O Controller Runs OpenWrt

February 9th, 2017 1 comment

Barix, a Swiss company specializing IP- based communications and control technology, has introduced a new Barionet programmable I/O controller with Barionet 1000, the first model of the company to run Linux, and in this case OpenWrt, and to offer WiFi and USB connectivity.

Barionet 1000 specifications:

  • Processor – Undisclosed
  • System Memory – 64MB RAM
  • Storage – 16MB flash
  • Connectivity – 10/100M Ethernet, Wi-Fi 802.11 b/g/n; IPv4 & IPv6 support.
  • USB – 2x USB Host Ports
  • Serial – 1x DB9 RS-232 serial port
  • User programmable I/Os
    • 2x relay outputs (30 VDC max, 5 A)
    • 4x open collector digital outputs (4 x 24 VDC, 0.3 A)
    • 8x contact closure inputs (0 – 15 V), including 4x 12-bit analog inputs (0 – 15 V)
    • 1-wire interface for 18DS20 temperature sensor
  • Misc – 11 LED status indicators
  • Power Supply – 9 to 30V DC (2.5 Watts max)
  • Dimensions –  103mm x 85mm x 31mm; plastic DIN Rail Case
  • Temperature Range – Operating: 0 to +50°C; Storage: 0 to +70°C
  • Certifications – CE (A&B), RTT&E, FCC (A&B), RoHS

They also have another similar model, named Barionet 1100, which adds RS-485, an RTC clock, Wiegand capability, and “future optional internal interface” for LoRa. Hardware & software documentation appears to be missing for now, but they’ll certainly update their Wiki, like they did for their previous models.Typical applications for the system include access/door control, environmental monitoring, photovoltaic power management, temperature monitoring & logging, and HVAC control.

Pricing and availability of Barionet 1000 have not been announced, but for reference, the older Barionet 50 is currently selling for $189, so the new model should cost more with the extra features. Barionet is currently showcasing their products at ISE 2017 (Integrated Systems Europe) in Amsterdam, Stand 8-N270. Further details may be found on the product page.

Via LinuxGizmos

Supermicro A2SAV mini-ITX Board Powered by Intel Atom E3940 SoC Features 6 SATA Ports, Dual GbE, and Up to 9 USB Interfaces

February 6th, 2017 14 comments

Intel introduced three Atom E3900 series Apollo Lake processors last fall that target IoT, industrial and automotive applications, and Supermicro has designed A2SAV mini-ITX board powered by Atom x5-E3940 SoC that comes with lots of interfaces include 6 SATA ports, two Gigabit Ethernet RJ45 ports, and up to 9 USB interfaces accessible from connectors or headers.

Click to Enlarge

Supermicro A2SAV motherboard specifications:

  • SoC – Intel Atom x5-E3940 quad core “Apollo Lake” processor @ 1.6 / 1.8 GHz with 2MB L2 cache, 12 EU Intel HD graphics (6.5W TDP)
  • System Memory – 1x 204-pin DDR3 SO-DIMM socket for 2, 4, or 8GB 1866/1600/1333MHz Unbuffered non-ECC 204-pin SO-DIMM DDR3
  • Storage
    • 6x SATA3 ports include 2x from SoC, and 4x via Marvel 88SE9230 controller
    • 1x SATA DOM (Disk on Module) power connector
    • 64Mb SPI Flash EEPROM with AMI UEFI BIOS supporting Plug and Play (PnP), DMI 2.3, ACPI 5.0, USB Keyboard, SMBIOS 2.7.1, and UEFI
    • mSATA and M.2 (See  expansion below)
  • Connectivity – Dual GbE LAN with Intel i210-AT controller
  • Video Output – 1x VGA, 1x Display Port, 1x HDMI, 1x eDP (Embedded Display Port)
  • USB – 2x USB 3.0 ports (rear), 7x USB 2.0 port (2x rear, 4 via headers, 1x type A)
  • Serial – 3x COM ports using RJ45, RS232 and RS485 ports
  • Expansion
    • 1x PCIe 2.0 (in x8) slot
    • 2x M.2 PCIe 2.0, M Key 2242/2280
    • 1x Mini-PCIe with mSATA
  • Misc – Voltage and temperature monitors, chassis intrusion header and detection, system overheat LED, 2x 4-pin fan headers
  • Power Supply – ATX Power connector, 4-pin 12V DC power connector
  • Dimensions – 17.145cm x 17.145cm (Mini-ITX form factor)
  • Temperature Range – 0°C to 60°C

