Raspberry Pi 4 Features Broadcom BCM2711 Processor, Up to 4GB RAM

Long expected, the Raspberry Pi 4 model B has finally launched, and it should not disappoint with a much more powerful Broadcom BCM2711 quad-core Cortex-A72 processor clocked at up to 1.5 GHz, 1 to 4GB LPDDR4, 4K H.265 video decoding and output support, a proper Gigabit Ethernet port, as well as USB 3.0 and 2.0 ports.

Raspberry Pi 4 comes with all those extra features, but the form factor remains the same, and importantly the price is still $35 for the version with 1GB RAM, making Raspberry Pi alternatives suddenly much less interesting.

Raspberry Pi 4 Model B
Click to Enlarge

Raspberry Pi 4 specifications:

    • SoC – Broadcom BCM2711 quad-core Cortex-A72 (ARMv8) @  1.5GHz with VideoCore VI GPU supporting OpenGL ES 3.0 graphics
    • System Memory – 1GB, 2GB or 4GB LPDDR4
    • Storage – microSD card slot
    • Video Output  & Display I/F
      • 2x micro HDMI ports up to 4Kp60 (Currently 1080p60 max. in dual-display configuration, although 2x 4Kp30 is being worked on)
      • 3.5mm AV port with composite video (and stereo audio)
      • 2-lane MIPI DSI display port
    • Video
      • Decode – H.265 up to 4Kp60, H.264 up to 1080p60
      • Encode – H.264 up to 1080p30
    • Camera – 2-lane MIPI CSI camera port
    • Audio – Stereo audio via AV port, digital audio via HDMI ports
    • Connectivity
      • True Gigabit Ethernet (RJ45)
      • Dual band (2.4 GHz/5.0 GHz) 802.11b/g/n/ac WiFi 5
      • Bluetooth 5.0 BLE
    • USB – 2x USB 3.0 ports, 2x USB 2.0 ports.
    • Expansion – Standard 40-pin GPIO header fully backward-compatible with previous Raspberry Pi boards
    • Power Supply
      • 5V DC via USB-C connector (minimum 3A )
      • 5V DC via GPIO header (minimum 3A )
      • Power over Ethernet (PoE) via optional PoE HAT
    • Dimensions – 85 x 56 mm (same as other model B boards)
    • Temperature Range – 0 – 50°C
Raspberry Pi 4 Bottom
Click to Enlarge

Beside the “true” Gigabit Ethernet port, the good news for people interested in network storage applications is that the shared USB + Ethernet bandwidth is gone, as there’s a separate Gigabit Ethernet transceiver (BCM54213PE), and USB goes through a VIA VL805 PCIe to 4-port USB 3.0 host controller. The latter means BCM2711 comes with a PCIe interface giving the Raspberry Pi foundation some flexibility for future Raspberry Pi SBC’s.

There have been at least two hardware changes that have made the new board incompatible with existing Raspberry Pi cases:

  1. They swapped two USB ports and the Ethernet port to place the latter closer to the PoE header.
  2. They replaced the HDMI port with two micro HDMI ports

So a new case is needed, and here’s the official Raspberry Pi 4 enclosure.

Official Raspberry Pi 4 CaseThe USB-C port should mean issues related to powering the board should mostly be a thing of the past, and the main downside I see from the announcement is that we’ll need to get micro HDMI cables or HDMI to micro HDMI adapters to connect Raspberry Pi 4 to HDMI TVs or monitors. Not a big issue.

Raspberry Pi 4 model B with 1GB RAM sells for the same $35 as the previous model, with the 2GB and 4GB RAM models are coming soon for respectively $45 and $55 with local variations due to taxes, shipping cost, and currency exchange. The board and accessories can be purchased online from Cytron, Element14, RS Components, or other online as well as local distributors.

Support CNX Software - Donate via PayPal, become a Patron on Patreon, or buy review samples
Subscribe
Notify of
guest
140 Comments
oldest
newest most voted
dgp
dgp
1 year ago

>The USB-C port should mean powering the board should mostly be a thing of the past,

USB-C == free dark space energy?

TLS
TLS
1 year ago

I think he was referring to the issues with many micro USB power supplies not delivering enough power to previous generation boards, as well as some power instability regardless if the power supply was up to scratch, depending on what you connected to the RPi boards.

