Intel Compute Cards Review – Windows 10 and Ubuntu 17.04 on CD1C64GK, CD1P64GK and CD1M3128MK

The Intel Compute Stick revolutionized the mini PC market through the introduction of x86 based processors making Windows available as an OS option. However, for Intel the biggest target market turned out to be business rather than consumer with digital signage being a key user. As a result Intel have responded with the introduction of the Intel Compute Card. So far they have released four versions of card:

Click to Enlarge

and they they differ from compute sticks by no longer being standalone mini PCs but dependent on a dock or host device.

The card itself is relatively small with a footprint slightly larger than a standard credit card:

Click to Enlarge

and is distinguished by the back being printed with details about the card including the model:

Click to Enlarge

The lack of emphasis on the consumer market is also evident in the rather unobtrusive plain packaging:

On the end that inserts into the dock or host device is a connector which is separated into two sections: a Type C-compliant portion and an extended portion. The Type C portion supports Type C-compliant connections including video with audio and USB. The extended portion supports video with audio, USB, and PCIe. Power is supplied to the card from the device the Compute Card is plugged into using the Type C portion of the connector.

The card uses bidirectional authentication to authenticate a compatible device and card. The authentication uses digital keys which are provisioned by default during manufacturing ensuring only correctly provisioned card and devices work together.

As the card can get hot during heavy workloads it totally relies on the dock or host device for cooling. It is designed so that direct conductive contact with the card surfaces provide heat dissipation. This means the card is capable of operating within all critical component temperature specifications and will produce surface skin temperatures that may violate typical safety guidelines or requirements. To stop the user being burnt when handling the card immediately after use requires the dock or host device to delay the card being ejected if additional cooling is needed to reduce the skin temperature to below 55 °C.

Although the cards now targets OEMs, manufacturers, distributors and channel partners Intel have also released an Intel Compute Card Dock allowing consumers to use a card as a mini PC.

The key specifications of the dock include:

Click to Enlarge

and it comes with a small power brick with international plug adapters together with a two meter/six foot long power cable and the dock can be used with any of the cards.

Intel kindly provided a dock and three cards (CD1C64GK, CD1P64GK and CD1M3128MK) for review.

After connecting the power cable, a monitor using the HDMI port, a wireless keyboard and mouse that connects through a USB dongle and an ethernet cable, the basic operation requires sliding the card into the dock followed by firmly pushing it in to ensure connectivity.  The card can be removed by pressing the eject button which only works while power is connected. Then depending on the BIOS setting the card will either boot immediately or after the power button is pressed.

As the cards do not come with an OS I first installed Microsoft’s Windows 10 Enterprise product evaluation ISO in order to run my standard set of benchmarking tools to look at performance under Windows:

  • CD1C64GK Compute Card
  • CD1P64GK Compute Card
  • CD1M3128MK Compute Card

The results show the improvement the newer SoCs have given the cards over the sticks:

Click to Enlarge

and shows comparable performance with devices using similar SoCs:

Click to Enlarge

The results for the Core m3 card are significantly better due to the internal storage being an NVME device rather than eMMC however the fan was noticeably audible when running some benchmarks. Interestingly the eMMC performance of the Celeron card was better than the Pentium card and this is attributed to a tolerance in manufacturing of the eMMC rather than a device characteristic and this difference is reflected in some of the benchmark scores.

Next for each device I shrunk the Windows partition and created new a 10 GB partition so I could install and dual boot Ubuntu. I used a standard Ubuntu desktop ISO however whilst the installation completed successfully the Ubuntu NVRAM entry failed to be created correctly on the Core m3 card and needed to be fixed by manually using the ‘efibootmgr’ command.

For each card I ran some basic commands to look at the hardware in more detail:

  • CD1C64GK compute card

  • CD1P64GK compute card

  • CD1M3128MK compute card


Running my usual suite of Phoronix tests shows a similar performance improvement of the cards over the sticks in Ubuntu:

Click to Enlarge

with Ubuntu’s Octane result being slightly better than in Windows.

Looking at the individual performance of the Intel Apollo Lake cards against similar devices:

shows the cards performed the best:

Click to Enlarge

Playing videos under Windows using either a browser (Edge or Chrome) or KODI worked without issue on each device:

  • CD1C64GK Compute Card
  • CD1P64GK Compute Card
  • CD1M3128MK Compute Card

Under Ubuntu the previously seen issue of playing 4K videos in Chrome was encountered even on the Core m3 card and playing the videos at 1080p resolved stuttering and frame loss:

    • CD1C64GK Compute Card
    • CD1P64GK Compute Card
  • CD1M3128MK Compute Card