The company can provide mid and mini-tower chassis for the board, as well as a 1U chassis all “optimized for A2SAV motherboard”. There’s no list of supported operating systems yet, but Windows 10 (IoT), and various Linux distributions will certainly run on the board.

Supermicro product page has a few more details including some documents, but it does not mention pricing information. However, the board is listed for back order on Arrow Electronics for $253.73 (back order), and TigerDirect has the light version of the board, named A2SAV-L, with just two SATA ports and fewer USB ports for $169.99.

Thanks to Paul for the tip.

FOSDEM 2017 Open Source Meeting Schedule

January 31st, 2017 4 comments

FOSDEM (Free and Open Source Software Developers’ European Meeting) is a 2-day free event for software developers to meet, share ideas and collaborate that happens on the first week-end of February, meaning it will take place on February 4 & 5, 2017 this year. FOSDEM 2017 will features 608 speakers, 653 events, and 54 tracks, with 6 main tracks namely: Architectures, Building, Cloud, Documentation, Miscellaneous, and Security & Encryption.
I won’t be there, but it’s always interesting to look at the schedule, and I made my own virtual schedule focusing especially on talks from “Embedded, mobile and automotive” and “Internet of Things” devrooms.

Saturday 4, 2017

  • 11:00 – 11:25 – Does your coffee machine speaks Bocce; Teach your IoT thing to speak Modbus and it will not stop talking, by Yaacov Zamir

There are many IoT dashboards out on the web, most will require network connection to a server far far away, and use non standard protocols. We will show how to combine free software tools and protocols from the worlds of IT monitoring, Industrial control and IoT to create simple yet robust dashboards.

Modbus is a serial communication protocol developed in 1979 for use with programmable logic controllers (PLCs). In simple terms, it is a method used for transmitting information over serial lines between electronic devices., it’s openly published, royalty-free, simple and robust.

Many industrial controllers can speak Modbus, we can also teach “hobby” devices like Arduino boards and ESP8266 to speak Modbus. Reliable, robust and simple free software Modbus client will be used to acquire the metrics from our device, then the metrics will be collected and sent to Hawkular and Grafana to store and visualize our data.

  • 11:30 – 11:55 – Playing with the lights; Control LIFX WiFi-enabled light bulbs, by Louis Opter

In this talk we’ll take a close look at a one of the “smart” (WiFi-connected) light-bulbs available on the market today. The bulbs expose a small API over UDP that I used to run an interface on a programmable buttons array. We will see how topics like reverse engineering, security, licensing, “self-hosting” and user experience came into play.

monolight is an user interface to control LIFX WiFi-enabled light bulbs. monolight runs on a programmable button array; it is written in Python 3.6 (to have type annotations and asyncio), and it interfaces with the bulbs through a more complex daemon written in C: lightsd.

This talk will start with a live demo of the button grid remotely controlling the light bulbs. We will then explore how it works and some of the motivations behind it (network isolation, trying to not depend on the “cloud”, reliability, user-experience). Finally, we will look into what kind of opportunities even more open IoT products could bring, and open leave the place to Q&A and discussion.

  • 12:00 – 12:30 – Creating the open connected car with GENIVI, by Zeeshan Ali, GENIVI Development Platform (GDP) technical lead

A number of new components have matured in GENIVI to provide a true connected car experience. A couple of them are key connectivity components; namely SOTA (Software Over the Air) and RVI (Remote Vehicle Interface). This talk will discuss both these components, how they work together, the security work done on them and their integration into the GENIVI Development Platform.

This talk will also run down the overall status of GENIVI’s development platform and how it can enable an automotive stack to speak not just with the cloud, but with IoT devices via Iotivity interface.