TLS
TLS
1 year ago

Impressive spec for the money.
I’m curious how hot the new chip runs though, as I’ve heard down the grape vine that the SoC is still made at 28nm. This suggests that it might run quite hot. Not RK3399 hot, but maybe not too far off…
I just wish they’d come up with a better form factor…
It’s a shame they didn’t add eMMC support, even via a header like many other boards these days, but according to this, there’s SPI flash for the boot ROM – https://www.raspberrypi.org/documentation/hardware/raspberrypi/booteeprom.md

tkaiser
tkaiser
1 year ago

> https://www.raspberrypi.org/documentation/hardware/raspberrypi/booteeprom.md

Yeah, this confirms that the SoCs are simply incompatible. The stuff on the FAT partition is for the older RPi that will boot with ThreadX as primary OS, the new RPi seems to be a design where the ARM cores are now first class citizens and boot directly off the SPI flash. I want to get my hands on the new Raspbian Buster release to understand all the details…

Hmm… if I’ll ever redo an OMV image for RPi then it will be only compatible with 4 and above.

michael
michael
1 year ago

BTW . The mentioned SPI flash is for the second boot phase – afaik not for the initial boot.

Arnd Bergmann
Arnd Bergmann
1 year ago

Having an SPI flash seems like a huge departure from the old idea of having an unbrickable device that has all its writable storage on removable SD cards, which always seemed like both the biggest advantage (completely newbiew-proof) and disadvantage (most SD cards don’t survive being used as a writable rootfs for a long time), compared to the usual eMMC or raw NAND based boards.

tkaiser
tkaiser
1 year ago

They seem to implement a recovery mode where you need to put new EEPROM contents as file recovery.bin on the first FAT formatted partition on an SD card and then boot with this SD card inserted. Maybe the SoC can overwrite the EEPROM even in situations where the contents are corrupted?

dgp
dgp
1 year ago

@tkaiser

It’s likely the boot rom (in the SoC itself, not the SPI one) can load binaries from SD just fine but it’s limited to whatever internal SRAM there is. If someone works out the DRAM init then it should be possible to have a u-boot SPL on the sdcard that loads u-boot proper.

It actually seems weird that they’ve added extra cost to their BOM instead of doing what every other ARM board does.

michael
michael
1 year ago

Yes, it has’t much changed with RP4, the old VC VPU is still there, it is booting first (independed form the eeprom) and (if there is a need) can write/rewrite the bootloader (bootcode.bin) to the external eeprom.

dgp
dgp
1 year ago

@michael

They say they are doing the dram init in whatever is loaded from the spi flash… Does that mean the contents of the spi flash are running on the VC or that the VC doesn’t have access to dram until it’s brought up?

michael
michael
1 year ago

The VPU does have access to the first 1 GB RAM. All (caching, Bus controller …) does work as before. Beside this the new bus master controllers (ARM,PCIe) are now 35-bit.

tkaiser
tkaiser
1 year ago

> the old VC VPU is still there, it is booting first (independed form the eeprom)

Seriously? This is still a ThreadX platform?

zoobab
1 year ago

ThreadX was juts bought by Microsoft 🙂 : “ThreadX, developed and marketed by Express Logic of San Diego, California, United States, is a highly deterministic, embedded real-time operating system (RTOS) written mostly in the C (programming language). Express Logic was purchased for an undisclosed sum by Microsoft on April 18, 2019.[1]” https://en.wikipedia.org/wiki/ThreadX

Benjamin HENRION
1 year ago

Plus ThreadX is actually responsible to govern the CPU: “We cannot know everything the GPU is doing, but we do know some things that it is in charge of. The most relevant one for this discussion is that ThreadX monitors for undervoltage, which is a widespread issue as we will see next, and will underclock the CPU to prevent instructions failing and the CPU to hang, which results in people’s devices running at 600MHz instead of 1400MHz in the best case. This throttling starts happening at 4.65V and can also be triggered by temperature. Linux and its frequency governor still… Read more »

Fossxplorer
Fossxplorer
1 year ago

Around 80 degrees at full Load to be throttled. I read at tomshardware. So er nerd at least heatsink for this to be useful for many of us:)

Jamez
Jamez
1 year ago

80 C?

chewitt
chewitt
1 year ago

Yes 80ºC

tkaiser
tkaiser
1 year ago

Impressive, curios whether it’s software compatible (ThreadX). No new Raspbian available at the moment…

TLS
TLS
1 year ago

In this context, it means that it’s available now, not that it’s being discounted.

tkaiser
tkaiser
1 year ago

Yes, I came to the same conclusion and edited my comment. And found also out that a new Raspbian release is needed. Still curious what’s about ThreadX and whether the new BCM2711 needs the stuff on the FAT partition or simply ignores it and boots directly the main OS.

TLS
TLS
1 year ago

As pointed out above, there seems to be an SPI flash on the board where the boot loader resides now. Maybe that’s their work around?

tkaiser
tkaiser
1 year ago

https://blog.mythic-beasts.com/2019/06/22/raspberry-pi-on-raspberry-pi/ tells about the RPi 4 ‘yet’ not able to netboot which might be an indication that ThreadX as main OS has gone here. So most probably it’s more or less incompatible ‘at the heart’ which doesn’t matter that much for average users since the OS images available will still run on the older RPi and the new one.