  • 12:30 – 13:00 – Making Your Own Open Source Raspberry Pi HAT; A Story About Open Source Harware and Open Source Software, by Leon Anavi

This presentation will provide guidelines how to create an open source hardware add-on board for the most popular single board computer Raspberry Pi using free and open source tools from scratch. Specifications of Raspberry Pi Foundation for HAT (Hardware Attached on Top) will be revealed in details. Leon Anavi has been developing an open source Raspberry Pi HAT for IoT for more than a year and now he will share his experience, including the common mistakes for a software engineer getting involved in hardware design and manufacturing. The presentation is appropriate for anyone interested in building entirely open source products that feature open source hardware and open source software. No previous experience or hardware knowledge is required. The main audience are developers, hobbyists, makers, and students. Hopefully the presentation will encourage them to grab a soldering iron and start prototyping their DIY open source device.

  • 13:00 – 13:25 – Building distributed systems with Msgflo; Flow-based-programming over message queues, by Jon Nordby

MsgFlo is a tool to build systems that span multiple processes and devices, for instance IoT sensor networks. Each device acts as a black-box component with input and output ports, mapped to MQTT message queues. One then constructs a system by binding the queues of the components together. Focus on components exchanging data gives good composability and testability, both important in IoT. We will program a system with MsgFlo using Flowhub, a visual live-programming IDE, and test using fbp-spec.

In MsgFlo each process/device is an independent participant, receiving data on input queues, and sending data on output queues. A participant do not know where the data comes from, nor where (if anywhere) the data will go. This strong encapsulation gives good composability and testability. MsgFlo uses a standard message queue protocol (MQTT or AMQP). This makes it easy to use with existing software. As each participant is its own process and communicate over networks, they can be implemented in any programming language. Convenience libraries exist for C++, Python, Arduino, Node.js and Rust. On top of the message queue protocol, a simple discovery mechanism is added. For existing devices without native Msgflo support, the discovery messages can be sent by a dedicated tool.

  • 13:30 – 13:55 – 6LoWPAN in picoTCP, and how to support new Link Layer types, by Jelle De Vleeschouwer

6LoWPAN enables, as the name implies, IPv6-communication over Low-power Wireless Personal Area Networks, e.g. IEEE802.15.4. A lot of resources are available to allow 6LoWPAN over IEEE802.15.4, but how can one extend the 6LoWPAN feature-set for the use with other link layer types? This talk will cover the details about a generic implementation that should work with every link layer type and how one can provide support for ones own custom wireless network. The goal is to give quite a technical and detailed talk with finally a discussion about when 6LoWPAN is actually useful and when is it not.

Last year, as a summer project, a generic 6LoWPAN adaption layer was implemented into picoTCP, an open source embedded TCP/IP-stack developed by Altran Intelligent Systems, with an eye on the IoT. The layer should also be able to allow multiple link-layer extensions, for post-network-layer processing. This could be used for mesh-under routing, link layer security, whatever you want. This talk will cover how one can take advantage of these features and caveats that come with it.

  • 14:00 – 15:00 – Groking the Linux SPI Subsystem by Matt Porter

The Serial Peripheral Interconnect (SPI) bus is a ubiquitous de facto standard found in many embedded systems produced today. The Linux kernel has long supported this bus via a comprehensive framework which supports both SPI master and slave devices. The session will explore the abstractions that the framework provides to expose this hardware to both kernel and userspace clients. The talk will cover which classes of hardware supported and use cases outside the scope of the subsystem today. In addition, we will discuss subtle features of the SPI subsystem that may be used to satisfy hardware and performance requirements in an embedded Linux system.

  • 15:00 – 15:25 – Frosted Embedded POSIX OS; a free POSIX OS for Cortex-M embedded systems, by Brabo Silvius

FROSTED is an acronym that means “FRee Operating System for Tiny Embedded Devices”. The goal of this project is to provide a free kernel for embedded systems, which exposes a POSIX-compliant system call API. In this talk I aim to explain why we started this project, the approach we took to separate the kernel and user-space on Cortex-M CPU’s without MMU, and showcase the latest improvements on networking and supported applications.