Really curious how they deal with video on the new SoC (VC is mentioned as ‘VideoCore 3D’ solely focusing on this and not the VC’s video engine on the older RPi).

tkaiser
tkaiser
1 year ago

> Raspbian will still be 32-bit

Sure and compiled for ARMv6 as in the past. But that’s neither important nor an issue (64-bit code comes with a larger memory footprint and provides better performance only in rare cases).

blu
blu
1 year ago

If they supply aarch64 ld out of the box then sure — let their userspace be whatever they like. More often than not, though, running arm64 binaries on an armhf userspace is a much greater hurdle than running armhf binaries on a arm64 userspace, exactly because of the way the armhf/aarch64 loaders are made asymmetrical to set up.

tkaiser
tkaiser
1 year ago

They bring up the cores in ARMv7/32-bit state (I linked to a German review but Jean-Luc deleted my comment, most probably in preparation of an own test). In the meantime the new Raspbian release is available: https://www.raspberrypi.org/downloads/raspbian/

tkaiser
tkaiser
1 year ago

sbc-bench please.

I saw a 7-ZIP MIPS score of 5658 which would mean that the RPi 4 is ~50% faster than a RPi 3 but still slower than RK3399 boards, ODROID XU4 or S922X/A311D boards with multi-threaded loads. But looking at final scores without monitoring what’s happening (throttling?) is somewhat useless.

tkaiser
tkaiser
1 year ago

Phoronix takes ages while sbc-bench should finish in less than 15 minutes 🙂

And just in case you don’t know it: with sbc-bench -m you switch to monitor mode though no idea whether monitoring clockspeeds/thermals works already with RPi 4. Quite useful to monitor execution of other benchmarks like Phoronix to spot throttling or similar behavior (frequency capping due to undervoltage is one of the unique RPi ‘features’)

Gouwa
1 year ago

The result of A311D board is based on 2GB RAM, will update 4GB version soon.

We will also try to overclock the A73 freq over 2.2 GHz if available.

BTW, will the sbc-bench support the NPU performance test in the future?

Arnd Bergmann
Arnd Bergmann
1 year ago

An optimized build with -mtune=cortex-a72 in ARMv8 aarch32 mode would likely run noticeably faster in user space. idiv, neon, and pipeline specific optimizations each may be small, but they do add up, thumb2 mode might help or hurt depending on use case and the memory subsystem. Also at 4GB of RAM, you really want to run a 64-bit kernel at least, otherwise over 80% of the RAM is highmem. The easiest way would certainly be to just run a whole 64-bit distro and skip Raspbian, but then we need to wait for either the kernel support to get mainlined first… Read more »

chewitt
chewitt
1 year ago

It’s possible to run a 64-bit kernel, but once you scale out the software stack the world expects to run on an RPi4 you start to find gaps and thus 32-bit was the sensible way forwards for the launch. The intention is to upstream a lot more support than has been acheived in the past so there’s less downstream technical debt on the Pi Foundation maintainers – and during development the ‘bring up’ team has included several regular kernel contributors to assist/guide (and in some cases force) development to follow a path that’s less “make it work” and more “make… Read more »

TLS
TLS
1 year ago

5.6 Temperature Range and Thermals The recommended ambient operating temperature range is 0 to 50 degrees Celcius. To reduce thermal output when idling or under light load, the Pi4B reduces the CPU clock speed and voltage. During heavier load the speed and voltage (and hence thermal output) are increased. The internal governor will throttle back both the CPU speed and voltage to make sure the CPU temperature never exceeds 85 degrees C. The Pi4B will operate perfectly well without any extra cooling and is designed for sprint performance – expecting a light use case on average and ramping up the… Read more »

blu
blu
1 year ago

That improvised fan would’ve been way more efficient had the Foundation put something resembling a heatsink..

zoobab
1 year ago

Or “Make Rpi Noisy Again”

chewitt
chewitt
1 year ago

Most RPi resellers offer a stick-on heatsink pack for £1/$1 which is enough to keep temps a bit lower.

blu
blu
1 year ago

That’s not reassuring. At the very least, there should be a list of Foundation-endorsed thermal solutions that can sustain the levels of advertised performance.

tonny
tonny
1 year ago

Expected similar or less than Odroid XU4 performance. Minus is, they use BCM2711 with 28nm (same with ~4yo XU4), it will be much better if they move to 14nm. But for that price, it’s kind of OK. 4 Cortex-A72 is much welcomed.

If I can get $49 XU4 vs $45 rpi4 with same postal fee (which won’t happen. rpi4 will be readily available later at my country), I rather get XU4 still. +4 little core, included heatsink, and mature OS is a plus.

*edited

dgp
dgp
1 year ago

If the GPIO header is still 3.3v safe that is one major advantage over the XU4.

tonny
tonny
1 year ago

up there posted the board datasheet. Looks like 3.3v safe. Oh, and one more minus: RTC. XU4 RTC is better.

dgp
dgp
1 year ago

RTC isn’t too much of a problem. You probably only really need the correct time for TLS. If you can do TLS you can do NTP to get the right time.

tonny
tonny
1 year ago

I’m using it for web server and sometimes for desktop computer. In my city, internet connection is not always available, or client that don’t want to connect to internet (beside electricity problem). XU4 RTC is so simple that I can just go to the electronic shop and buy one, compared to RPI ‘RTC Hat’

dgp
dgp
1 year ago

Don’t get me wrong, I think the hardkernel stuff is much better engineered, but the hassle of getting the always on power stuff worked out for the RTC probably wasn’t worth the effort for the rpi. Not many people want to use something that performs like a $20 junk shop laptop as their main computer so having accurate time without internet connectivity isn’t that much of a concern.

tonny
tonny
1 year ago

Agreed about hardkernel. For rpi4, I think they should think abut RTC cause as of now, it’s quite good for desktop replacement, IMHO.

anazhd
1 year ago

I’d root for the pi 4 regardless just because of broader range of community/third party support.

tkaiser
tkaiser
1 year ago

Let’s see how compatible the old VideoCore thingies are compared to the first ‘true ARM’ RPi 😉

blu
blu
1 year ago

Fabnode and thermals?

tkaiser
tkaiser
1 year ago

See above. Die shrink from 40nm to 28nm somewhat helps and they promise no sustained full performance without additional cooling as expected.

blu
blu
1 year ago

But I see no provisioning for additional cooling, no?

blu
blu
1 year ago

I was just marveling at the mechanical engineering involved : )

Laurent M.
1 year ago

Are you joking ? A fan blowing on a naked cpu will be wildly inefficient, you need big surface in contact with flowing air to dissipate heat (the prurpose of the fins of a heatsink). And what worry me more is “the fixation”… only two point (the hole is in line with the gpio connector ) and a vibrating mass (the fan) which is centimeters away… this thing must jiggle like and shit and could even weaken the solders of the gpio port. At min I would add a heatsink and use an opposite mounting hole to create a 3… Read more »

blu
blu
1 year ago

For the record, I was kidding.

Cyk
Cyk
1 year ago

Micro HDMI is a terrible choice. Hardkernel had to make this experience with Odroid C1, which was the reason why they switched back to fullsize HDMI on the C2.

Steve
Steve
1 year ago

Yes – historically the Pi Foundation spoke negatively about Micro HDMI connectors when they explained their use of Mini HDMI on the Pi Zero. They aren’t the greatest mechanically. However I can see why the Pi Foundation took the decision to use them in order to provide dual display functionality in the same form factor.

TLS
TLS
1 year ago

Mini DP or USB-C would’ve been a far superior choice imho.

Gouwa
1 year ago

Just wondering if two HDMI Flag Connectors would be better then Micro HDMI 🙂

https://www.te.com/usa-en/product-2007435-2.html?q=hdmi&type=products&p=2&samples=N&inStoreWithoutPL=false&instock=N

Gouwa
1 year ago

Hi Jean:
May I know that where you got the information that Rpi4 encode with H.264 up to 1080p30?

Thanks!

Gouwa
1 year ago

Anybody know if the USB-C port of Rpi4 with USB OTG feature?

tkaiser
tkaiser
1 year ago

Yes, https://www.raspberrypi.org/blog/raspberry-pi-4-on-sale-now-from-35/ mentions ‘USB OTG to boot’

The RPi 4 is something entirely different than the old crippled VideoCore thingies (3B+ included). This is a real ARM device just using an embedded VideoCore implementation for 3D acceleration.

willy
willy
1 year ago

Gigabit, true USB3 and quad A72 ? Now this could become the first respectable device emitted by RPi foundation. Let’s see how it goes over time. No mention of crypto extensions though, and it might still be that default builds will remain unoptimized 32-bit. Let’s see how it goes.

Da Xue
Da Xue
1 year ago

It is a very respectable design. A72 has crypto extensions. Hopefully they ditch that Raspbian nonsense.

tkaiser
tkaiser
1 year ago

They bring the cores up in ARMv7 mode and as such Crypto Extensions not being usable is to be expected. Fiddling around in config.txt most probably won’t work (this is a VideoCore thing but maybe the RPi 4 bootloader in the SPI flash learns to parse config.txt as well to keep ‘compatibility’) so curios how to bring up the cores in 64-bit/ARMv8.

tkaiser
tkaiser
1 year ago

tomshardware did some overclocking tests and confirmed that config.txt is still in place. So the new bootloader still looks for stuff on the 1st partition that needs to be FAT formatted and you can add there stuff below a ‘[pi4]’ label.