  • 15:30 – 16:00 – How to Build an Open Source Embedded Video Player, by Michael Tretter

Video playback for embedded devices such as infotainment systems and media centers demands hardware accelerators to achieve reasonable performance. Unfortunately, vendors provide the drivers for the accelerators only as binary blobs. We demonstrate how we built a video playback system that uses hardware acceleration on i.MX6 by using solely open source software including Gstreamer, Qt QML, the etnaviv GPU driver, and the coda video decoder driver.

The Qt application receives the video streams from a Gstreamer pipeline (using playbin). The Gstreamer pipeline contains a v4l2 decoder element, which uses the coda v4l2 driver for the CODA 960 video encoder and decoder IP core (VPU in the Freescale/NXP Reference Manual), and a sink element to make the frames available to the Qt application. The entire pipeline including the Gstreamer to Qt handover uses dma_bufs to avoid copies in software.This example shows how to use open source drivers to ease the development of video and graphics applications on embedded systems.

  • 16:00 – 16:25 – Project Lighthouse: a low-cost device to help blind people live independently, by David Teller

The Word Health Organization estimates that more than 250 million people suffer from vision impairment, 36 millions of them being entirely blind. In many cases, their impairment prevents them from living independently. To complicate things further, about 90% of them are estimated to live in low-income situations.

Project Lighthouse was started by Mozilla to try and find low-cost technological solutions that can help vision-impaired people live and function on their own. To this date, we have produced several prototypes designed to aid users in a variety of situations. Let’s look at some of them. This will be a relatively low-tech presentation.

  • 16:30 – 16:55 – Scientific MicroPython for Microcontrollers and IoT, IoT programming with Python, by Roberto Colistete Jr

MicroPython is a implementation of Python 3 optimised to run on a microcontroller, created in 2013 by the Physicist Damien P. George. The MicroPython boards runs MicroPython on the bare metal and gives a low-level Python operating system running interactive prompt or scripts.

The MicroPython boards currently use 32 bit microcontrollers clocked at MHz and with RAM limited to tens or hundreds of Kbytes. These are the microcontroller boards with official MicroPython support currently in the beginning 2017 : Pyboard, Pyboard Lite, WiPy 1/2, ESP8266, BBC Micro:bit, LoPy, SiPy, FiPy. They cost between USD3-40, are very small and light, about some to tens of mm in each dimension and about 5-10 g, have low power consumption, so MicroPython boards are affordable and can be embedded in almost anything, almost anywhere.

Some hints will be given to the FOSS community to be open minded about MicroPython : be aware that MicroPython exists, MicroPython is a better programming option than Arduino in many ways, MicroPython boards are available and affordable, porting more Python 3 scientific modules to MicroPython, MicroPython combines well with IoT.

  • 17:00 – 17:25 – Iotivity from devices to cloud; how to make IoT ideas to real using FLOSS, by Philippe Coval & Ziran Sun (Samsung)

The OCF/IoTivity project aims to answer interoperability issues in the IoT world from many different contexts to accommodate a huge range devices from microcontrollers, to consumer electronics such as Tizen wearables or your powerful GNU/Linux system The vision of Iotivity is not restricted to ad hoc environment but also can be connected to Internet and make the service easily accessible by other parties. With cloud access in place, usage scenarios for IoT devices can be enriched immensely.

In this talk we walk through the steps on how to practically handle IoT use cases that tailored towards various topologies. To introduce the approach used in IoTivity, we first give a detailed background introduction on IoTivity framework. Then we will present a demo that shows a few examples, from setting up a basic smart home network to accessing the IoT resource via a third party online service. Challenges and solutions will be addressed from development and implementation aspects for each step of the demo.

We hope this talk will inspire developers to create new IoT prototypes using FLOSS.

  • 17:30 – 17:55 – Open Smart Grid Platform presentation, an Open source IoT platform for large infrastructures, by Jonas van den Bogaard

The Open Smart Grid Platform is an open source IoT platform. The open smart grid platform is a generic IoT platform, built for organizations that manage and/or control large-scale infrastructures. The following use cases are now readily available: smart lighting, smart metering, tariff switching, and microgrids. Furthermore the following use-cases are in development: distribution automation, load management and smart device management. The architecture of the open smart grid platform is modular and consists multiple layers.