Arnd Bergmann
Arnd Bergmann
1 year ago

There is no ARMv7 mode on ARMv8. Instead there is aarch32 mode, which is a superset of ARMv7VE. The Crypto Extensions in Cortex-A53 and Cortex-A72 are an optional feature, but if they are present, they would be there in both aarch32 and aarch64 mode.
Later instruction set extensions like SHA3 are only available in aarch64 mode, but Cortex-A72 predates them.
The raspbian image contains loadable modules for crypto extensions in /lib/modules/4.19.50-v7l+/kernel/arch/arm/crypto, but I don’t know if the CPU has the support enabled in hardware.

blu
blu
1 year ago

The problem I see here is more in line of ‘they bring up the CPU in aarch32 mode, and then they throw armv6 modules at it’. But that’s only part of the big problem. Basically, the Foundation is the sole entity out there who does 32-bit kernels on aarch64 hw, and it’s beyond stupid at this point. Even vendors who are (or used to be) hard-sworn armhf userspacers don’t do (or never did) this, and for a good reason: aarch64 kerenels run aarch32 tasks just fine, so you allow your aarch64 users to still make proper use of the hw,… Read more »

tkaiser
tkaiser
1 year ago

This is how /proc/cpuinfo looks like with RPi 4 and their Raspbian Buster: Shell Architecture: armv7l Byte Order: Little Endian CPU(s): 4 On-line CPU(s) list: 0-3 Thread(s) per core: 1 Core(s) per socket: 4 Socket(s): 1 Vendor ID: ARM Model: 3 Model name: Cortex-A72 Stepping: r0p3 CPU max MHz: 1500.0000 CPU min MHz: 600.0000 BogoMIPS: 270.00 Flags: half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idivt vfpd32 lpae evtstrm crc32 123456789101112131415 Architecture:        armv7lByte Order:          Little EndianCPU(s):              4On-line CPU(s) list: 0-3Thread(s) per core:  1Core(s) per socket:  4Socket(s):           1Vendor ID:           ARMModel:               3Model name:          Cortex-A72Stepping:            r0p3CPU max MHz:         1500.0000CPU min MHz:         600.0000BogoMIPS:            270.00Flags:               half thumb fastmult vfp edsp neon… Read more »

blu
blu
1 year ago

That’s lscpu, still thanks for providing it.

Arnd Bergmann
Arnd Bergmann
1 year ago

I wanted to add kernel support for armv7ve and armv8 to arch/arm/ years ago but somehow never got around to that, so a 32-bit kernel never reports anything higher than plain armv7-a. Running a 64-bit kernel will show “ARMv8 Processor” in /proc/cpuinfo (not ARMv8.1-A or higher, that never got added either), and it’s possible that some distros patched their kernels to also do that on 32-bit, but those patches were never submitted.

crashoverride
crashoverride
1 year ago

The USB chip (VIA VL805) is, as noted, a four (4) port hub. However, there are only two (2) USB3.x ports. Since I doubt they ‘wasted’ two ports, I bet the GB network (and possibly wifi) are attached to the hub internally. I could not find any technical documents (the ‘schematics’ are useless) to confirm or deny this. This would mean that network and (USB) storage are still sharing bandwidth (likely single lane PCIe2.0 5GTs).

tkaiser
tkaiser
1 year ago

> The USB chip (VIA VL805) is, as noted, a four (4) port hub

What? It’s not a hub but a PCIe attached USB3 host controller: https://www.via-labs.com/product_show.php?id=48

According to DT (quick decompiled variant at ix.io/1MEO) the network (brcm,genet-v5) is RGMII attached.

crashoverride
crashoverride
1 year ago

> Anybody would have read the actual post, would know there’s a VIA PCIe to USB 3.0 hub
We apparently all going to call it a hub despite it being a HCI. 😉

I did find Eben’s post where its explicitly stated the ethernet is embedded in the SoC. Which still begs the questions: why ‘waste’ two USB3 ports?

I do appreciate them opting for a real HCI instead of the embedded Designware IP. I wish other manufacturers would follow suit on this.

tkaiser
tkaiser
1 year ago

> Which still begs the questions: why ‘waste’ two USB3 ports?

The SoC’s own USB2 port is available as OTG on the USB-C connector. So all 4 USB-A receptacles are provided by the VL805. Maybe they plan for future upgrades then routing SuperSpeed to all 4 receptacles so the RPi 4B+ next year can show an improvement over the 4B now?