The open smart grid platform is highly unique for embracing the open source approach and the following key features:

  • Suitable for scalable environments delivering high performance
  • High availability and multitenant architectures
  • Built with security by design and regularly tested.
  • It has a generic architecture. More use cases and domains are easily added to the platform.
  • The open smart grid platform is based on open standards where possible.

We believe the platform is interesting for developers who have interest in working on use-cases for Smart Cities, Utility Companies and other large-scale infrastructure companies.

  • 18:00 – 19:00 – AGL as a generic secured industrial embedded Linux; factory production line controllers requirements are not that special, by Dominig ar Foll

There is no de facto secured embedded Linux distro while the requirement is becoming more and more critical with the rise of IoT in Industrial domains. When looking under the hood of the Yocto built AGL project (Automotive Linux), it is obvious that it can fit 95% of the most common requirements as a Secured Embedded Linux. We will look how non Automotive industries can easily reuse the AGL code and tools to build their own industrial product and why it’s a safer bet than to build it internally.

Industrial IoT cannot be successful without a serious improvement of the security coverage. Unfortunately there is as today, no of-the-shelves offer and the skills required to create such solution, are at best rare, more often out of reach. AGL as created a customizable embedded Linux distro which is nicely designed for reuse in many domains outside of Automotive. During the presentation we will see how to: – start your development with boards readily available on the Net, – change the BSP and add peripherals using Yocto layers or project like MRAA, – integrate a secure boot in your platform, – add your middleware and your application without breaking the maintained Core OS – develop a UI on the integrated screen and/or an HTML remote browser – update the core OS and your add-ons. – get support and influence the project.

Sunday 5, 2017

  • 10:00 11:00 – How I survived to a SoC with a terrible Linux BSP, Working with jurassic vendor kernels, missing pieces and buggy code, by Luca Ceresoli

In this talk Luca will share some of his experiences with such vendor BSPs, featuring jurassic kernels, non-working drivers, non-existing bootloaders, code of appallingly bad quality, ineffective customer support and Windows-only tools. You will discover why he spent weeks in understanding, fixing and working around BSPs instead of just using them. The effects on the final product quality will be described as well. Luca will also discuss what the options are when you face such a BSP, and what both hackers and vendors can do to improve the situation for everybody’s benefit.

  • 11:00-12:00 – Open Source Car Control, by Josh Hartung

This fall my team launched the Open Source Car Control (OSCC) project, a by-wire control kit that makes autonomous vehicle development accessible and collaborative to developers at every level. In this presentation, we discuss the project and its implications on the development of autonomous cars in a vertically integrated and traditionally closed industry.

A primary barrier to entry in autonomous vehicle development is gaining access to a car that can be controlled with an off-the-shelf computer. Purchasing from an integrator can cost upwards of $100K, and DIY endeavors can result in unreliable and unsafe solutions. The OSCC project acts as a solution to these problems. OSCC is a kit of open hardware and software (based on Arduino) that can be used to take control of the throttle, brake, and steering in modern cars. The result is a fully by-wire test car that can be built for about $10K (USD), including the vehicle. In this discussion, we unpack the impetus and development of the OSCC project, challenges we encountered during development, and the role projects like OSCC have in a necessary “flattening” of the automotive industry.

  • 12:00 – 13:00 – Kernel DLC Metrics, Statistic Analysis and Bug-Patterns, by Nicholas Mc Guire

SIL2LinuxMP strives to qualify a defined GNU/Linux subset for the use in safety-related systems by “assessment of non-compliant development”. To demonstrate that the kernel has achieved suitable reliability and correctness properties basic metrics of such properties and their statistic analysis can be used as part of the argument. Linux has a wealth of analytical tools built-in to it which allow to extract information on compliance, robustness of development, as well as basic metrics on complexity or correctness with respect to defined properties. While IEC 61508 Ed 2 always pairs testing and analysis, we believe that for a high complexity system traditional testing is of relatively low effectiveness and analytical methods need to be the primary path. To this ends we outline some approaches taken:

  • Bug-age analysis
  • Bug-rates and trend analysis
  • Code-complexity/bug relationship
  • Brain-dead correctness analysis
  • Interface and type-correctness analysis
  • API compliance analysis
  • Analysis of build-bot data

While much of the data points to robust and mature code there also are some areas where problems popped up. In this talk we outline the used methods and give examples as well as key findings. FLOSS development has reached a quite impressive maturity, to substantially go beyond we think it will need the use of quantitative process and code metrics – these results from SIL2LinuxMP may be a starting point.