Steve
Steve
1 year ago

In one of the interviews I read / watched they mentioned that they could only route 2 of the 4 USB 3.0 ports out as USB 3.0, with the others routed out as USB 2.0 only – it was literally a lack of board routing space?

I think they had to iterate a lot to get the board size back down to the standard form factor whilst still staying at 6 layers.

theguyuk
theguyuk
1 year ago

This is a odd ball, past comments from Upton said the old design with arm 53 core outside the old SoC, so as to fit them on the design was at the limit. So maybe it is 28nm. Yet it has a heat spreader, so thermal issues ?
Also can it run Android yet?
Was also claimed not to arrive till next year. Is it rushed out due to sales issues ?

theguyuk
theguyuk
1 year ago

No fan word processing
” Our Pi 4 Model B, sat on a desk without a case, hit 69 degrees just writing this piece in LibreOffice. Those keen to hammer their Pis, in terms of workload, would therefore be wise to look at options for keeping things cool. ”

So real cost is Pi 4+ case + fan + USB c power supply and a SDcard

As Upton stated as it heats, it clocks down cores.

debo
debo
1 year ago

will it use the new graphics stack (mostly by Eric Anholt) by default?

tkaiser
tkaiser
1 year ago

It has to. But this only deals with GPU (3D acceleration). I’m more curious how they deal with video acceleration now…

dgp
dgp
1 year ago

I’m taking bets on how many times tkaiser mentions threadx if anyone’s interested.

1000s
1000s
1 year ago

question remains, does it play HDR content?

theguyuk
theguyuk
1 year ago

My deleted post pointed to LibreElec who have a alpha for this Rpi4. HDR etc will need kernel updates. Software has been worked on for around 6 months but needs polishing and tweaking.

milkboy007
milkboy007
1 year ago

Its almost everything i wanted. ( dual display, usb3, larger ram, Gbe)
But its still Videocore IV. o(〒﹏〒)o
no biggie, since only one of my projects is Retropie.
any details info on the gpu?

blu
blu
1 year ago

They don’t seem to have officially passed GLES conformance on VC VI just yet (https://www.khronos.org/conformance/adopters/conformant-products/opengles ^f broadcom)

deadbeef
deadbeef
1 year ago

Great news regarding the gigabit ethernet. I can’t seem to find any information on WoL though. Will that be supported?

sola
sola
1 year ago

Storage IO does not seem to be improved much.

How do I attach external storage (sata3 or nvme ssd/hdd) to the Pi4 reliably and with good performance?

Does it still have to go through one of the USB ports or a custom storage hat?

How will this compare performance-wise to the RK3399 boards that have NVMe support?

I guess Odroid HC1 and HC2 will still have their market.

Arnd Bergmann
Arnd Bergmann
1 year ago

Using a proper USB3.0 instead of a half-broken USB2.0 will make a huge difference, it’s certainly fast enough for hard drives, and the throughput should be sufficient for SATA SSDs as well, though it adds noticeable latency. I suspect there will be an NVMe version at some point, because it is the obviously right thing to do.

hwti
hwti
1 year ago

Note that VL805 is PCIe 2.0 1x, so has a theoretical 5Gbps bandwidth shared by the 4 USB ports.

Jerry
Jerry
1 year ago

“PCIe 2.0 uses an 8b/10b encoding scheme, therefore delivering, per-lane, an effective 4 Gbit/s max transfer rate from its 5 GT/s raw data rate” – wikipedia.

hwti
hwti
1 year ago

You’re right, I forgot.
However, USB 3.0 also uses 8b/10b, so theoretical PCIe bandwidth still matches one USB 3.0 port.

tkaiser
tkaiser
1 year ago

How? You have a 8b/10b ‘reduction’ between SoC and USB host controller via PCIe. And at the other end of the USB3 host controller there’s 8b/10b again. So data is pushed with 4 Gbits/sec max between SoC and the VL805 and back. And due to 8b/10b again being the coding scheme for USB3 SuperSpeed you end up with a maximum transfer rate of 3.2 Gbits/sec. Or most probably I’ m missing something… Edit: right, it remains at the previous ‘reduction’ since the data rate that ends up being 4 Gbit/sec will not change once it’s sent over the wire again… Read more »

Harley
Harley
1 year ago

Missing port for eMMC storage module from my wishlist.

Also read that Rpi4 doesn’t yet support USB boot.

Harley
Harley
1 year ago

Miss a header for eMMC storage module from my wishlist.

Also read that Rpi4 doesn’t yet support USB boot.

tkaiser
tkaiser
1 year ago

> Miss a header for eMMC storage module from my wishlist.