  • 13:00 – 14:00 – Loco Positioning: An OpenSource Local Positioning System for robotics, presentation with a demo of autonomous Crazyflie 2.0 quadcopter, by Arnaud Taffanel

Positioning in robotics has alway been a challenge. For outdoor, robots GPS is solving most of the practical problems, but indoor, precise localization is still done using expensive proprietary systems mainly based on an array of cameras.

In this talk, I will present the loco positioning system: an open source Ultra Wide Band radio-based local positioning system, why we need it and how it works. I will also speak about its usage with the Crazyflie 2.0 open source nano quadcopter, of course ending with an autonomous flying demo.

  • 14:00 14:50 – Free Software For The Machine, by Keith Packard

The Machine is a hardware project at Hewlett Packard Enterprise which takes a new look at computer architecture. With many processors and large amounts of directly addressable storage, The Machine program has offered an equally large opportunity for developing new system software. Our team at HPE has spent the better part of two years writing new software and adapting existing software to expose the capabilities of the hardware to application developers.

As directly addressable storage is such a large part of the new hardware, this presentation will focus on a couple of important bits of free software which expose that to applications, including our Librarian File System and Managed Data Structures libraries. Managed Data Structures introduces a new application programming paradigm where the application works directly on the stable storage form for data structures, eliminating serialization and de-serialization operations.

Finally, the presentation will describe how the hardware is managed, from sequencing power to a rack full of high-performance computing hardware, through constructing custom Linux operating systems for each processor and managing all of them as parts of a single computing platform.

  • 15:00 – 15:25 – Diving into the KiCad source code, by Maciej Sumiński

Let’s be sincere, all of us would love to change something in KiCad. I bet you have an idea for a new tool or another killer feature that would make your life so much easier.

You know what? You are free to do so! Even more, you are welcome to contribute to the project, and it is not that difficult as one may think. Those who have browsed the source code might find it overwhelming at first, but the truth is: you do not have to know everything to create useful extensions.

I would like to invite you for a walk through the KiCad source code to demonstrate how easy it is to add this tool you have always been dreaming about.

  • 15:30 – 16:00 – Testing with volcanoes – Fuego+LAVA, embedded testing going distributed, by Jan-Simon Möller

LAVA and Fuego are great tools individually already. Combining and extending them allows for a much broader test coverage than each tool alone can provide.

The focus of this talk is to share the experiences made and lessons learned so people can integrate such tools better in their own environment. It also raises the pain-points and open issues when setting up a distributed environment.

Especially for Automotive, Long-Term-Support, CIP or Consumer Electronics, advancing the Test-harness is essential to raise the bar and strengthen the confidence in our embedded platforms. Automated testing can improve our ecosystem from two sides: during development (feature does work and does not break things) and during maintenance (no regressions through backports).

  • 16:00 – 16:30 – Adding IEEE 802.15.4 and 6LoWPAN to an Embedded Linux Device, by Stefan Schmidt

Adding support for IEEE 802.15.4 and 6LoWPAN to an embedded Linux board opens up new possibilities to communicate with tiny, IoT type of, devices.

Bringing IP connectivity to devices, like sensors, with just a few kilobytes of RAM and limited battery power is an interesting IoT challenge. With the Linux-wpan and 6LoWPAN subsystems we get Linux ready to support the needed wireless standards as well as protocols that connect these tiny devices into the wider Internet. To make Linux a practical border router or smart home hub for such networks.

This talk will show how to add the needed transceiver hardware to an existing hardware and how to enable and configure the Linux-wpan and 6LoWPAN mainline subsystems to use it. The demonstration will include setting up the communication between Linux and other popular IoT operating systems like RIOT or Contiki as well.

  • 16:30 – 17:00 – OpenPowerlink over Xenomai, by Pierre Ficheux

Industrial Ethernet is a successor of classic field bus such as CAN, MODBUS or PROFIBUS. POWERLINK was created by B&R Automation and provides performance and real­-time capabilities based on standard Ethernet hardware. openPOWERLINK is open source and runs on lots of platforms such as Linux, Windows, various RTOS and dedicated hardware (FPGA). We will explain how to use openPOWERLINK on top of Xenomai 3, a powerful real-time extension for Linux kernel based on co-­kernel technology.

FOSDEM 2017 will take place at the ULB Solbosch Campus in Brussels, Belgium, and no registration is required, you just need to show up in order to attend the event.

BitScope Blade Industrial Mounting & Power Systems Support Up to 40 Raspberry Pi Boards

January 27th, 2017 12 comments

BitScope Designs, a manufacturer of embedded mixed signal test, measurement and data acquisition systems, has announced the launch of a new models of their industrial desktop, rack or wall mountable power and mounting power systems with BitScope Blade Uno, Duo, and Quattro supporting respectively 1, 2 and 4 Raspberry Pi 3/2/B+/A+ boards. The blades can also be mounted in a 19″ rack with up to 40 Raspberry Pi boards.

The three systems share many of the same specifications:

  • Power Supply

    40 Rapsberry Pi Rack with (Older Versions) of BitScope Blade Quattro

    • Unregulated 9V to 48V DC power, compatible with most 12V & 24V UPS, most DC solar power systems
    • 4A (peak) switch mode supply built-in
    • 2.1mm socket or industrial power tabs
    • Can be used with low cost passive PoE,
    • Can power external USB, HDD & SSD
    • 5V auxiliary power for example for Pi Display
  • Expansion& I/O ports
    • Full access to RPi’s I2C, SPI, UART & most GPIO
    • Slot for camera connector for each Pi
    • HDMI and audio accessible from Pi in BAY one
    • Blade HUB I/O expansion sockets for each Pi
    • Compatible with BitScope CAP industrial I/O
  • Mount System
    • Rack mount to build compute cluster solutions
    • 4 x 3mm tabs and wall mounting stand-offs

Wall Mounted BitScope Blade Duo (Older Version) with2 Raspberry Pi boards

Each model also has specific features:

  • BitScope Blade UNO (BB01B)
    • Designed for one Raspberry Pi and one HAT
    • Power and connect up to 4x BitScopes
    • Raspberry Pi power control header,
    • 2x USB power sockets
  • BitScope Blade DUO (BB02B)
    • Designed for 2x Raspberry Pi boards
    • Power and connect up to 8x BitScopes
    • Individual power and reset inputs for each Pi
  • BitScope Blade QUATTRO (BB04B)
    • Designed for 4x Raspberry Pi boards
    • Power and connect up to 16x BitScopes
    • Individual power and reset inputs for each Pi.

Back side of BitScope Blade Duo – Click to Enlarge

The HUB CAP expansion sockets are used to connect BitScope mixed signal scopes & analyzers, which can be controlled by BitScope DSO software running on the Raspberry Pi board with oscilloscope, logic analyzer, wave generator, and other modes of operation.

You’ll find a few more details on the press release, and the new BitScope Blades can be purchased exclusively on Element14 starting at 32.5 GBP (~$41 US). BitScope also has a “Blades” product page, but it is currently referring to the older versions.

RailPi 2.0 DIN Rail Enclosure & Industrial Expansion Board is Designed for Raspberry Pi 3 & ODROID-C2 Boards

January 17th, 2017 1 comment

We’ve already seen the Raspberry Pi compute module used for industrial applications with RevolutionPi RevPi Core industrial computer with a DIN rail enclosure, support for digital I/O modules and fieldbus gateways. Hagedorn Software Engineering GmbH, another German company has designed a similar industrial computer, called RailPi 2.0, with a DIN rail enclosure integrating an add-on board designed for Raspberry Pi 3 and ODROID-C2 boards.