Well, according to the RPi Trading ‘experts’ eMMC is less reliable than SD cards since… SD cards have wear leveling, EMMC generally doesn’t, so if using them for the same thing, the EMMC will fail first.

Jerry
Jerry
1 year ago

eMMC = live fast, die young. Ordinary users prefer replaceable cheap storage with wear leveling. This board is mostly designed for educational purposes. Major other users are the consumers of illegal movies (now 4k) and casual gamers playing emulated legacly pirate games.

Benjamin Hojnik
1 year ago

Thats just plain bullshit. There are no eMMCs (that i know of) that wouldn’t have any kind of wear levelling.

Remember, eMMC us just a soldered sd card and as such NEEDs a flash controller to work properly.

tkaiser
tkaiser
1 year ago

LOL, it get’s even better: eMMC is a nightmare of pain to implement (HW and SW) and costs a lot. These guys are really funny! 🙂

Reminds me of ‘fruitful discussions’ over there in RPi land when the clowns insisted that Micro USB would be the superior way to power SBC compared to sane barrel plugs. Also denying the undervoltage drama majority of RPi users is affected from.

Benjamin Hojnik
1 year ago

Yeah, that guy instills no confidence. Implementing eMMC doesnt really take that much more SW if any; eMMC as ive said is just a soldered sd card. Unless you’re doing some additional commands, software side for SD slot alone should be enough.

These are either just excuses or they dont know what theyre talking about.

Benjamin Hojnik
1 year ago

Also the dreaded 3V3 defect on earliest RPI1 rev1 boards never got adressed (a recall or a fix) they just cleaned it under the rug; even the thread on their forums is gone.

tkaiser
tkaiser
1 year ago

Quick sbc-bench run http://ix.io/1MFf shows the following: * it’s still VideoCore/ThreadX 🙁 * 1.5GHz are real, temps climb up to 80°C within few minutes 7-zip. * Vcore voltage a lot lower than before (0.86V now compared to 1.325V on RPi 3B+) * memory bandwidth/latency not that great * integer performance ~150% of RPi 3B+ (both single-/multi-threaded) * no Crypto Extensions usable (but that’s due to cores in ARMv7 state) Idle temperature looks a bit too high (+65°C) but most probably they rebooted an already busy RPi 4 (the test was conducted by German c’t magazine). So the thing still being… Read more »

hwti
hwti
1 year ago

What do you mean by “no crypto due to ARMv7” ? Here is the /proc/cpuinfo of a Cortex-A53 with crypto with an ARMv7 kernel (this is a Broadcom STB chip) : processor : 0 model name : ARMv7 Processor rev 0 (v7l) BogoMIPS : 54.00 Features : half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idivt vfpd32 lpae evtstrm aes pmull sha1 sha2 crc32 CPU implementer : 0x42 CPU architecture: 7 CPU variant : 0x0 CPU part : 0x100 CPU revision : 0 If you don’t see aes/sha1/sha2 support, it would mean they didn’t include them in their… Read more »

tkaiser
tkaiser
1 year ago

Most probably I’m confusing things.

When playing with the Samsung/Nexell S5P6818 (octa-core A53) some time ago I noticed Crypto Extensions missing (with a 32-bit 3.4 kernel). So I thought they wouldn’t be there until @willy informed me after switching to a 4.4 64-bit kernel they showed up: https://www.cnx-software.com/2017/11/12/nanopi-fire2a-fire3-boards-released-with-samsungnexcell-quad-octa-core-processors/#comment-549018

But as you demonstrated it’s not related to ARMv7 vs. ARMv8…

hwti
hwti
1 year ago

The code to print “aes” in cpuinfo has been added in 3.15 for ARMv7 (https://github.com/torvalds/linux/commit/8258a9895c99cdaacad8edc4748c0a624c710961).
and in 3.14 for ARMv8 (https://github.com/torvalds/linux/commit/4bff28ccda2b7a3fbdf8e80aef7a599284681dc6).

So on older kernels it isn’t displayed, but the userspace can probably still use it.

blu
blu
1 year ago

Just to be clear, the above is not a CA53 per se — CPU implementer is not ARM (0x41) and CPU part is not CA53 (0xd03).

hwti
hwti
1 year ago

Yes, it’s officially a Broadcom Brahma-B53, but I don’t know if there is any real difference with an A53.

radek
radek
1 year ago

Raspbian Buster but is still 32 bit…. For versions 2GB and 4GB they should made 64 BIT. It is wasting of four A72 core power.
By the way – i ordered 4GB version. Mniam mniam….