Click to Enlarge

RailPi 2.0 specifications (adapted from Google Translation of website):

  • I/Os
    • 4x digital outputs, short-circuit-proof, PWM-compatible, with diode for the connection of inductive loads such as relays.
    • 2x optically decoupled inputs, current-limited, with dimensions compliant with the S0 standard to allow them to be used with  pules counters / current meters.
    • RS485 interface
    • 1-Wire bus placed at the front of the RailPi
    • Bus connector for extensions with GND,I2C Clock (5V), I2C data (5V), 5V, and 12V
  • Misc – Real-time clock
  • Power Supply – Input voltage range of 9-36V DC

The Raspberry Pi 3 / ODROID-C2 ports are also exposed through the enclosure with 4 USB ports, Ethernet, and more. RailPi website provides some more details, especially if you can read German. The expansion board schematics have also been released in PDF format.

Click to Enlarge

This type of equipment is quite specialized and sold in low volume, so pricing might be higher than you would expect. You’ll find two models on RailPi store with RailPi 2.0 + Raspberry Pi 3 board sold for 236.81 Euros, and RailPi 2.0 + ODROID C2 for 248.71 Euros.

If you don’t really need to complete system with industrial input / output boards, but would just need a DIN rail enclosure for your board, there are much cheaper options with on RS Components starting at 4.74 GBP (<$6) although at this low price it might only be part of the case, as well as ModMyPi, and eBay.

Thanks to Sander for the tip.

Kunbus RevolutionPi RevPi Core Raspberry Pi based Industrial Computer Sells with Digital I/O Modules and Fieldbus Gateways

December 16th, 2016 8 comments

Kunbus, a German company specialized in industrial network solution, has decided to design an industrial system based on Raspberry Pi Computer module supporting variable power supply, a wide temperature range, DIN rail mounting, etc, as well as corresponding digital I/O modules and fieldbus gateways.

industrial-raspberry-pi-revpiRevolutionPI RevPi Core specifications:

  • SoC – Broadcom BCM2835 ARM11 processor @ 700 MHz
  • System Memory – 512 MB
  • Storage – 4GB flash
  • Video Output – Micro HDMI port
  • Connectivity – 10/100M Ethernet port
  • USB – 2x USB 2.0 host ports, 1x micro USB port
  • Misc – RTC, 3x status LEDs (2 programmable)
  • Power Supply – 10.7 V to 28.8 V; polarity protection; 4 kV / 8 kV ESD protection & EMI passed (according to EN61131-2 and IEC 61000-6-2), surge and burst tests passed
  • Power Consumption – Max: 10 Watts including 2 x 450 mA USB load; typ.: 4 watts.
  • Dimensions – 96 x 22.5 x 110.5 mm (Polycarbonate case)
  • Housing type – DIN rail housing for DIN rail version EN 50022
  • Weight – 108 g
  • Protection class – IP20
  • Temperature Range – Operating: -40 °C to +55 °C (exceeds EN61131-2 requirements); storage: -40 °C to +85 °C (exceeds EN61131-2 requirements); N/B.: No guarantee that the system can start at less than 30 °C with a 24V power supply.
  • Humidity – up to 93% (non-condensing) @ 40°C

The system runs Raspian Wheezy with RT-patch for Linux kernel 4.1.13.

revolution-pi-revpi-core

Beside RevPi Core described above, the company also offers three different galvanically isolated “RevPi DIO” digital IO modules with a 28-pin I/O connector as shown in the first picture, as well as RevPi Gates gateways supporting industrial communication standards including Profinet, Profibus, EtherCat, Modbus, Sercos, CANopen, and more. RevPi DIO and Gates are connected to RevPi core through a overhead Pi Bridge connector allowing two expansions per RevPi Core.

Click to Enlarge

Some RevPi Gates Gateways

You can find the full details on Kunbus RevolutionPi microsite, and purchase RevolutionPi RevPi Core (169 Euros), DIO modules and gateways on their webstore.

Thanks to Sander for the tip.