Arnd Bergmann
Arnd Bergmann
1 year ago

Since there is no kernel source available yet, I did a diff of the device tree files: https://paste.ubuntu.com/p/M9wfTbr9td/ A few things I noticed: – The USB3 (xhci) is listed as on-chip, but the board clearly has a PCI-USB host, no idea what’s going on there. – There is a new high-speed bus called “scb” that contains pcie (brcm,bcm7211-pcie), gigabit ethernet (brcm,genet-v5), dma (brcm,bcm2838-dma), usb3 (generic-xhci), and something called argon (hevc-decoder, local-intc, h264-decoder, vp9-decoder). My guess is that this entire part of the chip was lifted from one of their set-top-box chips (bcm7xxx). – The PCIe support seems to be rather… Read more »

tkaiser
tkaiser
1 year ago

> The USB3 (xhci) is listed as on-chip

And is status = "disabled". Maybe USB3 is even more quirky than PCIe so they needed to go the PCIe attached USB3 route nicely increasing overall consumption?

Benjamin Hojnik
1 year ago

Perhaps it wasnt quite ready for prime time and instead of making another silicon spin, they just decided to go to external chip route.

Tiago
Tiago
1 year ago

No vulkan support? 🙁

willmore
willmore
1 year ago

I don’t understand the choice of name. They call it a B form factor, but it isn’t. Why not call it the C? I mean it has ‘compact’ connectors and a USB-C port. It would make a lot more sense.

James
James
1 year ago

Power consumption vs RK3399 boards? Four A72 means the RPi 4 is all BIG and no Little.

theguyuk
theguyuk
1 year ago

? Little GHz

A72 running like crazy in flip-flops while wearing a chunky woolly jumper.

James
James
1 year ago

LOL

theguyuk
theguyuk
1 year ago

So much for the charity work, more a tax dodge? ” Industrial use Alongside traditional educational use, more serious consumer, industrial and commercial uses are foreseen for Pi 4. “Just as we help make coding more accessible for consumers, we also aim to democratise digital innovation in businesses and public services,” said Upton, “Today, over 50% of our $35 Raspberry Pi units are destined for industrial and commercial use. Raspberry Pi 4 builds on this, providing greatly increased performance at the same cost. We aim to provide a low-cost platform for technological innovation that is accessible to every organisation, from… Read more »

Benjamin HENRION
1 year ago

Well, anyway, large corporations like Broadcom has so many patents so they probably use patent boxes through Ireland or Holland to pay 0,0005% taxes like Apple and others do.

chewitt
chewitt
1 year ago

Industrial use sells boards. Kodi use sells board. The profits from board sales fund the educational mission.

willy
willy
1 year ago

Where’s Jerry ? For once he could be here saying great stuff about RPi without being (too much) downvoted.

Jerry
Jerry
1 year ago

What would you want me to say? It’s a great new board no doubt and a really competitive price. I can’t imagine anyone buying that chinese cr*p anymore.

blu
blu
1 year ago

Jerry delivers again.

halherta
halherta
1 year ago

And just like that my interest in RK3399 and S922 based SBCs and even the Nvidia Jetson Nano has dropped significantly

crashoverride
crashoverride
1 year ago

I made the comment elsewhere that this means the death of all the recent RK3399 “something pi” boards. S922, however, is still far ahead of Pi4 in performance (4xA73+2xA53 clocked 25% higher) and media capabilities (MPEG2, HDR, etc). It has yet to be demonstrated whether Pi4 has a version of AFBC. If it does not then [email protected] is going to be as challenging as it is on RK3328 (Rock64) due to memory bandwidth constraints. Whether its capable through brute force (like RK3399) depends on their memory controller interface to DRAM.

David Willmore
David Willmore
1 year ago

If the memset/memcpy values are any indication, it’s not. By half. It’s looking like *one* 4Kp30 display will be the limit.

hwti
hwti
1 year ago

So the 2*4Kp30 vs 1*4Kp60 perhaps comes from memory bandwidth.
The BCM2711 documentation page advertises LPDDR4-2400 support (nothing in the small datasheet), but the pictures show a much faster Micron D9WHV chip (LPDDR4-3733).

Da Xue
Da Xue
1 year ago

RK3399 has 64-bit wide DDR4 path so it has 2x the effective memory bandwidth of BCM2711B0. It is also a far more capable SoC. If anything, you will see RK3399 exceed BCM2711B0.

David Willmore
David Willmore
1 year ago

It could be to get the lower latencies? If you support a given latency at a higher clock speed, the number of clock cycles at a lower clock speed is less to get the same actual delay. Just a guess.

hwti
hwti
1 year ago

Given Broadcom STB chips support this kind of LPDDR4 frequency, I wonder why the raspberry pi 4 cannot (PCB or power constraints perhaps ?).

jackylau
jackylau
1 year ago

Hope Google will port ChromeOS to Raspberry Pi 4

Advertisements